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BIAS OF LS ESTIMATORS IN NONLINEAR REGRESSION

MODELS WITH CONSTRAINTS. PART II: BIADDITIVE MODELS
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(Received July 23, 1998)

Abstract. General results giving approximate bias for nonlinear models with constrained
parameters are applied to bilinear models in anova framework, called biadditive models.
Known results on the information matrix and the asymptotic variance matrix of the parame-
ters are summarized, and the Jacobians and Hessians of the response and of the constraints
are derived. These intermediate results are the basis for any subsequent second order study
of the model. Despite the large number of parameters involved, bias formulæ turn out to
be quite simple due to the orthogonal structure of the model. In particular, the response
estimators are shown to be approximately unbiased. Some simulations assess the validity
of the approximations.
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tion, second order approximation
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1. Introduction

Bilinear models in anova framework date back to the work of Fisher and Macken-

zie [10]. Analyzing a two-factor crossed experiment, these authors compare additive
modelling [αi + βj ] and multiplicative modelling [γiδj ]. Subscripts i and j denote

the levels of the two factors of interest while Greek letters designate unknown para-
meters. The second step was made in 1936 by Eckart and Young [8]. They proposed

the least-squares approximation of any matrix by a matrix of lower rank leading to
the powerful tool of the singular value decomposition. Statistical models relying im-

plicitly on this decomposition were independently proposed by Gilbert [12], Gollob
[13], Mandel [16] and Johnson and Graybill [15] under the concept of multiplicative

This work was supported by INRA (France) and the Slovak Grant Agency (grant
N◦1/4196/97).
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modelling of the interaction between two factors. These multiplicative models have

proved to be very efficient tools for interpreting interactions between two factors,
even when no replication is available. In the book by Gauch [11] an extensive list of
references can be found about the subject. At the same time independent but con-

sistent results about the asymptotic variances of the maximum likelihood estimators
of the parameters appeared in Goodman and Haberman [14], Chadœuf and Denis

[1], Denis and Gower [2, 4, 5] and Dorkenoo and Mathieu [7].
Biadditive terminology introduced in Denis and Gower [2, 3] highlights the bilin-

ear nature of these models. Following their notation, we will deal here with models
B(m, a, b, πr), i.e. models with an additive part; but our results remain almost un-

changed for members of the biadditive family which are orthogonal. It is only the
B(m, ∗, ∗, πr) models, promoted under the name of shifted multiplicative models by

Seyedesadr and Cornelius [18], which are excluded here.
Here we apply to the B(m, a, b, πr) models the asymptotic bias formulæ proposed

by Pázman and Denis [17] for general nonlinear models when the parameters are
constrained by nonlinear equalities, continuing the path opened by Silvey [19].

Before deriving the bias, the model is presented and maximum likelihood estima-
tors of the expectation parameters are given, as are the information and asymptotic

variance matrices. Jacobians and Hessians for the response and constraint set are
stated, and these in turn are of use for any further second order analyses of the

model. Besides the basic parameterization proposed in Section 2.1, we present an-
other commonly used parameterization (Section 4.1). Bias functions are obtained

for both types of parameterization and for the response function. Interestingly, al-
though most of the developments presented here are very technical, the final results

are surprisingly simple. For example, the bias of the nonlinear parameters of the
model is given by simple formulæ in Theorem 9 and Proposition 13: parts of bias

are colinear to the corresponding vectors of parameters. Another nice result is that
the approximate bias of the response function is zero (Proposition 14).

Full numerical checking of the formulæ have been carried out, most of them are
presented elsewhere (see Denis and Pázman [6]). Finally, with some simulations the

validity range of the approximations proposed is studied. Splus functions of all
results presented in the paper are available under request from the first author.
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2. Model

2.1. Definition
Biadditive models considered here read

(1)





formula y(i,j) = µ+ αi + βj +
r∑

u=1
γiuδju + ε(i,j)

moments E[ε(i,j)] = 0; Cov[ε(i,j), ε(i,′j′)] =

{
σ2 when (i, j) = (i′, j′)

0 otherwise

constraints

(ϕC
α ):

∑
i

αi = 0 1

(ϕC
β ):

∑
j

βj = 0 1

(ϕC
γ,u):

∑
i

γiu = 0 ∀u r

(ϕC
δ,u):

∑
j

δju = 0 ∀u r

(ϕN
u ):

1
2

(∑
i γ2iu −

∑
j δ2ju

)
= 0 ∀u r

(ϕO
γ,u,v):

∑
i

γiuγiv = 0 ∀u < v r(r−1)
2

(ϕO
δ,u,v):

∑
j

δjuδjv = 0 ∀u < v r(r−1)
2

where i ∈ {1 . . . I} and j ∈ {1 . . . J} are the levels of two factors, say the row-factor
column-factor, respectively, having effect on the variate of interest y; and r, the
number of multiplicative terms, is less than or equal to min(I − 1, J − 1). The first
three terms (µ+αi+βj) correspond to additive modelling (linear part of the model),

the other terms,
r∑

u=1
γiuδju, correspond to the modelled interaction (the nonlinear

part of the model, in fact bilinear). By ϕC
α , ϕ

C
β , ϕ

C
γ,u, ϕ

C
δ,u, ϕ

N
u , ϕ

O
γ,u,v and ϕO

δ,u,v we

denote the constraints on the parameters. The numbers following each constraint
definition indicate the number of constraints generated (by varying the subscripts u

and v).
This model is a special case of Model (1-2) in [17]: the number of parameters is p =

1+(r+1)(I+J), the number of observations is n = IJ and the number of constraints
is q = 2 + 2r + r2. For the sake of simplicity of notation, let α = (α1, α2, . . . , αI)T ,

β = (β1, β2, . . . , βJ)T , γu = (γ1u, γ2u, . . . , γIu)T and δu = (δ1u, δ2u, . . . , δJu)T ∀u =
1, . . . , r. The parameters will be ordered in the following way:

θ = (µ, αT , βT , γT
1 , δT

1 , γT
2 , δT

2 , . . . , γT
r , δT

r )
T

and we will distinguish between the additive parameters

θA = (µ, αT , βT )T of size pA
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and the biadditive parameters

θB = (γT
1 , δT

1 , γT
2 , δT

2 , . . . , γT
r , δT

r )
T of size pB.

It will be shown in Section 2.2.1 by the ranks of the Jacobians that the constraints
on the parameters are only identifiable and are independent. There are two centering

constraints, (ϕC
α ) and (ϕ

C
β ), for the additive part and r(2 + r) constraints associated

with the multiplicative terms:
• centering: (ϕC

γ,u) and (ϕ
C
δ,u)

• equality of norms: (ϕN
u )

• orthogonality between the γ: (ϕO
γ,u,v)

• orthogonality between the δ: (ϕO
δ,u,v)

Although these constraints ensure the local identifiability of the model, global

identifiability requires more properties. The γ’s (and consequently also the δ’s) are
ordered according to their norm:

γT
1 γ1 � γT

2 γ2 � . . . � γT
r γr.

