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Abstract. We give an expository account of a Weierstrass type representation of the
non-zero constant mean curvature surfaces in space and discuss the meaning of the repre-
sentation from the point of view of partial differential equations.
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In these notes, we would like to share with the reader some recent developments
concerning surfaces having non-zero constant mean curvature. Since we hope to get

the main ideas acrossed while keeping our exposition short, parts of our context will
not be very rigorous and our list of references will be fairly incomplete.

We will start with the definitions of Gaussian curvature and mean curvature of a

surface and recall briefly the history of surfaces having constant Gaussian curvature
or constant mean curvature. Then, the PDE describing the (non-zero) constant mean

curvature surfaces will be introduced. After that, we will present a Weierstrass type
representation of the constant mean curvature surfaces discovered by Dorfmeister,

Pedit and the author using techniques from soliton theory, and explain the meaning
of the representation from the point of view of PDE’s.

The reader is urged to check into the gallery of constant mean curvature surfaces

at http://www.gang.umass.edu, for the graphs there can greatly help the reader
understanding these notes.
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1. Definitions

Let M ⊂ �
3 be an immersed surface, p ∈ M a point, n a unit normal vector of M

at p, and t a unit tangent vector to M at p. Then, near p, the intersection of M and

the plane through n and t is a plane curve, whose curvature at p relative to n will
be denoted by κ(p, t). As a function of t, κ(p, t) has a maximum and a minimum, to
be denoted by κ1(p) and κ2(p), respectively. Then, locally on the surface,

Gaussian curvature K = κ1κ2,(1.1)

mean curvature H =
κ1 + κ2
2

,(1.2)

mean curvature vector H = Hn.(1.3)

������ 1.4. The Gaussian curvature K and the mean curvature vector H do
not change when n is replaced by −n, even thoughH gets a negative sign. Therefore,
K and H are defined on the whole surface. Actually, K only depends on the induced
metric on the surface, by Gauss’s Theorema Egregium.

������ 1.5. Rescaling �3 is equivalent to multiplying K and H by a positive
constant.

������ 1.6. A point p is called an umbilic point if κ1(p) = κ2(p). At such a
point, the tangent directions can not be distinguished geometrically.

Surfaces with constant K or constant length H will be called basic surfaces. The
following classification results are well-known (see, for example, [8]).

Theorem 1.7. Any complete surface whose Gaussian curvatureK always equals

a positive constant is a sphere.

Theorem 1.8. Any complete surface whose Gaussian curvatureK always equals

zero is a general cylinder.

Here, by a general cylinder we mean the surface obtained by moving a line along
a curve without changing the direction of the line (which is, of course, assumed to

be never tangent to the curve).

Theorem 1.9. There is no complete surface whose Gaussian curvatureK always

equals a negative constant.

The usual proof of this result of Hilbert uses the sine-Gordon equation

(1.10) uxt = sinu
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and the fact that it does not have any solution u on �2 satisfying 0 < u < π. Such a

solution can be interpreted as the angle between the so-called asymptotic directions
on the surface.

If H has constant length, then H can also be defined on the whole surface and is

either always zero or always equal to a non-zero constant. When H ≡ 0, the surface
is called a minimal surface. For such surfaces, we have the following famous result

of Weierstrass [8].

Theorem 1.11. Each minimal surface is given by the integrals of two holomor-
phic functions on the surface.

When H is a non-zero constant, the surface is orientable. By using the other

unit normal vector field on the surface and rescaling �3 if necessary, we can always
assume that H ≡ 1/2. We will call these surfaces CMC surfaces. These surfaces
show up as, for example, interface surfaces in nature and have been mentioned in
Professor Finn’s talk.

In summary, CMC surfaces are basic surfaces and they can be regarded as interface
surfaces in nature.

2. Examples

The spheres and round cylinders are the first few examples of CMC surfaces. In

1841, Delaunay classified all the revolutional CMC surfaces, to be called Delaunay
surfaces. In addition to the spheres and cylinders, Delaunay surfaces are generated

by the trajectory of a focus of an ellipse or hyperbola when the ellipse or hyperbola
is rolled on the axes of the surfaces. For an excellent account of these surfaces, see

[9].

For some time, no new CMC surfaces were found. In his seminar lectures [13] in
the 1940’s, H.Hopf even asked: are there any compact CMC surfaces other than the

spheres? In 1986, using classical existence methods in PDE, Wente [21] answered
the above question affirmatively and provided many new examples of CMC surfaces

(see also [22] and [23]).

Theorem 2.1. There exist infinitely many constant mean curvature tori.

Wente’s tori can be graphed on a computer, see [22]. And [21] inspired a consid-

erable amount of work on CMC tori, including [1], [18], [2], [7], [14] and [4].

