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Abstract. The prediction of size extremes in Wicksell’s corpuscle problem with oblate
spheroids is considered. Three-dimensional particles are represented by their planar sections
(profiles) and the problem is to predict their extremal size under the assumption of a
constant shape factor. The stability of the domain of attraction of the size extremes is
proved under the tail equivalence condition. A simple procedure is proposed of evaluating
the normalizing constants from the tail behaviour of appropriate distribution functions and
its results are employed for the estimation of the spheroid size. Examples covering families
of Gamma, Pareto and Weibull distributions are provided. A short discussion of maximum
likelihood estimators of the normalizing constants is also included.

Keywords: sample extremes, domain of attraction, normalizing constants, FGM system
of distributions

MSC 2000 : 60G70, 62G32, 62P30

1. Introduction

Spheroidal particles of random size and shape distributed in a given volume may

serve as a suitable model of many situations occurring in material science, biology,
petrography etc. The embedding medium is frequently opaque and the particles

cannot be observed directly. Consequently, only their planar sections called the
profiles are simply accessible and the estimation of the properties of the original

particles from the properties of their profiles is of particular interest.

Let us suppose that the particle arrangement is stationary isotropic, which means
that the underlying point process of their centroids is stationary and their orientation

is uniformly distributed random variable. We shall consider the oblate spheroids in

This research was supported by the project GAČR 201/03/P138 “Statistical and prob-
abilistic analysis of real processes” of Czech Grant Agency, and by the project MSM
113200008 “Mathematical methods in stochastics” of MŠMT ČR.
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what follows. They can be completely characterized e.g. by the length of the two

major semiaxes, which will be called here the size x, and by their shape factor

t =
x2

w2
− 1,

where w is the length of the minor semiaxis. The profiles of spheroids are ellipses
which can be again fully characterized by their size y (the length of the major
semiaxis) and the shape factor

z =
y2

v2
− 1,

where v is the length of the minor semiaxis.

The classical solution of the particle size reconstruction based on the profile char-
acteristics is Wicksell’s corpuscle problem [16], [17], a detailed treatment of oblate

and prolate spheroids is in [2]. In the past decade, the prediction of extremal size
in Wicksell’s corpuscle problem has been intensively studied, see [3], [12]–[14]. Basic

references to the theory of sample extremes may be [4], [5] or [10].

In this paper, the problem of extremal spheroid size as related to its shape factor

is examined. Therefore the results of [13], [14] are generalized and also the problem
complementary to [7], [8] (the extremal shape factor as related to the size) is dealt

with.

In Section 2, the joint distribution of random size (Y ) and shape factor (Z) of pro-

files and the joint distribution of random size (X) and shape factor (T ) of spheroids
are introduced; the former is the simple transform of the latter. Then it is shown in

Section 3 that the distribution of Y conditioned by T belongs to the same domain of
attraction as the distribution of X given T . Under a supplementary tail equivalence

condition, also the distribution of Y conditioned by Z and the marginal distribution
of Y belong to the same domain of attraction. Normalizing constants are studied

in Section 4, and Section 5 contains the explicit form of normalizing constants in
bivariate FGM distribution for three different tails of density (each of them repre-

senting one of the limit distributions). In Section 6 several examples are given and in
Section 7 a statistical application of the theory is briefly outlined. Simulation study

of a similar problem concerning the extremal shape factor of spheroids may be found
in [1].
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2. Distribution of spheroid characteristics

Let the joint density of the spheroid size and shape factor be denoted by g(x, t)
and let it be absolutely continuous w.r.t. two-dimensional Lebesgue measure. This
density can be transformed to the joint density h(y, t) of the profile size Y and original
shape factor T , and also to the density f(y, z) of the profile size Y and profile shape
factor Z. It follows e.g. from [2] that 0 6 Y 6 X < ω and 0 6 Z 6 T < η, where ω

and η are the upper endpoints of the marginal distributions of X and T , respectively.
The values ω and η need not be finite. Further, let us also denote by g(x) and g(x|t)
the marginal and conditional densities of the size, respectively.

Theorem 1. The joint density of (Y, T ) is

(1) h(y, t) =
y

Mt

∫ ω

y

g(x, t)√
x2 − y2

dx, where Mt =
∫ ω

0

xgt(x) dx.

The joint density of (Y, Z) is

(2) f(y, z) =
y
√

1 + z

2M

∫ ω

y

∫ η

z

g(x, t) dt dx√
t
√

1 + t
√

t− z
√

x2 − y2
,

where M is half of the mean caliper diameter in the population of particles.

