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1. Introduction

It is well known that if f is Henstock-Kurzweil integrable on a compact interval

[a, b] ⊂ �
and g is of bounded variation there, then fg is Henstock-Kurzweil in-

tegrable on [a, b] and the integration by parts formula holds; see, for example, [7,
Theorem 12.21]. Here g is known as a multiplier for the Henstock-Kurzweil integral.
In [2] Bongiorno used the above mentioned result to prove that each BV function is

a multiplier for the C-integral. See [2, Theorem 4.2] for details. In this paper, we will
use elementary properties of the C-integral to obtain a new proof of [2, Theorem 4.2].

As a result, we also obtain an alternative proof of the well-known results that each
BV function is a multiplier for both the McShane and Henstock-Kurzweil integrals.
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2. Preliminaries

The set of all real numbers is denoted by
�
. A set Z ⊂ �

is said to be µ1-negligible

whenever µ1(Z) = 0, where µ1 is the one-dimensional Lebesgue measure. Given two
subsets X , Y of

�
, we say that X and Y are non-overlapping if their intersection

is µ1-negligible. A function is always real-valued. When no confusion is possible we
do not distinguish between a function defined on a set Z and its restriction to a set

W ⊂ Z.
An interval in

�
is always a compact non-degenerate interval in

�
. The family of

all non-degenerate subintervals of [a, b], where −∞ < a < b < ∞, is denoted by I1.
For any given I ∈ I1, we write µ1(I) as |I |.
A partition P is a finite collection {(I1, ξ1), . . . , (Ip, ξp)}, where I1, . . . , Ip are

pairwise non-overlapping intervals in I1, and ξi ∈ [a, b] for each i = 1, . . . , p.

Given Z ⊆ [a, b], a positive function δ on Z is called a gauge on Z. A partition
{(I1, ξ1), . . . , (Ip, ξp)} is said to be:
(i) a partition of Z if

p⋃
i=1

Ii = Z;

(ii) a subpartition of Z if
p⋃

i=1

Ii ⊆ Z;

(iii) δ-fine if Ii ⊂ (ξi − δ(ξi), ξi + δ(ξi)) for i = 1, . . . , p;

(iv) McShane if for each i = 1, . . . , p, ξi need not be in Ii.

Lemma 2.1 [8, Lemma 6.2.6]. Given a gauge δ on [a, b], δ-fine partitions of [a, b]
exist.

Definition 2.2 ([3]). A function f : [a, b] −→ �
is said to be C-integrable on

[a, b] if there exists A ∈ � with the following property: for each ε > 0 there exists a
gauge δ on [a, b] such that ∣∣∣∣

p∑

i=1

f(ξi)|Ii| −A

∣∣∣∣ < ε

for each δ-fine McShane partition {(I1, ξ1), . . . , (Ip, ξp)} of the interval [a, b] such that
p∑

i=1

dist(ξi, Ii) < 1/ε. Here A is called the C-integral of f over [a, b], and we write A

as
∫ b

a f(x) dx or
∫
[a,b] f(x) dx.

The C-integral is the minimal integral which includes Lebesgue integrable func-

tions and derivatives. See [3, Main Theorem] for details. The following properties of
the C-integral can be found in [1], [2], [3], [6].
�������	��


2.3. (a) The C-integral is linear; the class of C-integrable functions on
[a, b] is a linear space.
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(b) C-integrability on an interval I implies C-integrability on each subinterval

of I .

Lemma 2.4 (Saks-Henstock). Let f be C-integrable on [a, b]. Then for each
ε > 0 there exists a gauge δ on [a, b] such that

(1)
p∑

i=1

∣∣∣∣f(ξi)|Ii| −
∫

Ii

f(x) dx

∣∣∣∣ < ε

for each δ-fine McShane subpartition {(I1, ξ1), . . . , (Ip, ξp)} of [a, b] such that
p∑

i=1

dist(ξi, Ii) < 1/ε.

3. Multipliers for the C-integral

Let χX denote the characteristic function of a set X . The following lemma is an
easy consequence of [9, 4.32 Theorem].

Lemma 3.1. If a 6 u < v 6 b, g ∈ BV [a, b] and g(a) = 0, then
∫ b

a

χ[u,v](x)g(x) dx =
∫ b

a

( ∫ b

x

χ[u,v](t) dt

)
dg(x).

As an easy application of Lemma 3.1, we have the following crucial theorem for

this paper.