In [16] and [17], using existence methods by the Inverse Function Theorem in
infinite dimensions, Kapouleas proved the following results.
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Theorem 2.2. For each integer g � 2, there is a compact constant mean curva-
ture surface of genus g.

Here we would like to remark that this is an existence result. So far, we have not

seen any graph of the compact CMC surfaces that are shown to exist by the theorem.
On the other hand, [12] provides several graphs of compact CMC surfaces; however,

to the best of our knowledge, an existence proof corresponding to these graphs is
still missing.

In addition to these compact CMC surfaces, many new non-compact surfaces were
also found. See, for example, [19], [15], [10], [20] and [11]. We also would like to

remark that we have not seen any graph of some of the surfaces proved to exist in
one of these references.

In summary, there are many CMC surfaces. A unified treatment and a general
procedure for graphing them are needed.

3. PDE describing CMC surfaces

Let M̃ be the universal covering of M , then the lift ϕ : M̃ −→ �
3 of the CMC

immersion from M into �3 is also an immersion with CMC H ≡ 1/2 with respect to
a unit normal vector field n along ϕ(M̃). By changing the coordinate system on M̃

if necessary, we can assume that ϕ is conformal, i.e., the induced metric on ϕ(M̃) is

given by

(3.1) (ds)2 = 4e2u[(dx)2 + (dy)2]

for some function u : M̃ −→ �. Elements of �3 will be regarded as column vectors.
Let e1 and e2 be the unit tangent vector fields in the directions of ∂

∂xϕ and ∂
∂y ϕ,

respectively, then we have a moving frame

(3.2) F = ( e1 e2 n )

along ϕ(M̃ ). By interchanging x and y if necessary, we assume that

(3.3) F ∈ SO(3).

In terms of the complex coordinate z = x + iy (with the metric on �
3 being � -

linearly extended to � 3 ), the Frenet equations on F can be written as follows (see,

for example, Section 1 of [18]).

(3.4) ∂zF = F (J + Uz), ∂zF = F (−Uz + J),
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where

(3.5) U =



0 iu 0

−iu 0 0
0 0 0


 , J =

1
2




0 0 −Ee−u − eu
0 0 −iEe−u + ieu

Ee−u + eu iEe−u − ieu 0




with E = 〈ϕzz ,n〉. The integrability conditions for the system (3.4), i.e., the Gauss
equation and Codazzi equations for ϕ, are

(3.6) 4uzz − EEe−2u + e2u = 0

and Ez = 0. So, E is a holomorphic function on M̃ . Actually, E(z)(dz)2 is the so-

called Hopf differential of ϕ. The zeros of E(z)(dz)2 are exactly the umbilic points
of the CMC surface. So, the umbilic points are isolated, except on the spheres.

Conversely, given a holomorphic function E on a simply connected domain in � ,

and a real solution u to (3.6) on the domain, one can solve (3.4) for F with an
arbitrary initial condition (i.e., a rotation of �3 ), then recover ϕ from ∂

∂xϕ and ∂
∂y ϕ.

Note that for the spheres, E ≡ 0; while for the round cylinders, u ≡ 0 and E is a

non-zero constant.

In summary, a simply connected CMC immersion is equivalent to a holomorphic

function E and a real solution u to the nonlinear PDE (3.6) on a simply connected
domain in � .

4. Dressing action

Observation: if E and u give a CMC surface, then for any λ ∈ � with |λ| = 1,
λE and u also give a CMC surface, i.e., each CMC surface belongs to a 1-parameter

family of CMC surfaces, to be called the associated family. From the PDE point of
view, here we use a certain symmetry of (3.6).

For each λ = eiθ ∈ S1, where θ ∈ [0, 2π), let

(4.1) ( e1(z, z, λ) e2(z, z, λ) n(z, z, λ) ) , z ∈ M̃

be a frame produced as above along the CMC surface corresponding to u and λ2E

and set

(4.2) Fλ(z, z) = ( e1(z, z, λ) e2(z, z, λ) n(z, z, λ) )



cos θ − sin θ 0
sin θ cos θ 0

0 0 1
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for z ∈ M̃ . Then, by (3.4),

(4.3) ∂zFλ = Fλ(Jλ−1 + Uz), ∂zFλ = Fλ(−Uz + Jλ).

Here we see that the role of the parameter λ in (4.3) is to separate the intrinsic and
extrinsic parts of the coefficient matrices.

The system (4.3) is equivalent to the system

(4.4)

∂zΦ = Φ
1
2

(
uz euλ−1

Ee−uλ−1 −uz

)
= Φ(α−1λ−1 + α−0 ),

∂zΦ = Φ
1
2

( −uz −Ee−uλ

−euλ uz

)
= Φ(α+0 + α1λ)

on Φ: M̃ −→ SU(2). Actually, Φ is a lift of Fλ under the adjoint representation

Ad: SU(2) −→ SO(3). So, we have shown the following result.