It is clear that Mt is the conditional mean size of the spheroid given the shape

factor T = t.
���������

. Let us denote by θ the angle of the sectioning plane and the main plane
of the spheroid. Further, let p be the distance of the sectioning plane from the centre
of the spheroid and let ↑ denote the event that the sectioning plane hits the particle.
According to [2] we have

l(p, θ|x, t, ↑) = [2EθB]−1 sin θ, θ ∈ [0, � /2], |p| 6 x

(
1 + t sin2 θ

1 + t

)1/2

= B,

where l(p, θ|x, t, ↑) is the conditional density of the distance p and the angle θ given

the spheroid size and shape factor and provided that the spheroid is hit by the
sectioning plane. The value B is the half caliper diameter of the particle (half of its

breadth equal to the length of the particle projection onto the section plane normal).
Under the condition that the particle is hit by the section plane, the section size and

shape factor are given by the transformation

(3) y =
(

x2 − p2(1 + t)
1 + t sin2 θ

)1/2

, z = t sin2 θ.
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It follows that after the transformation (p, θ) 7→ (y, θ) the conditional density of
(y, θ) given the values of (x, t) is

h(y, θ|x, t, ↑) =
y√

x2 − y2

sin θ

EθB

√
1 + t sin2 θ

1 + t
, θ ∈ [0, � /2], y ∈ [0, x],

and the integration w.r.t. θ gives

h(y|x, t, ↑) =
y

2EθB
√

x2 − y2

(
1√

1 + t
+

√
1 + t

t
arctan

√
t

)
, y ∈ [0, x].

Hence

h(y|t) =
∫ ω

y

h(y|x, t, ↑)g(x|t)[EθB/EgtEθB] dx

and since

EgtEθB =
∫ ω

0

xg(x|t)
∫ � /2

0

(
1 + t sin2 θ

1 + t

)1/2

sin θ dθ dx

=
1
2

(
1√

1 + t
+

√
1 + t

t
arctan

√
t

) ∫ ω

0

xg(x|t) dx

it follows that h(y, t) is of the form (1).
The distribution f(y, z) may be easily calculated from the transformation (3). It

is completely derived in [2]. The reader may note that in [2] the eccentricity t
1+t

instead of the shape factor t is used. �
����� �!��"#�%$&��')(*���,+

. We shall use fixed notation for specific densities, distribu-

tion functions and variables. The density g(x, t) and the distribution function G(x, t)
will always mean the joint density and the corresponding distribution function of the

spheroid characteristics, and similarly f(y, z) and F (y, z) relates to profiles. For the
marginal density of the size we shall use simply g(x). The marginal density of the
shape factor will be denoted by the subscript—gT (t). A similar notation is used for
distribution functions. Further, h(y) is the marginal density of the profile size and
H(y) is its distribution function. As only the distribution of the size given the shape
factor will be used, gt(x) = g(x|t) and fz(y) = f(y|z) are the conditional densities,
Gt(x) and Fz(y) the conditional distribution functions.
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3. Limit behaviour of size extremes

Let us recall that there are three possible limit distributions of sample maximum
under affine transformation, namely

Li,α(v) =





exp(−v−α),

exp(−(−v)α),

exp(−e−v),

v > 0, α > 0,

v 6 0, α > 0,

v ∈ - ,

i = 1, “Fréchet”,

i = 2, “(reversed) Weibull”,

i = 3, “Gumbel”.

We shall write K ∈ D(L) if a distribution function K is in the domain of attraction
(DA) of L.

The following conditions based on the limit behaviour of the density makes it
possible to decide into which domain of attraction a considered distribution with a

density k belongs:

lim
s→∞

k(vs)
k(s)

= v−(α+1), α, v > 0, ω = +∞ ⇒ k ∈ D(L1,α),

lim
s↘0

k(ω − vs)
k(ω − s)

= vα−1, α, v > 0, ω < +∞ ⇒ k ∈ D(L2,α),(4)

lim
s↗ω

k(s + vb(s))
k(s)

= e−v, v ∈ - ⇒ k ∈ D(L3),

where the auxiliary function b can be chosen such that it is differentiable for s < ω,
lim
s→ω

b′(s) = 0, and lim
s→∞

b(s)/s = 0 if ω = ∞, or lim
s→ω

b(s)/(ω − s) = 0 if ω < ∞, see
e.g. [5].

An important question concerns the limit behaviour of ht(y), fz(y) and f(y) if one
of the conditions (3) is obeyed by the density gt(x). The meaning of this assumption
is clarified by the following theorem.

Theorem 2. Let us assume that the density gt(x) fulfils one of the conditions
(4) and, moreover, α > 1 for L1.

(i) Then the density ht(y) belongs to the same domain of attraction as the density
gt(x).

