
Mathematica Bohemica

Jaroslav Fořt; Jiří Fürst; J. Halama; Karel Kozel
Numerical simulation of 3D transonic flow through cascades

Mathematica Bohemica, Vol. 126 (2001), No. 2, 353–361

Persistent URL: http://dml.cz/dmlcz/134021

Terms of use:
© Institute of Mathematics AS CR, 2001

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/134021
http://dml.cz


126 (2001) MATHEMATICA BOHEMICA No. 2, 353–361

NUMERICAL SIMULATION OF 3D TRANSONIC FLOW

THROUGH CASCADES

J. Fořt, J. Fürst, J. Halama, K. Kozel, Praha

Dedicated to Prof. J.Nečas on the occasion of his 70th birthday

Abstract. The paper deals with the numerical solution of 3D transonic flow through
axial turbine cascades. Finite volume methods based on TVD MacCormack cell-centered
and Ni’s cell-vertex schemes are discussed. A comparison of numerical results for 3D stator
and rotor cascades is presented.
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1. Introduction

Numerical simulation of transonic flows in a turbomachinery branch is the subject

of our long time cooperation with industry. Several numerical methods for the com-
putation of 2D flow through cascades were developed and some of them have been

extended to 3D. All numerical methods have been tested on several test cases. Their
results are validated using other numerical results as well as the experimental data.

This work has been supported by the grants No. 201/99/0267 and 101/00/1057 of Grant
Agency of Czech Republic and by the Research Project No. J04/98/212200009 of MŠMT
ČR.
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2. Governing equations

The transonic flow through LP (low pressure) turbine cascades at design conditions

is characterized by a negligible boundary layer thickness and the dominant role of
trailing edge shocks and their reflections. All features mentioned can be modelled

using inviscid flow described by the system of Euler equations (1)

(1)

Wt + Fx +Gy +Hz = Q,

W = [�, �w1, �w2, �w3, e]T ,

F = [�w1, �w21 + p, �w1w2, �w1w3, w1(e+ p)]T ,

G = [�w2, �w2w1, �w22 + p, �w2w3, w2(e+ p)]T ,

H = [�w3, �w3w1, �w3w2, �w23 + p, w3(e+ p)]T ,

Q = [0, 0, �(ω2y − 2ωw3), �(ω
2z + 2ωw2), 0]

T .

This system of equations is closed by the equation of state for ideal gas:

(2) p = (κ − 1)
[
e− �

w21 + w22 + w23
2

+
1
2
�ω2R2

]
.

The symbol � denotes density, wi are the Cartesian components of the relative ve-
locity vector, e is the total energy per unit volume, p is the static pressure, ω is the

angular velocity, κ is the ratio of specific heats and R is the radius. The right hand
side of Eq. (1) is equal to zero for the flow in the absolute frame of reference, i.e. with

ω = 0.

3. Mathematical formulation

The domain of solution Ω consists of one cascade pitch. A solutionW has to fulfill
the integral form (3) of Eq. (1) inside any domain D ⊂ Ω with sufficiently smooth
boundary and boundary conditions along ∂Ω.

(3)
∫ t2

t1

∫∫∫

D

(Wt + Fx +Gy +Hz −Q) dV dt = 0.

Four different types of boundary conditions are distinguished. First, the non-
permeability condition �w · �n = 0 (�n denotes the unit vector perpendicular to the
wall) is prescribed along walls (ABCDEFGH is the hub casing, A′B′C′D′E′F′G′H′ is
the tip casing, BCC′B′ and GFF′G′ are the blade surfaces). Second, the stagnation

values of the density �0 and the speed of sound a0 and the radial distribution of the
velocity angles ci are imposed on the inlet section (AHH′A′). Two more parameters
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Fig. 1. Computational domain

�rel,0
�0
and arel,0

a0
, which represents the total relative quantities at the rotor inlet divided

by the total quantities at the stator inlet, are added at the inlet section in case of

a rotor flow. The ratio �d

�rel,0
, which is computed from the isentropic relations in

the relative frame of reference, premultiplied by �rel,0
�0
, gives the ratio �d

�0
, i.e. the

non-dimensional density with respect to the chosen reference value �0. The same
arrangement is used for the velocity components wi and the energy e,

� =
�d

�0
=

�d

�rel,0
· �rel,0

�0
,

wi =
wd

i

a0
=

wd
i

arel,0
· arel,0

a0
,

e =
ed

�0a20
=

ee

�rel,0a2rel,0
·
�rel,0a

2
rel,0

�0a20
,

where the superscript d denotes the physical dimensional quantity. Third, the distri-
bution of the outlet static pressure p = p(R) is given at the outlet (DEE′D′) and last,

the periodical condition is used along the periodical boundary (ABB′A′, CDD′C′,
FEE′F′ and HGG′H′).