Even so, global identifiability is not guaranteed. For instance, the signs of any γu

and δu can be simultaneously changed without modifying the response. Moreover,

if some norms are equal (γT
u γu = γT

u+1γu+1) any rotations on these vectors and the
associated rotations on δu and δu+1 can be performed without changing the response.

Hence, we will suppose that

γT
1 γ1 > γT

2 γ2 > . . . > γT
r γr > 0.

Even more, to maintain the compactness of the parameter space which is required

in Pázman and Denis [17], we will suppose that

1
κ

� γT
1 γ1 + κ � γT

2 γ2 + κ � . . . � γT
r γr + κ � 2κ

for some small κ > 0. If κ is very small, this has no noticeable influence on statistical

considerations.

2.2. Structure
Ordering the subscripts (i, j) by varying first i, we can write Model (1) in a vector

form:

(2) E [y] = η (θ) = (1J ⊗ 1I)µ+ 1J ⊗α+β ⊗ 1I +
r∑

u=1

δu⊗γu.
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Here 1s denotes the column vector of �s with all entries equal to 1.

2.2.1. Jacobians and Hessians.

Proposition 1. The Jacobian J (θ) = ∂η(θ)
∂θT of Model (1) is given by

(3) (1J ⊗ 1I ,1J ⊗ II , IJ ⊗ 1I , δ1 ⊗ II , IJ ⊗ γ1, . . . , δr ⊗ II , IJ ⊗ γr) .

Its rank is (1 + r) (I + J − (1 + r))

�����. J (θ) = ∂η
∂θT is an IJ times (1 + I + J) + r (I + J) matrix. Following

the distinction previously made between the additive and biadditive parameters, it is
convenient to consider separately the part corresponding to the additive parameters

denoted by J
(
θA

)
and the part corresponding to the biadditive parameters denoted

by J
(
θB

)
. Of course the complete Jacobian is given by

J (θ) =
(
J
(
θA

)
, J

(
θB

))
.

Straightforward derivations give

J
(
θA

)
= (1J ⊗ 1I ,1J ⊗ II , IJ ⊗ 1I) .

For the biadditive part the basic derivation is ∂(δu⊗γu)
∂(γT

u ,δT
u )
. It is immediate, once one

has established the order of subscripts. We obtain

∂ (δu⊗γu)
∂γT

u

=
∂
(
δ1uγT

u , δ2uγT
u , . . . , δJuγT

u

)T

∂γT
u

= (δ1uII , δ2uII , . . . , δJuII)
T

= δu⊗II .

Hence
∂ (δu⊗γu)
∂ (γT

u , δT
u )
= (δu ⊗ II , IJ ⊗ γu) ,

which produces the proposed expression for the Jacobian.
Let us now establish the rank of Matrix (3). Reordering the columns of a matrix

does not modify its rank, so we can look for the rank of

(1J ⊗ 1I , (1J , δ1, . . . , δr)⊗ II , IJ ⊗ (1I , γ1, . . . , γr)) .

Denote by M [A] the vector space generated by the columns of any matrix A. We
have

(4) rk (1I , γ1, . . . , γr) = rk (1J , δ1, . . . , δr) = r + 1

379



since the centering and the orthogonality constraints hold. One can find I − r − 1
independent vectors, say

(5) (γr+1, . . . , γI−1) ,

such that they generate the orthocomplement vector subspace toM [(1I , γ1, . . . , γr)],

and similarly J − r − 1 independent vectors, say

(6) (δr+1, . . . , δJ−1) ,

generating the orthocomplement vector subspace toM [(1J , δ1, . . . , δr)]. Since

M [II ] =M [(1I , γ1, . . . , γr)]⊕M [(γr+1, . . . , γI−1)] ,

M [IJ ] =M [(1J , δ1, . . . , δr)]⊕M [(δr+1, . . . , δJ−1)]

we have

M [(1J ⊗ 1I , (1J , δ1, . . . , δr)⊗ II , IJ ⊗ (1I , γ1, . . . , γr))]

=M [((1J , δ1, . . . , δr)⊗ II , IJ ⊗ (1I , γ1, . . . , γr))]

=M [((1J , δ1, . . . , δr)⊗ (1I , γ1, . . . , γr))]

⊕M [((1J , δ1, . . . , δr)⊗ (γr+1, . . . , γI−1))]

⊕M [((δr+1, . . . , δJ−1)⊗ (1I , γ1, . . . , γr))] ,

hence

rk (1J ⊗ 1I , (1J , δ1, . . . , δr)⊗ II , IJ ⊗ (1I , γ1, . . . , γr))

= rk ((1J , δ1, . . . , δr)⊗ (1I , γ1, . . . , γr))

+ rk ((1J , δ1, . . . , δr)⊗ (γr+1, . . . , γI−1))

+ rk ((δr+1, . . . , δJ−1)⊗ (1I , γ1, . . . , γr))

= (1 + r)2 + (1 + r) (I − r − 1) + (J − r − 1) (1 + r)

= (1 + r) (I + J − (1 + r)) .

�

Note that, with the constraints in (1), (1I , γ1, . . . , γr) and (1J , δ1, . . . , δr) are
orthogonal bases ofM [(1I , γ1, . . . , γr)] andM [(1J , δ1, . . . , δr)].

Proposition 2. The Hessian of Model (1) is given by

H
(i,j)
∗∗ (θ) =

∂2η(i,j) (θ)

∂θ∂θT
=

(0pA×pA 0pA×pB

0pB×pA Ir ⊗
(
0 eifTj
fjeTi 0

)
)
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where ei and fj are the ith and jth canonical vectors of �I and �J . Every H
(i,j)
∗∗ (θ)

is a symmetrical matrix of rank 2r.

�����. The Hessian of the response function is a four dimensional array row

factor × column factor × parameters × parameters ; it is presented here as a series
of symmetrical matrices for each couple of factor levels (i, j).

From Proposition 1,
∂η(i,j)

∂θT is given by

∂η(i,j)

∂θT
=
(
1, eTi , fTj , δj1eTi , γi1fTj , . . . , δjreTi , γirfTj

)
.

All terms involving linear parameters vanish and consequently

∂2η(i,j)

∂θA∂ (θA)T
= 0pA×pA and

∂2η(i,j)

∂θB∂ (θA)T
= 0pB×pA .

For the remaining
∂η(i,j)

∂θB∂θBT block, it suffices to check that

∂
(
δjueTi

)

∂δu
= fjeTi and

∂
(
γiufTj

)

∂γu
= eifTj

to obtain that
∂2η(i,j)

∂θB∂ (θB)T
= Ir ⊗

(
0 eifTj
fjeTi 0

)
.

The rank of H(i,j)∗∗ (θ) is equal to the rank of its second diagonal block because the

other blocks are null. On the other hand,

rk

(
Ir ⊗

(
0 eifTj
fjeTi 0

))
= rk (Ir) rk

((
0 eifTj
fjeTi 0

))

= r rk

((
0 eifTj
fjeTi 0

))
.