(ii) If the conditions (4) are fulfilled by the densities gt(x) uniformly in t then the

densities fz(y) and f(y) also belong to the same domain of attraction as gt(x).
The parameters of the limit distributions are in both the cases changed to β = α− 1
for L1 and to β = α + 1/2 for L2.
���������

. The first step is to prove part (i) of the theorem. We shall distinguish
the three limiting behaviours of gt(x).
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.0/ �,'!1324'5� 671)��89'
. Let us study

lim
y→∞

ht(yv)
ht(y)

= lim
y→∞

v

∫∞
yv

gt(x) dx√
x2−(yv)2∫∞

y
gt(x) dx√
x2−(y)2

.

Changing the variable in the numerator, x 7→ xv, one obtains

lim
y→∞

∫∞
y

gt(xv) dx√
x2−(y)2∫∞

y
gt(x) dx√
x2−(y)2

= lim
x→∞

gt(xv)
gt(x)

= v−(α+1).

Hence

lim
y→∞

ht(yv)
ht(y)

= v−α = v−([α−1]+1) ⇒ ht ∈ D(L1,α−1).

One may try to check also the sufficient and necessary condition for Ht ∈ D(L1,α−1),
namely

lim
y→∞

1−Ht(yv)
1−Ht(y)

= v−α+1.

Indeed we have

1−Ht(yv) =
1

Mt

∫ ∞

yv

s

∫ ∞

s

gt(u) du ds√
u2 − s2

=
1

Mt

∫ ∞

yv

gt(u)
∫ u

yv

s ds√
u2 − s2

du

=
1

Mt

∫ ∞

yv

gt(u)
√

u2 − y2v2 du =
v2

Mt

∫ ∞

y

√
u2 − y2gt(uv) du,

and similarly

1−Ht(y) =
1

Mt

∫ ∞

y

√
u2 − y2gt(u) du.

Hence

lim
y→∞

1−Ht(yv)
1−Ht(y)

= v2 lim
y→∞

∫∞
y

√
u2 − y2gt(uv) du

∫∞
y

√
u2 − y2gt(u) du

= v2 lim
y→∞

gt(yv)
gt(y)

= v−α+1.

. : ')"#; < =#=>671)��89'
. The following relation should be proved:

lim
y→0+

ht(ω − yv)
ht(ω − y)

= lim
y→0+

(ω − yv)
∫ ω

ω−yv
gt(x) dx√

x2−(ω−yv)2

(ω − y)
∫ ω

ω−y
gt(x) dx√
x2−(ω−y)2

= vα−1/2.

Substituting x 7→ ω − xv in the numerator and x 7→ ω − x in the denominator the
limit becomes

v lim
y→0

gt(ω − xv)
gt(ω − x)

√
(ω − x)2 − (ω − y)2

(ω − xv)2 − (ω − yv)2
= v · vα−1 · 1√

v
= vα−1/2,

where x 6 y. Hence h ∈ D(L2,α+1/2) holds. The sufficient and necessary condition
for the distribution function Ht can be checked as in the previous case.
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.3? < (@;A')=>6B15�%89'
. The Gumbel limit distribution is the most difficult case.

We have to study the behaviour of

lim
y→ω−

ht(y + vb(y))
ht(y)

= lim
y→ω−

(y + vb(y))
∫ ω

y+vb(y)
gt(x) dx√

x2−(y+vb(y))2

y
∫ ω

y
gt(x) dx√

x2−y2

.

There is again an appropriate substitution, x 7→ x + vb(x), in the numerator. Since
b(y)/y → 0 as y → ω the limit can be rewritten as

lim
y→ω

gt(x + vb(x))
gt(x)

√
x2 − y2

x2 − y2 + 2v(xb(x) − yb(y)) + v2(b2(x)− b2(y))
(1 + vb′(x)),

where y < x < ω, and then simplified to

lim
y→ω

gt(x + vb(x))
gt(x)︸ ︷︷ ︸
→e−v


1 + 2v

xb(x)− yb(y)
(x − y)(x + y)︸ ︷︷ ︸

→0

+v2 b2(x) − b2(y)
x2 − y2

︸ ︷︷ ︸
→0




−1/2

(1 + vb′(x))︸ ︷︷ ︸
→1

,

which completes the proof of part (i).
Part (ii) of the theorem can be proved with help of part (i) and regardless of the

limiting behaviour of the density ht.
The conditional density ht(y) fulfils the conditions (4) uniformly as the conditions

are fulfilled uniformly by the densities gt(x). Indeed,

ht(ϕ(y))
ht(y)

=
ϕ(y)

∫ ω

ϕ(y)
gt(x) dx√
x2−ϕ2(y)

y
∫ ω

y
gt(x) dx√

x2−y2

,

where ϕ(y) is the appropriate transformation. Substituting x 7→ ϕ(x) in the numer-
ator,

ht(ϕ(y))
ht(y)

=
ϕ(y)

∫ ω

y
gt(ϕ(x))ϕ′(x) dx√

ϕ2(x)−ϕ2(y)

y
∫ ω

y
gt(x) dx√

x2−y2

follows. Since the only term depending on t is the conditional density gt, the unifor-
mity of the density ht is proved.