4. Numerical methods

Numerical solution has been computed on a structured hexahedral H-type grid

(example is in Fig. 2) by two different methods.

The former, based on the TVD MacCormack cell centered scheme (Causon [2]),
is described below by equations (4) representing 1D version in the absolute frame
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Fig. 2. H-type computational grid

of reference. The first two equations represent the classical predictor and corrector

steps while the third is a TVD correction

(4)

Wn+ 12
i =Wn

i − ∆t

∆x

[
F(Wn

i )− F(Wn
i−1)

]
,

Wn+1
i =

1
2

(
Wn

i +W
n+ 12
i − ∆t

∆x

[
F(W

n+ 12
i+1 )− F(W

n+ 12
i )

])
,

Wn+1
i =Wn+1

i +
(
g+i + g−i+1

) (
Wn

i+1 −Wn
i

)
−

(
g+i−1 + g−i

) (
Wn

i −Wn
i−1

)
,

where

g±i =
1
2
C(ν)

[
1− Φ(r±i )

]
,

C(ν) =

{
ν(1 − ν) ν < 0.5

0.25 ν � 0.5

ν =
∆t

∆x
�A =

∆t

∆x
(|u|+ a) , a2 = κ

p

�
,

r±i = (∆Wi− 1
2
,∆Wi+ 12

)/‖∆Wi± 1
2
‖2,

Φ(r) = minmod(2r, 1) = max[0,min(2r, 1)],

where i, j and k are grid indexes in streamwise, pitchwise and spanwise directions
respectively, n denotes the time index. The modification, where ν is computed

using the smallest absolute value of the eigenvalue instead of the spectral radius �A,
contains a lower amount of artificial viscosity, see [3].
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The latter, based on the Ni’s cell-vertex scheme (Ni [1]), approximates the following

integral relation (5)

(5)

Wn+1
ijk −Wn

ijk = −∆t

8∑

m=1

µ(Vm)
µ(D)

1
µ(Vm)

∮ ∮

∂Vm

(F,G,H)n dS

+
∆t2

2µ(D̃)

∮ ∮

∂D̃

(FW div(F,G,H),GW div(F,G,H),HW div(F,G,H))n dS

+
∆t

µ(D)

∫∫∫

Q
dV +

∆t2

2µ(D̃)

∫∫∫

D̃

QW div(F,G,H) dV,

where the first two terms are the first and second order convective terms and the

last two terms are the first and second order terms including the body forces. The
control volume D consists of eight cells Vm (m = 1, . . . , 8) and D̃ is the cell of the

dual mesh. The symbol µ(D) denotes the volume of D. The second order terms on
the right hand side of eq. (5) contain Jacobi matrices FW = ∂F

∂W , etc.

Numerical realization of eq. (5) is shown for 2D case, which is both general enough
and easier to follow. Computation of unknowns in a new time level consists of three
steps:

1. Computation of cell residuals RW:

RWi,j =
∆t

2µi,j

4∑

m=1

((Fn
m + F

n
m+1)∆ym − (Gn

m +G
n
m+1)∆xm).

The residual RW approximates the first integral on the right hand side of Eq. (5).

Besides common grid indexes i and j there is a local index m = 1, . . . , 4 inside each
cell pointing at vertices, see Fig. 3.