The rank of the remaining matrix is obviously two. �

Proposition 3. The rows of the Jacobian for the constraints, L (θ) = ∂ϕ(θ)
∂θT , are

given by the expressions

1 LC
α =

(
0,1T

I ,01×J ,01×pB

)

1 LC
β =

(
0,01×I ,1T

J ,01×pB

)

r LC
γ,u =

(
01×pA ,gT

u ⊗
(
1T

I ,01×J

))
∀u

r LC
δ,u =

(
01×pA ,gT

u ⊗
(
01×I ,1T

J

))
∀u

r LN
u =

(
0r×pA ,gT

u ⊗
(
γT

u ,−δT
u

))
∀u

r (r − 1) /2 LO
γ,u,v =

(
0r×pA ,gT

u ⊗
(
γT

v ,01×J

)
+ gT

v ⊗
(
γT

u ,01×J

))
∀u < v

r (r − 1) /2 LO
δ,u,v =

(
0r×pA ,gT

u ⊗
(
01×I , δ

T
v

)
+ gT

v ⊗
(
01×I , δ

T
u

))
∀u < v

where the first column indicates the number of rows of L (θ) involved by the formula
in the line and gu is the uth canonical vector of �r . The rank of L (θ) is 2+2r+ r2.
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�����. It is straightforward to derive the different blocks of ∂ϕ(θ)
∂θT once we

recall that ϕ (θ) and θ are defined in Section 2.1.

The derivation of the rank can be done in several steps:

1. Constraints on additive parameters give null components for the θB part of the

Jacobian. Similarly, constraints on biadditive parameters give null components
for the θA part of the Jacobian. It follows that

rk

(
∂ϕ (θ)
∂θT

)
= rk

(
∂ϕ (θ)

∂ (θA)T

)
+ rk

(
∂ϕ (θ)

∂ (θB)T

)
.

2. Obviously

rk

(
∂ϕ (θ)

∂ (θA)T

)
= 2.

3. From the centering constraints it follows that 1I and γu are linearly indepen-
dent, and so are 1J and δu. Hence

∅ = (RCγ ∪RCδ)∩ (RN ∪ROγ ∪ROδ)

where

RCγ =M
[
g1 ⊗

(
1T

I ,01×J

)T
, . . . ,gr ⊗

(
1T

I ,01×J

)T
]

RCδ =M
[
g1 ⊗

(
01×I ,1T

J

)T
, . . . ,gr ⊗

(
01×I ,1T

J

)T
]

RN =M
[
g1 ⊗

(
γT
1 ,−δT

1

)T
, . . . ,gr ⊗

(
γT

r ,−δT
r

)T
]

ROγ =M
[
gu ⊗

(
γT

v ,01×J

)T
+ gv ⊗

(
γT

u ,01×J

)T
, ∀u < v

]

ROδ =M
[
gu ⊗

(
01×I , δ

T
v

)T
+ gv ⊗

(
01×I , δ

T
u

)T
, ∀u < v

]
,

so

rk

(
∂ϕ (θ)

∂ (θB)T

)
= dim (RCγ ∪RCδ) + dim (RN ∪ROγ ∪ROδ) .

4. It is easy to see that

dim (RCγ ∪RCδ) = 2r,

dim (RN ) = r,

dim (ROγ) =
r (r − 1)
2

,

dim (ROδ) =
r (r − 1)
2

.
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5. It is easy to check that ROγ⊥ROδ, hence

dim (ROγ ∪ROδ) = dim (ROγ) + dim (ROδ) .

6. Due to (4) no vectors of the form gu ⊗
(
γT

u ,−δT
u

)T
can belong to ROγ ∪ ROδ

since only generators of the form gu ⊗
(
γT

v ,01×J

)T
with u 
= v are available.

Now vectors g1 ⊗
(
γT
1 ,−δT

1

)T
, . . . ,gr ⊗

(
γT

r ,−δT
r

)T
have nonnull components

in the same position, consequently

dim (RN ∪ (ROγ ∪ROδ)) = dim (RN ) + dim (ROγ ∪ROδ) .

�

Proposition 4. The matrix
(

J (θ)
L (θ)

)
is of full column rank.

�����. According to Propositions 1 and 3, the matrix

(
J (θ)

L (θ)

)
reads




1J ⊗ 1I 1J ⊗ II IJ ⊗ 1I δ1 ⊗ II IJ ⊗ γ1 . . . δr ⊗ II IJ ⊗ γr

− 1
T

I
− − − − − −

− − 1T
J − − − − −

− − − 1T
I − − − −

− − − − 1T
J − − −

− − − − − . . . − −
− − − − − − 1T

I −
− − − − − − − 1T

J

− − − γT
1 −δT

1 − − −

− − − − − . . . − −
− − − − − − γT

r −δT
r

. . . . . . . . . . . . . . . . . . . . . . . .

− − − γT
r − − γT

1 −
− − − − δT

r − − δT
1

. . . . . . . . . . . . . . . . . . . . . . . .




where for the sake of clarity, null block matrices have been indicated by “–” and null

lines drawn out to better display the structure. Postmultiplying this matrix by the
block diagonal matrix

( 1 01×(p−1)

0(p−1)×1 I(r+1) ⊗
(
Qγ 0I×J

0J×I Qδ

)
)
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where Qγ=
(
(1I , γ1, γ2, γ3, . . . , γI−1)

T )−1 and Qδ=
(
(1J , δ1, δ2, δ3, . . . , δJ−1)

T )−1

with complementing vectors defined in Expressions (5) and (6), one obtains




1J ⊗ 1I 1J ⊗Qγ Qδ ⊗ 1I δ1 ⊗Qγ Qδ ⊗ γ1 . . . δr ⊗Qγ Qδ ⊗ γr

− eT1 − − − − − −
− − fT1 − − − − −
− − − eT1 − − − −
− − − − fT1 − − −
− − − − − . . . − −
− − − − − − eT1 −
− − − − − − − fT1
− − − eT2 −fT2 − − −

− − − − − . . . − −
− − − − − − eTr+1 −fTr+1
. . . . . . . . . . . . . . . . . . . . . . . .

− − − eTr+1 − − eT2 −
− − − − fTr+1 − − fT2
. . . . . . . . . . . . . . . . . . . . . . . .




.

It can be checked that all multiple columns of the transformed J (θ), namely 1J⊗1I ,

δ1⊗1I , δ2⊗1I , 1J⊗γ1, 1J⊗γ2, δ1⊗γ1, δ2⊗γ2, δ1⊗γ2 and δ1⊗γ2, are distinguished
by the canonical vectors in the transformed L (θ). Consequently all columns of this

matrix are linearly independent. �

Proposition 5. The Hessian for the constraints, K (θ) = ∂2ϕ(θ)
∂θ∂θT , is given by the

following symmetrical matrices, one for each constraint.