Let us now examine the limit

lim
y→ξ

fz(ϕ(y))
fz(y)

= lim
y→ξ

∫ η

z
Mtht(ϕ(y))g(t) dt√

t(1+t)(t−z)∫ η

z
Mtht(y)g(t) dt√

t(1+t)(t−z)

,
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where ξ and ϕ(y) are appropriate for the limiting case. Denoting by l the corre-

sponding right hand side of the conditions (4), then for any ε > 0 and for y large
enough we have

∣∣∣∣∣∣∣

∫ η

z
Mtht(ϕ(y))g(t) dt√

t(1+t)(t−z)∫ η

z
Mtht(y)g(t) dt√

t(1+t)(t−z)

− l

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣

∫ η

z
Mtht(y)g(t)√
t(1+t)(t−z)

(
ht(ϕ(y))

ht(y) − l
)

dt

∫ η

z
Mtht(y)g(t) dt√

t(1+t)(t−z)

∣∣∣∣∣∣∣

6

∫ η

z
Mtht(y)g(t)√
t(1+t)(t−z)

∣∣∣ht(ϕ(y))
ht(y) − l

∣∣∣ dt

∫ η

z
Mtht(y)g(t) dt√

t(1+t)(t−z)

6 ε · l.

It remains to prove the assertion for the marginal density f(y), but this is the
same as the marginal density h(y). Hence we need to consider

lim
y→ξ

h(ϕ(y))
h(y)

= lim
y→ξ

∫ η

0
g(t)
Mt

∫ ω

ϕ(y)
gt(x)ϕ(y) dx√

x2−ϕ2(y)
dt

∫ η

0
g(t)
Mt

∫ ω

y
gt(x)y dx√

x2−y2
dt

.

Repeating the argument of the preceding part, the proof of Theorem 2 is completed.

�

We have mentioned already that the density ht(y) is not very useful in applica-
tions as the true shape factor of the particle is usually unknown. The uniformity

condition is, as follows from the proof, quite natural and can be expected in this con-
text. It is obvious that the ellipses observed in the sections are profiles of spheroids

the size and shape factor of which are definitely greater. All these greater spheroids
may contribute to our observation, hence the assumption of uniformity of the tail be-

haviour follows. On the other hand, we don’t know how far is the assumed uniformity
condition from the necessary condition of our theorem.

It is shown in [8] that a bivariate distribution function of the Farlie-Gumbel-
Morgenstern (FGM) class fulfils the uniformity condition.

Lemma 1. Consider that for all values of t and large values of x (large indepen-
dently of t) the joint density g(x, t) of the spheroid size and the shape factor is of
the form of FGM class. Assume that the conditional distribution gt0(x) satisfies the
condition Ci,α for some i and t0. Then the condition Ci,α is fulfilled by the densities

gt(x) uniformly in t.

Let us recall that a density function g(x, t) is of the FGM class if it has the form

g(x, t) = g(x)gT (t)[1 + λ{2G(x)− 1}{2GT (t)− 1}],
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where g, gT and G, GT are the marginal densities and distribution functions re-

spectively, and |λ| < 1 is a parameter. Note that the components of a random
vector (X, T ) obeying the FGM distribution are mutually independent for λ = 0 and
positively (negatively) correlated for λ > 0 (λ < 0).

4. Normalizing constants

The next step in the application of the proposed approach is to find a way how to

calculate the normalizing constants. As was already mentioned above, we are looking
for such a suitable affine transformation of the sample extreme X1:n = max(Xi|1 6
i 6 n) (here conditioned by the size T ) that

P
[
X1:n − bn

an
< x

∣∣∣ T = t

]
w→ Li,α(x)

for some i and α. The pairs (an, bn) (forming a sequence) are called the normalizing
constants and their estimation can be based on the tail behaviour of the distribution

functions, in particular on the tails 1−Gt(x), 1− Fz(y) and 1− F (y).
Let us recall that the normalizing constants are based on quantiles of the studied

distribution. The normalizing constants are not given uniquely, they rather form

an “equivalence class” with respect to the limit behaviour. Namely, if (an, bn) are
normalizing constants, then the pair (a′n, b′n) such that

lim
n→∞

a′n
an

= 1, lim
n→∞

b′n − bn

an
= 0

may be also viewed as normalizing constants (but the convergence rates may differ).

Therefore when evaluating quantiles in order to obtain normalizing constants, one
can make an approximation (or simplification) keeping in mind the limit “unique-

ness” mentioned above. The choice of the normalizing constants for three types of
the limit behaviour of the distribution functions (each type represents one domain

of attraction) is given by the following lemma:

Lemma 2. Suppose that a distribution function K has an upper end point ω.