Lemma 4.5. A constant mean curvature surface ⇐⇒ Fλ(z, z) = Φ(z, z, λ).

Now comes the magic. Take a complex matrix

(4.6) H+(λ) =

(
a0 0

0 d0

)
+

(
0 b1

c1 0

)
λ+

(
a2 0

0 d2

)
λ2 +

(
0 b3

c3 0

)
λ3 + . . .

with determinant 1, then

H+(λ)Φ(z, z, λ) = Ψ(z, z, λ)G+(z, z, λ)(4.7)

= Ψ(z, z, λ)(G0(z, z) +G1(z, z)λ+G2(z, z)λ2 + . . .),

Ψ−1∂zΨ = G+(α−1λ
−1 + α−0 )G

−1
+ − ∂zG+ ·G−1+(4.8)

= β−1λ
−1 + β−0 + . . . ,

Ψ−1∂zΨ = G+(α
+
0 + α1λ)G

−1
+ − ∂zG+ ·G−1+(4.9)

= β+0 + β1λ+ . . . .

Thus,

(4.10) Ψ−1∂zΨ = β−1λ
−1 + β−0 , Ψ−1∂zΨ = β+0 + β1λ,

and hence Ψ gives another CMC surface, to be called the dressing action by H+ of
the old CMC surface.

From the PDE point of view, the dressing action yields new solutions from old
ones. In particular, one gets infinitely many non-trivial solutions from the trivial
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one. A nature question then is: how powerful is dressing? The following is a result

from [7].

Theorem 4.11. Any constant mean curvature torus can be obtained from the
round cylinder by dressing.

It is easy to see that the Hopf differential does not change under dressing. The

next question is: is there anything else invariant under dressing? Related to this is
the following fact in [24].

Theorem 4.12. At each umbilic point of order � 2, there are several dressing
invariants on the induced metric.

In summary, dressing is a powerful tool for generating new solutions from old ones;
however, there are many dressing invariants in general.

5. Weierstrass type representation

In addition to the matrix splitting yielding the dressing action, there is another

splitting. To be more precise, except at possibly some isolated points on the surface,

Φ(z, z, λ) = Φ−(z, z, λ)Φ+(z, z, λ)(5.1)

= (. . .+Φ−1(z, z)λ−1 + I)(Φ0(z, z) + Φ1(z, z)λ + . . .)

From Φ− = ΦΦ
−1
+ one obtains that

Φ−1− ∂zΦ− = Φ+(α−1λ−1 + α−0 )Φ
−1
+ − ∂zΦ+ ·Φ−1+ ,(5.2)

Φ−1− ∂zΦ− = Φ+(α
+
0 + α1λ)Φ

−1
+ − ∂zΦ+ ·Φ−1+ .(5.3)

These identities imply that

∂zΦ−(z, z, λ) = Φ−(z, z, λ)P (z, z)λ−1,(5.4)

∂zΦ−(z, z, λ) = 0,(5.5)

respectively. So,

(5.6) Φ− = Φ−(z, λ)

and

(5.7) ∂zΦ−(z, λ) = Φ−(z, λ)P (z)λ−1.
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Moreover, we have the following result from [6].

Theorem 5.8. The matrix P is meromorphic on M̃ . Any constant mean cur-

vature surface can be constructed from such a “potential” on its universal covering

by

(1) solving (5.7) for Φ−(z, λ) with an appropriate initial condition,

(2) splitting Φ−(z, λ) = Φ(z, z, λ)G+(z, z, λ) to get Φ(z, z, λ) and hence the surface.

This is a Weierstrass type representation of the CMC surfaces. Warning: not

every meromorphic P , which must be off-diagonal, gives a smooth CMC surface.
For characterizations of admissible P ’s, see [3] and [26]; for the geometric meaning

of P ’s, see [5] and [25]. Moreover, the following result also from [6] says that one
only needs to use holomorphic functions if more terms in λ are allowed.

Theorem 5.9. Each constant mean curvature surface can also be constructed
from a “holomorphic potential”

(5.10) P−1(z)λ
−1 + P0(z) + P1(z)λ+ . . .

as above.

As to graphing CMC surfaces using this representation, there is already a user-
friendly software called DPWlab at the Center for Geometry, Analysis, Numerics

and Graphics, University of Massachusetts at Amherst. The center’s web address is
given in the introduction.

In summary, with a Weierstrass type representation of the CMC surfaces at hand,
we are ready to do more classifications and graphing of CMC surfaces.

���	
���� �������. We believe that the above Weierstrass type repre-
sentation of the smooth solutions to the nonlinear PDE describing the CMC surfaces

is an example of the following phenomena:

a nonlinear PDE
+

extra structure(s), i.e., symmetry(ies)

=⇒ a representation of solutions.