1 KC
α = 0p×p

1 KC
β = 0p×p

r KC
γ,u = 0p×p ∀u

r KC
δ,u = 0p×p ∀u

r KN
u =

( 0pA×pA 0pA×pB

0pB×pA gugT
u ⊗

(
II 0I,J

0J,I −IJ

)
)

∀u

r (r − 1) /2 KO
γ,u,v =

( 0pA×pA 0pA×pB

0pB×pA

(
gvgT

u + gugT
v

)
⊗
(
II 0I,J

0J,I 0J,J

)
)

∀u < v

r (r − 1) /2 KO
δ,u,v =

( 0pA×pA 0pA×pB

0pB×pA

(
gvgT

u + gugT
v

)
⊗
(
0I,I 0I,J

0J,I IJ

)
)

∀u < v

where the first number is the number of constraints described in the line.
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�����. There are no technical difficulties in obtaining these matrices starting

from the Jacobian given in Proposition 3. �

2.2.2. The information matrix and a related matrix.
The following derivations are given without proofs: either they are simple products

of matrices or they are proved in Appendix A.1.

Proposition 6. The information matrix M (θ) of Model (1) is given by

J (θ)T J (θ) =




µ, αT , βT

︸ ︷︷ ︸ γT
1 , δT

1︸ ︷︷ ︸ γT
2 , δT

2︸ ︷︷ ︸ . . . γT
r , δT

r︸ ︷︷ ︸
µ

α

β



 A� B1 B2 . . . Br

γ1
δ1

}
BT
1 C1II+J + Γ11 Γ21 . . . Γr1

γ2

δ2

}
BT
2 Γ12 C2II+J + Γ22 . . . Γ2r

...
...

...
...

. . .
...

γr

δr

}
BT

r Γ1r Γ2r . . . CrII+J + Γrr




where Cu = γT
u γu ∀u and

A� =




IJ J1T
I I1T

J

J1I JII 1I1T
J

I1J 1J1T
I IIJ


 , Bu =

(
01×(I+J)

Γu0

)
, Γuv =

(
0I×I γuδT

v

δuγT
v 0J×J

)
.

Proposition 7. The inverse of M (θ) + LT (θ)L (θ) is given by the matrix




µ, αT , βT

︸ ︷︷ ︸ γT
1 , δT

1︸ ︷︷ ︸ γT
2 , δT

2︸ ︷︷ ︸ . . . γT
r , δT

r︸ ︷︷ ︸
µ

α

β



 A∗ B∗1 B∗2 . . . B∗r

γ1
δ1

}
(B∗1)

T C∗11
−(∆21+Γ21)
(C1−C2)2

. . . −(∆r1+Γr1)
(C1−Cr)2

γ2

δ2

}
(B∗2)

T −(∆12+Γ12)
(C2−C1)2

C∗22 . . . −(∆r2+Γr2)
(C2−Cr)2

...
...

...
...

. . .
...

γr

δr

}
(B∗r)

T −(∆1r+Γ1r)
(Cr−C1)2

−(∆2r+Γ2r)
(Cr−C2)2

. . . C∗rr
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where

A∗=




(IJ)−1 + I−2 + J−2 −I−21T
I −J−21T

J

−I−21I

J−1II + J−I
JI2 1I1T

I

+J−2
r∑

u=1
γuγT

u

0I×J

−J−21J 0J×I

I−1IJ + I−J
IJ2 1J1T

J

+I−2
r∑

u=1
δuδT

u



,

B∗u = −



01×I 01×J

0I×I J−2γu1T
J

I−2δu1T
I 0J×J


 ,

C∗uu = C−1
u II+J +

C2u − I2

CuI2 (I + Cu)
E1 +

C2u − J2

CuJ2 (J + Cu)
E2

−
r∑

v=1

1
Cu (Cu + Cv)

∆vv +
r∑

v=1
v �=u

2Cu

(Cu + Cv) (Cu − Cv)
2 (∆vv + Γvv)

with

E1 =
(
II×I 0I×J

0J×I 0J×J

)
, E2 =

(
0I×I 0I×J

0J×I IJ×J

)
, ∆uv =

(
γuγT

v 0I×J

0J×I δuδT
v

)
,

Γvv being defined in Proposition 6.

2.3. Least squares estimators
It is convenient to distinguish the estimates of the linear part which can be ob-

tained in closed form from the estimates of the bilinear part which are the solution
of the eigenvalue equations.

2.3.1. Parameters of the linear terms.
L.S. estimators for the linear parameters (µ, α, β) are given by identical formulæ

whatever is r, the number of multiplicative terms, even if it is null. This good

property is due to the centering constraints
(
ϕC

γ,u

)
and

(
ϕC

δ,u

)
of Model (1). These

estimators are especially simple, namely linear combinations of the observations. If

Y is the I by J matrix of generic component y(i,j) then

µ̂ =
1

IJ
1T

I Y1J ,

(α̂)i =
1
J
Y1J − 1I µ̂,

(
β̂
)
j
=
1
I
YT1I − 1J µ̂.
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They are unbiased.

2.3.2. Parameters of the bilinear terms.
Let PI = 1I

(
1T

I 1I

)−1
1T

I be the orthogonal projector of �
I onto the span of

1I ; similarly we define PJ . For the bilinear part the L.S. estimators γ̂u and
δ̂u are the eigenvectors of the matrices (II −PI)Y (IJ −PJ)YT (II −PI) and

(IJ −PJ )YT (II −PI)Y (IJ −PJ ) such that γ̂T
u γ̂u = δ̂T

u δ̂u = Ĉu where Ĉ2u is the
common uth eigenvalue of these matrices. Note that the directions of γ̂u and δ̂u

must be chosen simultaneously. Classical references for these equations are Eckart
and Young [8], Gollob [13], Mandel [16] and Johnson and Graybill [15].

As a consequence of Constraints (1) the estimators of the additive part are inde-
pendent of (II −PI)Y (IJ −PJ ) and consequently of γ̂u and δ̂u.

2.3.3. Asymptotic variances.
The results presented in the next proposition come from Denis and Gower [2, 4, 5].

There are no novelty, merely the formulæ have been translated into our notation.

Proposition 8. The variance matrix of the first order asymptotic approximation
of least squares estimators of Model (1), say θ̂(1), is

Var
[
θ̂(1)

]
= σ2




µ, αT , βT

︸ ︷︷ ︸ γT
1 , δT

1︸ ︷︷ ︸ γT
2 , δT

2︸ ︷︷ ︸ . . . γT
r , δT

r︸ ︷︷ ︸
µ

α

β



 AV 0pA×(I+J) 0pA×(I+J) . . . 0pA×(I+J)

γ1
δ1

}
0(I+J)×pA E1 E12 . . . E1r

γ2

δ2

}
0(I+J)×pA E21 E2 . . . E2r

...
...

...
...

. . .
...