(i) If ω = ∞ the distribution function K belongs to the Gumbel domain of attrac-

tion and if there exist constants α > 0, β, γ > 0, δ > 0 such that

lim
v→∞

1−K(v)
αvβe−γvδ = 1,
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then the normalizing constants may be chosen as

an =
(

log n

γ

)1/δ−1 1
γδ

, bn =
(

log n

γ

)1/δ

+
β
δ (log log n− log γ) + log α

( log n
γ )1−1/δγδ

.

(ii) If the distribution function K belongs to the Fréchet domain of attraction and

if there exist constants α > 0, β, γ > 0 such that

lim
v→∞

1−K(v)
α(log v)βv−γ

= 1

then the normalizing constants may be chosen as

an =
[
n

(
log n

γ

)β

α

]1/γ

, bn = 0.

(iii) If the distribution function K belongs to the Weibull domain of attraction and

if there exist constants α, γ > 0 such that

lim
v→ω

1−K(v)
γ(v/ω)β(ω − v)α

= 1,

then the normalizing constants may be chosen as

an = (nγ)−1/α, bn = ω.

For the proof of the lemma see [4] or [11]. The tail behaviours assumed in the

lemma cover the most important probability distributions. It can be expected that
appropriate normalizing constants can be found by a similar examination of the

extremal quantiles even for more complicated models of the limit behaviour of the
tails 1−K(v).

5. Tail behaviour in the FGM class

We shall assume that the density g(x, t) of spheroid size and shape factor belongs
to the Farlie-Gumbel-Morgenstern class for large values of x and all t in what follows.
It means that there is x0 such that for {(x, t) : x > x0, t ∈ [0, η]} we have

g(x, t) = g(x)gT (t)[1 + λ(2G(x) − 1)(2GT (t)− 1)]

= g(x)gT (t)[1 + λ{2(1−G(x)) − 1}(1− 2GT (t))]

= g(x)gT (t)[1− λ(1− 2GT (t))] + g(x)(1−G(x))2λgT (t)(1− 2GT (t)).
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Therefore one can write (asymptotically for large x and y)

(5) 1−Gt(x) = [1− λ(1− 2GT (t))]
∫ ω

x

g(u) du

+ 2λ(1− 2GT (t))
∫ ω

x

g(u)(1−G(u)) du,

1− Fz(y) =
√

1 + z

2Mf(z)

[∫ η

z

gT (t)[1− λ(1− 2GT (t))]√
t(1 + t)(t− z)

dt

×
∫ ω

y

g(x)
√

x2 − y2 dx

+
∫ η

z

2λgT (t)(1− 2GT (t))√
t(1 + t)(t− z)

dt

×
∫ ω

y

g(x)(1−G(x))
√

x2 − y2 dx

]
,

1−H(y) =
∫ η

0

gT (t)[1− λ(1− 2GT (t))]
Mt

dt

×
∫ ω

y

g(x)
√

x2 − y2 dx

+
∫ η

0

2λgT (t)(1− 2GT (t))
Mt

dt

×
∫ ω

y

g(x)(1−G(x))
√

x2 − y2 dx.

It follows from (5) that the main attention must be paid to the integrals containing

the marginal density g(x) because the integrals containing the marginal density gT (t)
approach constant values when the tail behaviour of the spheroid size is concerned.

Three typical tails. Three different forms of tails will be now compared, each
of them representing one domain of attraction. Our classes cover such important
distributions as Gamma, Normal, Weibull, Pareto or Beta. Examples will be given in

the next section together with a discussion how to estimate the normalizing constants
from the sample.

Following the order of cases covered by Lemma 2, the representative of the Gumbel

domain of attraction will be investigated first.

Let the support of the density g(x) be unbounded from the right and let it be
possible to approximate g(x) by

g(x) ≈ axbe−cxd ⇒ 1−G(x) ≈ a

cd
xb−d+1e−cxd
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for x large enough, where a > 0, b, c > 0 and d > 0 are some parameters. Here the
sign ≈ for probability density means that

lim
x→∞

∫∞
x

g(u) du∫∞
x

aube−cud du
= 1.

Then

(6)
∫ ∞

y

axbe−cxd√
x2 − y2 dx

=
∫ ∞

0

a(y + w)be−c(y+w)d√
(y + w)2 − y2 dw

= ayb+1/2

∫ ∞

0

(
1 +

w

y

)b√
1 +

w

2y

√
2w exp

{
− cyd

(
1 +

w

y

)d}
dw

= ayb+2−3d/2

∫ ∞

0

(
1 +

z

yd

)b√
1 +

z

2yd

√
2z exp

{
− cyd

(
1 +

z

yd

)d}
dz

≈ ayb+2−3d/2e−cyd

∫ ∞

0

√
2ze−c dz dz

=
a

(cd)3/2
yb+2−3d/2e−cyd

√ �
2
.