1

23

4

i, j

i, j + 1 i+ 1, j + 1

i+ 1, j

Fig. 3. Grid cell

357



2. Distribution of cell residuals into vertices:

δW1 = −RWi,j − f + g+DL1 ,

δW2 = −RWi,j − f − g+DL2 ,

δW3 = −RWi,j + f − g+DL3 ,

δW4 = −RWi,j + f + g+DL4 ,

f = (∆t/µi,j) (FW∆yy −GW∆yx+ εN |∆xW|∆xW∆t/(2∆xxµi,j)) ,

g = (∆t/µi,j) (GW∆xx− FW∆xy + εN |∆yW|∆yW∆t/(2∆yyµi,j)) ,

DLl
= εL

( ∆t

∆xx
+
∆t

∆yy

)( 4∑

m=1

(Wm −Wl)

)
,

where

∆ya = a2 + a3 − a4 − a1, ∆xa = a2 + a1 − a3 − a4,

where µij is the volume of a cell, for which the vertex with the local index m = 1 has

global indexes i and j. User specified coefficients εL and εN control the amount of
artificial viscosity. The terms f and g approximate the second integral on the right
hand side of Eq. (5).
3. Computation of unknownsWn+1 at cell vertices:

Wn+1
i,j =Wn

i,j + (µi,j+µi−1,j + µi−1,j−1 + µi,j−1)−1

×
(
µi,j(δW4)i,j + µi−1,j(δW1)i−1,j

+µi−1,j−1(δW2)i−1,j−1 + µi,j−1(δW3)i,j−1
)
.

i, j

i, j + 1

i, j − 1

i− 1, j + 1 i+ 1, j + 1

i+ 1, j − 1
i− 1, j − 1

i+ 1, ji− 1, j

(δW )i−1,j

(δW )i−1,j−1 (δW )i,j−1

(δW )i,j
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5. Numerical results

Results for two axial cascades of the last LP steam turbine stage of Škoda Turbines,

Pilsen are presented in this section. The first cascade is the stator cascade with
strong divergence of the tip casing. The inlet flow is of axial direction and the outlet

static pressure depends on the radius. The H-type grid used consists of 91 points in
streamwise, 25 in pitchwise and 18 in spanwise direction. The results are plotted in

the form of Mach number isolines in several planes along the span, see Fig. 4. Both
methods give a very similar flow field structure. TVD MacCormack scheme captures

the right running trailing edge shock at the hub better than the Ni’s scheme, which
maps better the left running trailing edge shock.

X

Y Z

X

Y Z

Fig. 4. (a) Stator, TVD MacCormack scheme, (b) Stator, Ni’s scheme

The second cascade is the rotor cascade with highly twisted blades, typical for the

LP steam turbine rotor cascades. Two different approaches have been applied. First,
the rotor was considered to be in a non-rotating frame of reference. Relative flow

field angles, two reference total quantities �0, a0 and ratios
�rel,0

�0
and arel,0

a0
at the

inlet and static pressure distribution at the outlet section were prescribed. Because

of the non-rotating frame of reference, this approach does not take into account body
forces. H-type grid in this case consists of 81 points in streamwise, 25 in pitchwise and

18 in spanwise direction. Results obtained by both methods are in Fig. 5.a,b in the
form of Mach number isolines. Again, a good agreement in the flow field structure

can be observed. Slight dissimilarities are perceptible at the hub (the lowest cut
in Fig. 5.a,b) and the shapes of isolines in the lowest but one cut in Fig. 5.a,b are

different. Fig. 6 (x-axis is the radius and y-axis the Mach number) shows the radial
distribution of Mach number along the inlet and outlet sections.

The latter approach uses a rotating frame of reference and the same inlet and
outlet boundary conditions as the former. Body forces (centrifugal and Corriolis
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Fig. 5. (a) Rotor, TVD MacCormack scheme, (b) Rotor, Ni’s scheme
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Fig. 6. Inlet and outlet Mach number distribution

forces) are now included. The next figures compare approaches mentioned on the

basis of results computed by Ni’s method. Considerable changes on the hub can
be seen in Fig. 7.a,b, where isolines of the relative Mach number show stronger flow

acceleration in the case without body forces as compared to the case with them. The
velocity vectors plotted in a meridional cut in the middle between the blades detect

the flow towards the hub in the case without body forces in contrast to the flow
outwards the hub in the latter case, see Fig. 8. Finally, the relative Mach number as

a function of the radius for both cases is plotted in Fig. 9, again a significant influence
of body forces close to the hub is evident.
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Fig. 7. (a) Without body forces, (b) With body forces

Fig. 8. Without (left) and with (right) body
forces
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Fig. 9. Inlet and outlet Mach num-
ber
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