γr

δr

}
0(I+J)×pA Er1 Er2 . . . Er




where

AV =



(IJ)−1 01×I 01×J

0I×1 J−1II − (IJ)−1 1I1T
I 0I×J

0J×1 0J×I I−1IJ − (IJ)−1 1J1T
J




Eu =
1

Cu

(
II −PI 0I×J

0J×I IJ −PJ

)
+

r∑

q=1

(
luq∆qq + kuqΓqq

)
,

Euv =
−1

(
C
2
u − C

2
v

)2
((

C
2
u + C

2
v

)
∆vu + 2CuCvΓvu

)
when u 
= v
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with

luu =
−3
4C
2
u

, kuu =
1

4C
2
u

,

luq =
Cq

(
3C
2
u − C

2
q

)

Cu

(
C
2
u − C

2
q

)2 , kuq =
2C
2
u(

C
2
u − C

2
q

)2 for u 
= q,

∆vu, Γvu are defined in Propositions 7 and 6, Cu = γT
u γu = δT

u δu, and bar means

the true value of parameters.

������. Notice that Var
(
θ̂(1)

)
= Var

(
∆(1)

)
as used in Pázman and Denis [17],

since ∆(1) = θ̂(1) − θ.

3. Approximate bias of the parameters

The derivation of the asymptotic bias of the parameter estimator θ̂ will be done

by applying Proposition 2 in [17] which reads

b
(
θ̂
)
= − 1

2

(
M(θ) + LT (θ)L(θ)

)−1
(7)

×
(
JT (θ)Tr{H(θ)Var[θ̂(1)]}+ LT (θ)Tr{K(θ)Var[θ̂(1)]}

)
.

The main elements of this formula and the formula itself are calculated in Appendices

A.1 and A.2:
•
(
M(θ) + LT (θ)L(θ)

)−1
is given by Lemma 18.

• Tr{H(θ)Var[θ̂(1)]} is given by Lemma 19.
• Tr{K(θ)Var[θ̂(1)]} is given by Lemma 20.
• JT (θ)Tr{H(θ)Var[θ̂(1)]}+ LT (θ)Tr{K(θ)Var[θ̂(1)]} is given by Lemma 21.
• Finally, Expression (7) is obtained in Lemma 22.

Theorem 9. The approximate bias of the estimator of the parameter vector of
Model (1) is null for the linear parameters, and is given by

b
(
γ̂u

)
= σ2


2 (J − I)− 1

8C
2
u

−
r∑

v=1
v �=u

C
2
v(

C
2
v − C

2
u

)2


γu,

b
(
δ̂u

)
= σ2

[
2 (I − J)− 1
8C
2
u

−
r∑

v=1
v �=u

C
2
v(

C
2
v − C

2
u

)2
]
δu

for the bilinear parameters where b
(
θ̂
)
means the approximate bias of the estimator

θ̂ and Cu = γT
u γu = δ

T

u δu.
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A noticeable point of this result is its simplicity: the vectors b (γ̂u) and γu have

the same direction. The same holds for b
(
δ̂u

)
and δu. The vectors b (γ̂u) and b

(
δ̂u

)

respect the symmetry of γu and δu in Model (1). The only difference is due to the
number of levels, I and J , of the two factors.

4. Bias of important functions of the parameters

In this section we give results for a second parameterization of Model (1) as well
as for its response.

4.1. Another parametrization

4.1.1. Definition.
In most practical circumstances biadditive models are considered under an equiv-

alent parametrization imposing unit length to vectors γu and δu and adding r addi-
tional parameters u, i.e.

(8) y(i,j) = µ+ αi + βj +
r∑

u=1

uγ̃iuδ̃ju + ε(i,j)

with r additional constraints

I∑

i=1

γ̃2iu = γ̃T
u γ̃u = 1 ∀ u = 1, . . . , r.

The main reason is that the amount of interaction for each multiplicative term is
given by 2u while vectors γ̃u and δ̃u develop the contrasts of the interaction. The

new parameters can be easily defined as functions of the former ones by

u = γT
u γu ∀ u = 1, . . . , r

γ̃u = γu

(
γT

u γu

)− 12

δ̃u = δu

(
γT

u γu

)− 12 .

Let us denote the new set of parameters by

θ̃ =
(
µ, αT , βT , 1, γ̃

T
1 , δ̃T

1 , 2, γ̃
T
2 , δ̃T

2 , . . . , r, γ̃
T
r , δ̃T

r

)T

and the mapping giving θ̃ as a function of θ by τ :

(9) θ̃ = τ (θ) .
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4.1.2. Jacobian and Hessian of the transformation.

Proposition 10. The Jacobian ∂τ(θ)
∂θT of the function (9) is the ((1 + r)(1 + I +

J))× (1 + (1 + r)(I + J)) matrix

(
I1+I+J 0
0 diagu=1,...,r (Zu)

)
,

where Zu are (1 + I + J)× (I + J) matrices given by

Zu =




2γT
u 01,J(

γT
u γu

)− 12 [II − γu

(
γT

u γu

)−1
γT

u

]
0I,J

−
(
γT

u γu

)− 12 δu

(
γT

u γu

)−1
γT

u

(
γT

u γu

)− 12 IJ


 .

It is full column rank.

�����. Straightforward derivations produce the formula. The rank of Zu is
I+J because the two blocks of columns are independent of rank I and J , respectively.

Due to the diagonal block structure of ∂τ(θ)
∂θT , its rank is the sum of the ranks of the

blocks. �

Proposition 11. The Hessian ∂2τ(θ)
∂θ∂θT of the function (9) is given by the following

series of symmetrical matrices of size
(
pA + pB

)
×
(
pA + pB

)
:

{
∂2τ (θ)
∂θ∂θT

}

(µ)

=

{
∂2τ (θ)
∂θ∂θT

}

(αi)

=

{
∂2τ (θ)
∂θ∂θT

}

(βj)

= 0(pA+pB)×(pA+pB)

{
∂2τ (θ)
∂θ∂θT

}

(
u)

=

( 0pA×pA 0pA×pB

0pB×pA gugT
u ⊗

(
2II 0I×J

0J×I 0J×J

)
)
∀u = 1, . . . , r

{
∂2τ (θ)
∂θ∂θT

}

(γ̃iu)

=

(0pA×pA 0pA×pB

0pB×pA gugT
u ⊗

(
Niu 0I×J

0J×I 0J×J

)
)
∀u = 1, . . . , r ∀ i = 1, . . . , I

{
∂2τ (θ)
∂θ∂θT

}

(δ̃ju)
=

(0pA×pA 0pA×pB

0pB×pA gugT
u ⊗

(
Uju V T

ju

Vju 0J×J

)
)
∀u = 1, . . . , r ∀ j = 1, . . . , J

where

Niu =
(
γT

u γu

)− 32 [3γiuγu

(
γT

u γu

)−1
γT

u −
(
eiγT

u + γueTi + γiuII
)]
,

Uju = δju

(
γT

u γu

)− 32 [3
(
γT

u γu

)−1
γuγT

u − II
]
,

Vju = −
(
γT

u γu

)− 32 fjγT
u .

�����. Straightforward derivation gives each matrix. �
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4.1.3. Asymptotic variance.