Further, evaluating the integral

∫ ∞

y

axbe−cxd a

cd
xb−d+1e−cxd√

x2 − y2 dx

=
∫ ∞

y

a2

cd
x2b−d+1e−2cxd√

x2 − y2 dx

≈ a2

[2cd]3/2
y2b+3−5d/2e−2cyd

√ �
2
,

we can conclude that this value is negligible with respect to the approximation (6)

when y →∞. Using Lemma 2(i) and the limit behaviour of 1−Fz(y) and 1−H(y),
the normalizing constants can be easily calculated.

The Fréchet domain of attraction contains densities the tail behaviour of which is

of the type

g(x) ≈ a(log x)bx−c−1 ⇒ 1−G(x) ≈ a

c
(log x)bx−c,
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where a > 0, b > 0 and c > 0 are some parameters. The tail behaviour of the
transformed distribution functions Fz and H must be now appreciated:

(7)
∫ ∞

y

a(log x)bx−c−1
√

x2 − y2 dx

=
∫ ∞

1

a(log y + log z)bz−c−1y−c−1
√

y2z2 − y2y dz

= ay−c+1(log y)b

∫ ∞

1

(
1 +

log z

log y

)b

z−c−1
√

z2 − 1

≈ ay−c+1(log y)b

∫ ∞

1

z−c
√

1− z−2 dz

= ay−c+1(log y)b

∫ 1

0

1
2
v(c−3)/2(1− v)1/2 dv

=
1
2
B

(
c− 1

2
,
3
2

)
ay−c+1(log y)b,

where B(·, ·) is the Beta function. A similar limit approximation of the limit be-
haviour of

∫∞
y

a2c−1(log x)2by−2c−1 dx leads to the conclusion that its value is neg-

ligible in comparison with (7).
Finally, Weibull domain of attraction is represented by the densities of the tail

behaviour

g(x) ≈ a

(
x

ω

)b−1

(ω − x)c−1 ⇒ 1−G(x) ≈ a

c
(ω − x)c

for x sufficiently close to ω, where a > 0, b > 0, and c > 0 are some parameters. The
tail behaviour of Fz and H is determined by the integrals as follows:

(8)
∫ ω

y

a

(
x

ω

)b−1

(ω − x)c−1
√

x2 − y2 dx

=
∫ ω−y

0

a

(
1− v

ω

)b−1

vc−1
√

(ω − v)2 − y2 dv

= a(ω − y)c

∫ 1

0

(
1− ω − y

ω
w

)b−1

wc−1

×
√

ω2 − 2ω(ω − y)w + (ω − y)2w2 − y2 dw

= a(ω − y)c+1/2

∫ 1

0

(
1− ω − y

ω
w

)b−1

wc−1
√

(ω + y)− 2ωw + (ω − y)w2 dw

≈ a(ω − y)c+1/2
√

2ω

∫ 1

0

wc−1(1− w)1/2 dw

= B
(

c,
3
2

)
a(ω − y)c+1/2

√
2ω,
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whereas the limit approximation of
∫ ω

y
a2c−1(x/ω)b−1(ω − x)2c−1

√
x2 − y2 dx is,

similarly to the two previous cases, negligible in comparison with (8).

Normalizing constants for FGM tails. Using Lemma 2 for the “three typical
tails”, the normalizing constants can be now calculated. Let us denote by

(1) (an, bn) the normalizing constants for the tails of the size of the spheroid given

its shape factor,

(2) (as
n, bs

n) the normalizing constants for the tails of the size of the spheroid section

given the section shape factor, and

(3) (am
n , bm

n ) the normalizing constants for the tails of the size of the spheroid section

marginally.

Let further the terms independent of size be denoted by

KG(t) = 1− λ[1− 2G2(t)],

KF (z) =
√

1 + z

2Mf(z)

∫ η

z

g2(t)[1− λ(1− 2G2(t))]√
t(1 + t)(t− z)

dz,(9)

KH =
∫ η

0

g2(t)[1− λ(1− 2G2(t))]
Mt

dt.

Then the previous results can be summarized in the following theorem:

Theorem 3 (Normalizing constants). Let the joint density function g(x, t) attain
the FGM form of density asymptotically for large values of x (independently of t).