�	����
�������. We thank the organizers for this wonderful conference.
The author was partially supported by NSF grant DMS-9973108.

538



References

[1] U.Abresch: Constant mean curvature tori in terms of elliptic functions. J. Reine Angew.
Math. 374 (1987), 169–192.

[2] A.Bobenko: All constant mean curvature tori in �3 , S3, � 3 in terms of theta-functions.
Math. Ann. 290 (1991), 209–245.

[3] J.Dorfmeister, G.Haak: Meromorphic potentials and smooth CMC-surfaces. Math. Z.
224 (1997), 603–640.

[4] J.Dorfmeister, G.Haak: On constant mean curvature surfaces with periodic metric.
Pacific J. Math. 182 (1998), 229–287.

[5] J.Dorfmeister, I.McIntosh, F. Pedit, H. Wu: On the meromorphic potential for a har-
monic surface in a k-symmetric space. Manuscripta Math. 92 (1997), 143–152.

[6] J.Dorfmeister, F. Pedit, H.Wu: Weierstrass type representation of harmonic maps into
symmetric spaces. Comm. Anal. Geom. 6 (1998), 633–668.

[7] J.Dorfmeister, H.Wu: Constant mean curvature surfaces and loop groups. J. Reine
Angew. Math. 440 (1993), 43–76.

[8] M.doCarmo: Differential Geometry of Curves and Surfaces. Prentice-Hall, Englewood
Cliffs, NJ., 1976.

[9] J.Eells: The surfaces of Delaunay. Math. Intelligencer 9 (1987), 53–57.
[10] K.Grosse-Braukmann: New surfaces of constant mean curvature. Math. Z. 214 (1993),

527–565.
[11] K.Grosse-Braukmann, R.Kusner, J. Sullivan: Constant mean curvature surfaces with

cylindrical ends. Mathematical Visualization. Algorithms, Applications, and Numer-
ics. International workshop Visualization and mathematics, Berlin, Germany, Septem-
ber 16–19, 1997. Springer, Berlin, 1998, pp. 107–116.

[12] K.Grosse-Braukmann, K. Polthier: Compact constant mean curvature surfaces with
lowgenus. Experimental Math. 6 (1997), 13–32.

[13] H.Hopf: Differential Geometry in the Large. Springer, Berlin, 1983.
[14] C. Jaggy: On the classification of constant mean curvature tori in �3 . Comment. Math.

Helv. 69 (1994), 640–658.
[15] N.Kapouleas: Complete constant mean curvature surfaces in Euclidean three-space.

Ann. of Math. 131 (1990), 239–330.
[16] N.Kapouleas: Compact constant mean curvature surfaces in Euclidean three-space. J.

Differential Geom. 33 (1991), 683–715.
[17] N.Kapouleas: Constant mean curvature surfaces constructed by fusing Wente tori. In-

vent. Math. 119 (1995), 443–518.
[18] U.Pinkall, I. Sterling: On the classification of constant mean curvature tori. Ann. of

Math. 130 (1989), 407–451.
[19] B. Smyth: A generalization of a theorem of Delaunay on constant mean curvature sur-

faces. Statistical Thermodynamics and Differential Geometry of Microstructured Mate-
rials, Springer, Berlin, 1993.

[20] I. Sterling, H.Wente: Existence and classification of constant mean curvature multibub-
bletons of finite and infinite type. Indiana Univ. Math. J. 42 (1993), 1239–1266.

[21] H.Wente: Counterexample to a conjecture of H.Hopf. Pacific J. Math. 121 (1986),
193–243.

[22] H.Wente: Immersed tori of constant mean curvature in �3 . Variational Methods for Free
Surface Interfaces. (P.Concus, R. Finn, eds.). Springer, New York, 1987, pp. 13–24.

[23] H.Wente: Twisted tori of constant mean curvature in �3 . Seminar on New Results in
Nonlinear Partial Differential Equations. Vieweg, Braunschweig, 1987, pp. 1–36.

[24] H.Wu: On the dressing action of loop groups on constant mean curvature surfaces.
Tohoku Math. J. 49 (1997), 599–621.

539



[25] H.Wu: A simple way for determining the normalized potentials for harmonic maps.
Ann. Global Anal. Geom. 17 (1999), 189–199.

[26] H.Wu: A new characterization of normalized potentials in dimension two. Results Math.
36 (1999), 184–194.

Author’s address: Hongyou Wu, Department of Mathematical Sciences, Northern Illi-
nois University, De Kalb, IL 60115, USA, e-mail: wu@math.niu.edu.

540


		webmaster@dml.cz
	2020-07-01T14:36:26+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