Proposition 12. Var
[̂̃
θ
(1)]
, the asymptotic variance of the estimators of parame-

ters of Model (8) is given by

σ2




µ, αT , βT

︸ ︷︷ ︸ 1, γ̃
T
1 , δ̃T

1︸ ︷︷ ︸ 2, γ̃
T
2 , δ̃T

2︸ ︷︷ ︸ . . . r, γ̃
T
r , δ̃T

r︸ ︷︷ ︸
µ

α

β



 AV 0pA×(1+I+J) 0pA×(1+I+J) . . . 0pA×(1+I+J)

1

γ̃1
δ̃1



 0(1+I+J)×pA Ẽ1 Ẽ12 . . . Ẽ1r

2
γ̃2

δ̃2



 0(1+I+J)×pA Ẽ21 Ẽ2 . . . Ẽ2r

...
...

...
...

. . .
...

r

γ̃r

δ̃r



 0(1+I+J)×pA Ẽr1 Ẽr2 . . . Ẽr




where

Ẽu =




1 0 0
0 1

C
2
u

P(γ)
∑
v �=u

2Cu

(C2u−C
2
v)
2γvδ

T

v

0
∑
v �=u

2Cu

(C2u−C
2
v)
2 δvγ

T
v

1
C
2
u

P(δ)


 ,

Ẽuv =
−1

C
1
2
u C

1
2
v

(
C
2
u − C

2
v

)2



(
C
2
u + C

2
v

)


0 0 0
0 γvγ

T
u 0

0 0 δvδ
T

u




+2CuCv



0 0 0
0 0 γvδ

T

u

0 δvγ
T
u 0






where

P(γ) =
[
P{1,γu}⊥ +

∑

v �=u

2Cv

(
3C
2
u − C

2
v

)

(
C
2
u − C

2
v

)2 γvγ
T
v

]
,

P(δ) =
[
P{1,δu}⊥ +

∑

v �=u

2Cv

(
3C
2
u − C

2
v

)

(
C
2
u − C

2
v

)2 δvδ
T

v

]
,
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P{1,γu}⊥ = II −
1
I
1I1T

I − γu

(
γT

u γu

)−1
γT

u ,

P{1,δu}⊥ = IJ −
1
J
1J1T

J − δu

(
δT

u δu

)−1
δT

u .

�����. This result is obtained by expanding
∂τ(θ)
∂θT Var

(
θ̂(1)

)∂τT (θ)
∂θ whose terms

are given in Propositions 10 and 8. �

4.1.4. Bias.

Proposition 13. Approximate bias of the second parametrization is

b
(
̂u

)
= σ2


(J + I)− 4

2Cu

+
∑

q �=u

C
2
q

Cu

(
C
2
u − C

2
q

)


 ,

b
(̂̃γu

)
=

σ2

2
C
− 52
u


2− I −

∑

q �=u

C
2
q

(
3C
2
u − C

2
q

)

(
C
2
u − C

2
q

)2


γu,

b
(̂̃
δu

)
=

σ2

2
C
− 52
u


2− J −

∑

q �=u

C
2
q

(
3C
2
u − C

2
q

)

(
C
2
u − C

2
q

)2


 δu.

�����. these formulæ are obtained by applying Proposition 5 in [17] using the
previous results on bias (Theorem 9), variance (Proposition 8), Jacobian (Proposi-

tion 10) and Hessian (Proposition 11). �

4.2. Estimator of the response function
The estimator of the expectation of the observations is simply given by replacing

the estimators of the parameters in the response

η
(
θ̂
)
= (1J ⊗ 1I) µ̂+ 1J ⊗ α̂+ β̂⊗1I +

r∑

u=1

δ̂u⊗γ̂u.

Proposition 14. The asymptotic variance of η
(
θ̂
)
is

σ2
{
1
IJ

(
1J1T

J ⊗ 1I1T
I

)
+
1
J

(
1J1T

J ⊗ (II −PI)
)
+
1
I

(
(IJ −PJ )⊗ 1I1T

I

)

+
r∑

u=1

1
Cu

(
δuδT

u ⊗ (II −PI) + (IJ −PJ )⊗ γuγT
u

)

−
r∑

u=1

r∑

v=1

1
CuCv

(
δuδT

u ⊗ γvγ
T
v

)}
.
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�����. This result is obtained by expanding J
(
θ
)
Var

(
θ̂(1)

)
JT

(
θ
)
whose terms

are given in Propositions 1 and 8. �

Proposition 15. The approximate bias of η
(
θ̂
)
is null.

�����. Application of the general Proposition 5 in [17]. �

������. When the maximum number of multiplicative terms is introduced

in the model, that is when r = min (I − 1, J − 1), Model (1) turns out to be the
classical anova interaction model which is a linear model and consequently without

bias in the response. Our result is consistent with this fact.

5. Simulations

In order to have an idea about the practical validity of the approximations pro-
posed, we have performed some simulations. Following the investigation made by

Chadœuf and Denis [1], we took I = 8, J = 13, r = 1 and a series of values of σ2

such that their coefficient

r (σ) =
(I − 1) (J − 1)σ2

(I − 1) (J − 1)σ2 + 21

takes the values {0.01, 0.05, 0.1, (0.1), 0.9, 0.95}. This coefficient can be interpreted
as the ratio of the noise over the sum of the noise plus the signal. In agronomic

applications presented or studied by Chadœuf and Denis [1], Gauch [11] and van
Eeuwijk [9] its values were (0.02, 0.30, 0.22, 0.17, 0.14, 0.44, 0.59, 0.68), so some

practical situations are covered by these computations. For each value of r (σ), 1000
simulations were done.

The results are presented in Figure 1 where simulated values and approximations
are compared for γ̂11, ̂1 and η̂(1,1). Rather than to give globally the mean square

error of the estimators, we thought it useful to look at its two components: the
standard deviation and the absolute value of the bias.

Several kinds of comments can be infered from Figure 1. We found them true
also for other results investigated but not presented here. In all cases, the two

approximations (standard deviation and bias) are quite good until r (σ) = 0.5 or
0.6. After that point, the approximation underestimates the bias for the response,

nevertheless it is still surprisingly good for ̂1. According to the parameter considered
the participation of the bias in the MSE can be the most important (̂1) or the

smallest (η̂11).
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Figure 1. Results of simulations for γ̂11, ̂1 and η̂11. The coefficient r(σ) is on

the x-axis (see text); either the standard deviations (dashed lines), or the absolute
values of the bias (solid lines) are on the y-axis. Big dots indicate the simulated

values, the other lines give the approximate values.
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A. Appendix

A.1. Some necessary inverse matrices

Lemma 16. Let A be the matrix




IJ J1T
I I1T

J

J1I JII + 1I1T
I 1I1T

J

I1J 1J1T
I IIJ + 1J1T

J


 .

Its inverse is



(IJ)−1 + I−2 + J−2 −I−21T

I −J−21T
J

−I−21I J−1II + J−I
JI2 1I1T

I 0I×J

−J−21J 0J×I I−1IJ + I−J
IJ2 1J1T

J


 .