(i) If g(x) ≈ axbe−cxd

as x →∞ and G ∈ D(L3) then

an = as
n = am

n =
(

log n

c

)1/d−1 1
cd

,

bn = an

{
d log n +

b− d + 1
d

(log log n− log c) + log
[
aKG(t)

cd

]}
,

bs
n = an

{
d log n +

b− 3d/2 + 2
d

(log log n− log c) + log
[√ �

2
aKF (z)
(cd)3/2

]}
,

bm
n = an

{
d log n +

b− 3d/2 + 2
d

(log log n− log c) + log
[√ �

2
aKH

(cd)3/2

]}

can be used as the normalizing constants for the Gumbel limit distribution.
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(ii) If g(x) ≈ a(log x)bx−c−1 as x →∞ and G ∈ D(L1,α) then

bn = bs
n = bm

n = 0,

an =
[
n

(
log n

c

)b

KG(t)
a

c

]1/c

,

as
n =

[
n

(
log n

c− 1

)b

KF (z)B
(

c− 1
2

,
3
2

)
a

2

]1/(c−1)

,

am
n =

[
n

(
log n

c− 1

)b

KHB
(

c− 1
2

,
3
2

)
a

2

]1/(c−1)

can be used as the normalizing constants for the Fréchet limit distribution.

(iii) If g(x) ≈ a(x/ω)b−1(ω − x)c−1 as x → ω− and G ∈ D(L2,α) then

bn = bs
n = bm

n = ω,

an =
{

nKG(t)
a

c

}−1/c

,

as
n =

{
nKF (z)B

(
c,

3
2

)
a
√

2ω

}−1/(c+0.5)

,

am
n =

{
nKHB

(
c,

3
2

)
a
√

2ω

}−1/(c+0.5)

can be used as the normalizing constants for the Weibull limit distribution.

It should be noted that because of the tail equivalence in the FGM class, there is

one normalizing constant independent of the shape factor distribution in each of these
three sets. Consequently, the estimation of the normalizing constants is considerably

simplified. On the other hand, some drawbacks of the FGM class have already been
mentioned.

6. Examples

Assuming the asymptotic FGM form of the joint density functions and selected

parametric forms of the marginal densities gT (shape factor) and of the tail of g

(spheroid size), the normalizing constants can be explicitly calculated.

First, various tails are considered using Theorem 3 (note that the Gamma and

Weibull tails belong to the Gumbel DA, the Pareto tail to the Fréchet DA and the
Beta tail to the Weibull DA).
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? ��(C(*�D� ��"#=
. Then for large x we necessarily have

g(x) ≈ µγxγ−1

Γ(γ)
e−µx,

µ > 0, γ > 0, x > 0. The normalizing constants can be chosen as

an = as
n = am

n =
1
µ

,

bn = an

[
log n + (γ − 1) log log n + log

(
KG(t)
Γ(γ)

)]
,

bs
n = an

[
log n +

(
γ − 1

2

)
log log n− log µ + log

(
KF (z)
Γ(γ)

√ �
2

)]
,

bm
n = an

[
log n +

(
γ − 1

2

)
log log n− log µ + log

(
KH

Γ(γ)

√ �
2

)]
.

: ')"#; < =#=
� ��"#=
. In this case

g(x) ≈ µγxγ−1e−µxγ

for x large enough, µ > 0, γ > 0, x > 0 and the suitable normalizing constants are

an = as
n = am

n =
(

log n

µ

)1/γ−1

,

bn = an[γ log n + log KG(t)],

bs
n = an

[
γ log n +

1
γ

(log log n− log µ)− 1
2

log log n + log
(

KF (z)
√ �

2γ

)]
,

bm
n = an

[
γ log n +

1
γ

(log log n− log µ)− 1
2

log log n + log
(

KH

√ �
2γ

)]
.

�����,'5�0�7� ��"#=
. The assumption

g(x) ≈ γ

σ

(
σ

x

)γ+1

for large x, γ > 0, σ > 0, x > σ leads to

bn = bs
n = bm

n = 0,

an = [nKG(t)]1/γσ,

as
n =

[
nKF (z)B

(
γ − 1

2
,
3
2

)
γ

2
σγ

]1/(γ−1)

,

am
n =

[
nKHB

(
γ − 1

2
,
3
2

)
γ

2
σγ

]1/(γ−1)

.
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E '5�3�7� �!"#=
. In the last example, let

g(x) ≈ xb−1(1− x)c−1

B(b, c)

for x close to 1, 0 < x < 1 and c > 0. Then

bn = bs
n = bm

n = 1,

an =
[
nKG(t)
cB(b, c)

]−1/c

,

as
n =

[√ �
2

Γ(c + b)
Γ(c + 3/2)Γ(b)

nKF (z)
]− 1

c+1/2

,

am
n =

[√ �
2

Γ(c + b)
Γ(c + 3/2)Γ(b)

nKH

]− 1
c+1/2

.

FG2H'D1I�%$J8�� �!$K�38
KG L KF

�!$AM
KH . The estimation of

KG(t) = 1− λ[1− 2GT (t)]

for known parametric distributions of the shape factor is straightforward as the

parameter λ can be estimated from the values of as
n, b

s
n and am

n , b
m
n .

The constants KF (z) and KH need a more careful treatment. The assumption of

gT (t) in some parametric form makes it possible to calculate (exactly or numerically)
the integral ∫ η

z

gT (t)[1− λ(1− 2GT (t))]√
t(1 + t)(t− z)

dt.