�����. A direct check can be performed by multiplying the two matrices. �

Lemma 17. Let C be the symmetric square matrix of r×r blocks of size (I + J)×
(I + J) defined by

r∑

u=1

[
CuHu +Eu1 +Eu2 +

r∑

v=1

CvDuv +
r∑

v=1
v �=u

√
CuCvVuv

]

where Hu = gugT
u ⊗ II+J , Eu1 = gugT

u ⊗
(
1I1T

I 0
0 0

)
, Eu2 = gugT

u ⊗
(
0 0
0 1J1T

J

)
,

Duv = 1
Cv
gugT

u ⊗∆vv and Vuv= 1√
CuCv

gugT
v ⊗ (∆vu + Γvu).

Its inverse is

C−1 =
r∑

u=1

[
1

Cu
Hu −

1
Cu (I + Cu)

Eu1 −
1

Cu (J + Cu)
Eu2

−
r∑

v=1

Cv

Cu (Cu + Cv)
Duv −

r∑

v=1
v �=u

√
CuCv

(Cu − Cv)
2Vuv

+
r∑

v=1
v �=u

2CuCv

(Cu + Cv) (Cu − Cv)
2Fuv

]

where Fuv = 1
Cv
gugT

u ⊗ (∆vv + Γvv). [∆vu and Γvu are defined in Propositions 7
and 6.]
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�����. We will calculate the product CC−1 and check that it gives the identity
matrix. To do so, it is convenient to derive the table of products of the auxiliary
matrices. Note that the products which are not mentioned in the following table are
null. The table is ordered according to the resulting products.

Hu Hu = Hu Hu Vuv = Vuv

Hu Eu1 = Eu1 Vuv Hv = Vuv

Eu1 Hu = Eu1 Duv Vuv = Vuv

Eu1 Eu1 = IEu1 Vuv Dvu = Vuv

Hu Eu2 = Eu2 Fuv Vuv = 2Vuv

Eu2 Hu = Eu2 Vuv Fvu = 2Vuv

Eu2 Eu2 = JEu2 Hu Fuv = Fuv

Hu Duv = Duv Fuv Hu = Fuv

Duv Hu = Duv Duv Fuv = Fuv

Duv Duv = Duv Fuv Duv = Fuv

Vuv Vvu = 2Fuv

Fuv Fuv = 2Fuv

We will now perform the calculus of CC−1 using this table of products:

• terms in Hu: ∑

u

Cu

Cu
Hu =

∑

u

Hu = Ir(I+J)×r(I+J)

• terms in Eu1:

∑

u

(
− 1

I + Cu
+
1

Cu
− I

Cu (I + Cu)

)
Eu1 =

∑

u

(−Cu + (I + Cu)− I

Cu (I + Cu)

)
Eu1

= 0r(I+J)×r(I+J)

• terms in Eu2:

∑

u

(
− 1

J + Cu
+
1

Cu
− I

Cu (J + Cu)

)
Eu2 = 0r(I+J)×r(I+J)

• terms in Duv:

∑

u

∑

v

(
− Cv

Cu + Cv
+

Cv

Cu
− C2v

Cu (Cu + Cv)

)
Duv

=
∑

u

∑

v

Cv

(−Cu + (Cu + Cv)− Cv

Cu (Cu + Cv)

)
Duv = 0r(I+J)×r(I+J)
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• terms in Vuv:

∑

u

∑

v �=u

(−Cu

√
CuCv

(Cu − Cv)
2 +

√
CuCv

Cv
− Cv

√
CuCv

(Cu − Cv)
2

− Cu

√
CuCv

Cv (Cu + Cv)
+

4CuCv

√
CuCv

(Cu − Cv)
2 (Cu + Cv)

)
Vuv

=
∑

u

∑

v �=u

Kuv

√
CuCv

Cv (Cu − Cv)
2 (Cu + Cv)

Vuv

where

Kuv = − CuCv (Cu + Cv) + (Cu − Cv)
2 (Cu + Cv)

− C2v (Cu + Cv)− Cu (Cu − Cv)
2 + 4CuC2v

= (Cu + Cv)
(
−CuCv + (Cu − Cv)

2 − C2v

)
− Cu

(
(Cu − Cv)

2 + 4C2v
)

= (Cu + Cv)
(
C2u − 3CuCv

)
+ Cu

(
−C2u + 2CuCv + 3C2v

)
= 0

• terms in Fuv:

∑

v �=u

(
Cu2CuCv

(Cu + Cv) (Cu − Cv)
2 +

Cv2CuCv

(Cu + Cv) (Cu − Cv)
2 −

2CuCv

(Cu − Cv)
2

)
Fuv

=
∑

v �=u

2CuCv (Cu + Cv)− 2CuCv (Cu + Cv)

(Cu + Cv) (Cu − Cv)
2 Fuv = 0.

�

Lemma 18. The inverse of the matrix M (θ) +LT (θ)L (θ) of Model (1) is given

by (
A∗ B∗

(B∗)T C∗

)
,

where

A∗ =




(IJ)−1 + I−2 + J−2 −I−21T
I −J−21T

J

−I−21I

J−1II + J−I
JI2 1I1T

I

+J−2
r∑

u=1
γuγT

u

0I×J

−J−21J 0J×I

I−1IJ + I−J
IJ2 1J1T

J

+I−2
r∑

u=1
δuδT

u




,
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B∗ = −
r∑

u=1

gT
u ⊗



01×I 01×J

0I×I J−2γu1T
J

I−2δu1T
I 0J×J


 ,

C∗ =
r∑

u=1

[
1

Cu
Hu +

C2u − I2

CuI2 (I + Cu)
Eu1 +

C2u − J2

CuJ2 (J + Cu)
Eu2

−
r∑

v=1

Cv

Cu (Cu + Cv)
Duv −

r∑

v=1
v �=u

√
CuCv

(Cu − Cv)
2Vuv

+
r∑

v=1
v �=u

2CuCv

(Cu + Cv) (Cu − Cv)
2Fuv

]
,

with the auxiliary matrices Hu, Eu1, Eu2, Duv and Fuv defined in Lemma 17.

�����.

1. M (θ)+LT (θ)L (θ) =

(
A B
BT C

)
whereA is defined in Lemma 16, C is defined

in Lemma 17 and

B =
r∑

u=1

gT
u ⊗



01×I 01×J

0I×I γu1T
J

δu1TI 0J×J


 .

The well known formula of the inverse of such a two blocks by two blocks

partitioned square matrix is

(
A B
BT C

)−1

=

( (
A−BC−1BT

)−1
, −

(
A−BC−1BT

)−1
BC−1

−C−1BT
(
A−BC−1BT

)−1
, C−1 +C−1BT

(
A−BC−1BT

)−1
BC−1

)
,

we will compute it accordingly.

2. Here we will derive BC−1. From the definition of these matrices (see Lemmas
17 and 18) it can be checked that

BHu = gT
u ⊗



01×I 01×J

0I×I γu1T
J

δu1T
I 0J×J


 ,

BEu1 = gT
u ⊗



01×I 01×J

0I×I 0I×J

Iδu1T
I 0J×J


 ; BEu2 = gT

u ⊗



01×I 01×J

0I×I Jγu1T
J

0J×I 0J×J


 ,

BDuv = BVuv = BFuv = 0(1+I+J)×r(I+J).
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It follows that

BC−1 =
r∑

u=1

gT
u ⊗




01×I 01×J

0I×I
1

J+Cu
γu1T

J
1

I+Cu
δu1T

I 0J×J


 .

3. Here we will derive BC−1BT . A straightforward matrix product from the

preceding expression gives

BC−1BT =
r∑

u=1



0 01×I 01×J

0I×1 J
J+Cu

γuγT
u 0I×J

0J×1 0J×I
I

I+Cu
δuδT

u


 .

4. Here we will derive
(
A−BC−1BT

)−1
. It can be checked that it is given by

the expression

A−1 +
r∑

u=1



0 01×I 01×J

0I×1 J−2γuγT
u 0I×J

0J×1 0J×I I−2δuδT
u


 .

5. Here we will derive
(
A−BC−1BT

)−1
BC−1 from the previous results. It turns

out to be equal to

r∑

u=1

gT
u ⊗


(A−BC−1BT

)−1



01×I 01×J

0I×I
1

J+Cu
γu1T

J
1

I+Cu
δu1T

I 0J×J






=
r∑

u=1

gT
u ⊗



01×I 01×J

0I×I J−2γu1T
J

I−2δu1T
I 0J×J


 .

6. Here we will derive C−1BT
(
A−BC−1BT

)−1
BC−1 by multiplying C−1BT

and
(
A−BC−1BT

)−1
BC−1 previously obtained:

[ r∑

u=1

gu ⊗
(
0I×1 0I×I

1
I+Cu

1Iδ
T
u

0J×1 1
J+Cu

1JγT
u 0J×J

)][ r∑

u=1

gT
u ⊗



01×I 01×J

0I×I J−2γu1T
J

I−2δu1T
I 0J×J



]

=
r∑

u=1

(
gugT

u

)
⊗
( Cu

I2(I+Cu)
1I1T

I 0I×J

0J×I
Cu

J2(J+Cu)
1J1T

J

)
.

From here, there is no difficulty in obtaining C∗ because C−1 is already given
in Lemma 17.

�
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A.2. Calculations for the bias formula
The aim of this section is to calculate for the parameters of the biadditive Model

(1) according to Proposition 2 in [17].

Lemma 19. For the biadditive Model (1) we have

Tr
{
H(θ)Var

[
θ̂(1)

]}
= σ2

r∑

u=1








r∑

v=1
v �=u

4C2v
(C2v − C2u)

2


+ 1

2C2u





δu⊗γu

where Cu = γT
u γu = δT

u δu.

�����. H(θ) is an IJ ×
(
pA + pB

)
×
(
pA + pB

)
structure given by Proposition

2 and Var
[
θ̂(1)

]
is a

(
pA + pB

)
×
(
pA + pB

)
matrix detailed in Proposition 8. This

means that we must obtain an IJ vector whose (i, j) component is

Tr
{
H
(i,j)
∗∗ (θ)Var

[
θ̂(1)

]}
.

Since H
(i,j)
∗∗ =

(0pA×pA 0pA×pB

0pB×pA Ir ⊗
(
0 eifTj
fjeTi 0

)
)
, so only the codiagonal blocks of

the terms Euu have to be taken into account for the trace. This gives

σ2
r∑

u=1

2
r∑

q=1

kuqγiqδjq

= σ2
r∑

q=1

γiqδjq




2




r∑

u=1
u�=q

1
CuCq

2rqu

(rqu − ruq)
2


+ 1

2C2q





.

�

Lemma 20. For the biadditive Model (1) we have

Tr
{
K(θ)Var

[
θ̂(1)

]}
= σ2

(
01×(2+2r),

(I − J

C1
,
I − J

C2
, . . . ,

I − J

Cr

)
,0
1×
(
r(r−1)

)
)T

where Cu = γT
u γu = δT

u δu.

�����. K (θ) is a
(
3 + 2r + r2

)
×
(
pA + pB

)
×
(
pA + pB

)
structure given by

Proposition 5 and Var
[
θ̂(1)

]
is a

(
pA + pB

)
×
(
pA + pB

)
matrix detailed in Proposi-

tion 8. This means that we must obtain a
(
3 + 2r + r2

)
vector whose components will
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be calculated according to the seven types of constraints presented in the definition

of Model (1):

• components associated with the four centering constraints are null because the
corresponding matrices of the Hessian are null;

• components associated with the normalization constraints reduce to

σ2
[ r∑

q=1

luq

(
γT

q γq − δT
q δq

)
+
1

Cu
(Tr (II −PI)− Tr (IJ −PJ))

]
= σ2

I − J

Cu
;

• components associated with the orthogonalization constraints vanish because
the result is a linear combination of Tr

(
γuγT

v

)
= γT

v γu = 0 and Tr
(
δuδT

v

)
=

δT
v δu = 0 because u 
= v.

�

Lemma 21. For the biadditive Model (1) we have

JT (θ) Tr
{
H(θ)Var

[
θ̂(1)

]}
+ LT (θ) Tr

{
K (θ) Var

[
θ̂(1)

]}

= σ2
(
01×pA , Q1γ

T
1 , R1δ

T
1 , . . . , Qrγ

T
r , Rrδ

T
r

)T

where

Qu =
1 + 2 (I − J)
2Cu

+ Cu

r∑

v=1
v �=u

4C2v
(C2v − C2u)

2 ,

Ru =
1 + 2 (J − I)
2Cu

+ Cu

r∑

v=1
v �=u

4C2v
(C2v − C2u)

2

and Cu = γT
u γu = δT

u δu.

�����. J (θ) is given by Proposition 1, Tr
{
H (θ) Var

[
θ̂(1)

]}
by Lemma 19, L (θ)

by Proposition 3 and Tr
{
K (θ) Var

[
θ̂(1)

]}
by Lemma 20. The result is obtained by

multiplying matrices and summing vectors. �

Lemma 22. For the biadditive Model (1) we have

−1
2

(
M (θ) + LT (θ)L (θ)

)−1

×
(
JT (θ) Tr

{
H (θ)Var

[
θ̂(1)

]}
+ LT (θ)Tr

{
K (θ)Var

[
θ̂(1)

]})

= σ2
(
01×pA , S1γ

T
1 , T1δ

T
1 , . . . , Srγ

T
r , Trδ

T
r

)T
,
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where

Su =
2 (J − I)− 1
8C2u

−
r∑

v=1
v �=u

C2v

(C2v − C2u)
2 ,

Tu =
2 (I − J)− 1
8C2u

−
r∑

v=1
v �=u

C2v

(C2v − C2u)
2

and Cu = γT
u γu = δT

u δu.

�����.
(
M (θ) + LT (θ)L (θ)

)−1
is given by Lemma 18 and

JT (θ)Tr
{
H (θ) Var

[
θ̂(1)

]}
+LT (θ)Tr

{
K (θ)Var

[
θ̂(1)

]}

by Lemma 21. The result is obtained by a simple matrix multiplication. �
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