However, in order to evaluate the integral
∫ η

0

gT (t)[1− λ(1− 2GT (t))]
Mt

dt

and the value ofMt, some parametric form of gt(x)must be assumed. These obstacles
can be overcome by consideringM , KF and KH (which is independent of t as well as

of z—see (9)) as certain constants which could be estimated from the data. Finally,

KF (z) =
√

1 + z

2Mf(z)
[(1− λ)I1(z) + 2λI2(z)],

where I1(z) and I2(z) can be calculated from the marginal density gT of the shape
factor and the density f(z) may be again estimated from the sections. Moreover,

2Mf(z)√
1 + z

=
∫ η

z

1√
t(1 + t)(t− z)

∫ ω

0

g(x, t)
∫ x

0

y√
x2 − y2

dy dx dt

=
∫ η

z

1√
t(1 + t)(t− z)

∫ ω

0

xg(x, t) dx dt.
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Consequently, assuming some parametric form of g(x, t), the value of this integral
can be calculated and the estimation of M and f(z) from the data is not necessary.

Example-Pareto/uniform distribution. Let us consider a density g(x, t) such
that the tail of the marginal density is (for large values of x)

g(x) ≈ γ

σ

(
σ

x

)γ+1

,

where σ > 0, γ > 0, x > σ, and that the marginal distribution of the shape factor
is uniform on [0, η] : gT (t) = 1/η for t ∈ [0, η]. The largest value of the shape factor
observed in the section can be used as an asymptotically unbiased estimator of η.
As we shall see in the next section, there are ML estimators for as

n (based on

the k largest observations with a given shape factor), am
n (based on the k largest

observations) and γ. Then we can estimate γ̂ from all the observations together

with âm
n .

Assuming the uniform distribution of the shape factor, it is possible to calculate

the integrals I1(z) and I2(z) occurring in KF (z). They lead to elliptic functions and
can be evaluated numerically. If two normalizing constants for different shape factor

classes (possibly based on different number of observations p and q) are known, λ

can be estimated from

am
p (z1)

am
q (z2)

=
(

p

q

)1/(γ−1)[√1 + z1f(z2)√
1 + z2f(z1)

·
1−λ

η I1(z1) + 2λ
η2 I2(z1)

1−λ
η I1(z2) + 2λ

η2 I2(z2)

]
.

The estimates η̂, γ̂, λ̂ obtained make it also possible to estimate ân(t) for the t

and n chosen. As we can choose bn ≡ 0 in this case, the distribution of the largest
of n spheroids with a shape factor t can be estimated from

P̂[X1:n < x|T = t] = L2, Nγ(x/ân(t)).

7. Estimation of the normalizing constants

We will briefly discuss the estimation of as
n, b

s
n and am

n , b
m
n from the observed data.

These estimators form the basis for the estimation of the normalizing constants ân,

b̂n. Therefore we base the prediction of the largest spheroid size in a selected shape
factor class on the k largest observations of the spheroid section sizes.

Let a random variable with a distribution function K in a domain of attraction
of Gumbel or Fréchet limit distributions be observed. Let further M1 > M2 >
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. . . > Mk be the k largest observations, Mk their average and an, bn the set of

normalizing constants corresponding to the distribution function K. Then their
maximum likelihood estimators are as follows ([4], [6], [9] or [16]):
? < (@;A'5=OMK�%(*��"#$&���P�Q���0�3��1 �0"#�%$

. The limit distribution has no parameter
in this case and the estimators of the normalizing constants are

ân = Mk −Mk, b̂n = ân log k + Mk.

/ �,'!1324'5�CMK�%(*��"#$R���S�!���0�0�%1 �0"#��$
. The choice b̂n ≡ 0 is possible in this

case but also the parameter α of the limit distribution must be estimated:

ân = k1/ NαMk, α̂ = k

( k∑

i=1

(log Mi − log Mk)
)−1

.

There remain still many unsolved problems in the proposed procedure. One of the
most obvious is the choice of the number k of the largest observations brought into

calculations and its relation to the number of observations n. As the random vector
(X, T ) follows a distribution absolutely continuous w.r.t. Lebesgue measure, it is not
possible to observe the conditional distribution directly. We must use small intervals
of the shape factor (shape factor classes) instead and estimate the distribution of

(X |T = t) by the distribution of (X |T ∈ [t − δ, t + δ]). There is a problem which
shape factor classes should be used. The ones with the most observations? Or those

where large values of size are observed? And there is of course another question,
namely, how well does the FGM family fit the data? Such statistical problems are,

however, beyond the scope of the present paper.
T 10+�$H�!UV=#'!M�W�(C')$��

. The author would like to thank to the referee for his

valuable comments and hints.
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