Theorem 3.2. Let f be C-integrable on [a, b]. If g ∈ BV [a, b] and g(a) = 0, then
the inequality

∣∣∣∣
p∑

i=1

{
f(ξi)g(ξi)(vi − ui)−

∫ b

a

( ∫ b

x

f(t)χ[ui,vi](t) dt

)
dg(x)

}∣∣∣∣

6
p∑

i=1

|f(ξi)|
∫ vi

ui

|g(ξi)− g(t)| dt

+ sup
x∈[a,b]

∣∣∣∣
∫ b

x

p∑

i=1

{f(ξi)χ[ui,vi](t)− f(t)χ[ui,vi](t)} dt

∣∣∣∣Var(g, [a, b])

holds for each subpartition {([u1, v1], ξ1), . . . , ([up, vp], ξp)} of [a, b].
��������

. Let {([u1, v1], ξ1), . . . , ([up, vp], ξp)} be a subpartition of [a, b]. In view
of Lemma 3.1, we see that

∣∣∣∣
p∑

i=1

{
f(ξi)g(ξi)(vi − ui)−

∫ b

a

( ∫ b

x

f(t)χ[ui,vi](t) dt

)
dg(x)

}∣∣∣∣
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6
p∑

i=1

|f(ξi)|
∣∣∣∣g(ξi)(vi − ui)−

∫ vi

ui

g(t) dt

∣∣∣∣

+
∣∣∣∣

p∑

i=1

{
f(ξi)

∫ vi

ui

g(t) dt−
∫ b

a

( ∫ b

x

f(t)χ[ui,vi](t) dt

)
dg(x)

}∣∣∣∣

6
p∑

i=1

|f(ξi)|
∣∣∣∣g(ξi)(vi − ui)−

∫ vi

ui

g(t) dt

∣∣∣∣

+
∣∣∣∣

p∑

i=1

{
f(ξi)

∫ b

a

(∫ b

x

χ[ui,vi](t) dt

)
dg(x)

−
∫ b

a

( ∫ b

x

f(t)χ[ui,vi](t) dt

)
dg(x)

}∣∣∣∣.

Since

p∑

i=1

|f(ξi)|
∣∣∣∣g(ξi)(vi − ui)−

∫ vi

ui

g(t) dt

∣∣∣∣ 6
p∑

i=1

|f(ξi)|
∫ vi

ui

|g(ξi)− g(t)| dt

and

∣∣∣∣
∫ b

a

( ∫ b

x

p∑

i=1

{f(ξi)χ[ui,vi](t)− f(t)χ[ui,vi](t)} dt

)
dg(x)

∣∣∣∣

6 sup
x∈[a,b]

∣∣∣∣
∫ b

x

p∑

i=1

{f(ξi)χ[ui,vi](t)− f(t)χ[ui,vi](t)} dt

∣∣∣∣Var(g, [a, b]),

the theorem is proved.
We can now give an elementary proof of the following result.

Theorem 3.3 [2, Theorem 4.2]. Each BV function is a multiplier for the C-

integral.
��������

. We may assume that g(a) = 0 and Var(g, [a, b]) < 1. According to the
Saks-Henstock Lemma for the C-integral, given ε > 0 there exists a gauge δ1 on [a, b]
such that

(2)
q∑

i=1

∣∣∣∣f(ζi)(ti − si)−
∫ ti

si

f(x) dx

∣∣∣∣ <
ε

3

for each δ1-fine McShane subpartition {([s1, t1], ζ1), . . . , ([sq , tq], ζq)} of [a, b] such
that

q∑

i=1

dist(ζi, [si, ti]) <
3
ε
.
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Observe that if s < r < t, then (r, t] = (s, t] − (s, r]. Then it follows from our
choice of δ1 that for each x ∈ [a, b], the inequality

∣∣∣∣
q∑

i=1

{
f(ζi)µ1([x, b] ∩ [si, ti])−

∫ b

a

f(t)χ[x,b]∩[si,ti](t) dt

}∣∣∣∣ <
2ε

3

holds for each δ1-fine McShane subpartition {([s1, t1], ζ1), . . . , ([sq, tq ], ζq)} of [a, b]
such that

q∑

i=1

dist(ζi, [si, ti]) <
3
ε
.

As f is real-valued and g is of bounded variation on [a, b], it is not difficult to
select a gauge δ2 on [a, b] such that

r∑

j=1

|f(zj)|
∫ βi

αi

|g(zj)− g(t)| dt <
ε

3

for each δ2-fine McShane subpartition {([α1, β1], z1), . . . , ([αr, βr], zr)} of [a, b].
Define a gauge δ on [a, b] by δ(x) = min{δ1(x), δ2(x)}. For each δ-fine McShane

partition {([u1, v1], ξ1), . . . , ([up, vp], ξp)} of [a, b] satisfying

p∑

i=1

dist(ξi, [ui, vi]) <
1
ε
,

we infer from Theorem 3.2 and the above estimates that

∣∣∣∣
p∑

i=1

f(ξi)g(ξi)(vi − ui)−
∫ b

a

( ∫ b

x

f(t) dt

)
dg(x)

∣∣∣∣

=
∣∣∣∣

p∑

i=1

{
f(ξi)g(ξi)(vi − ui)−

∫ b

a

( ∫ b

x

f(t)χ[ui,vi](t) dt

)
dg(x)

}∣∣∣∣

6
p∑

i=1

|f(ξi)|
∫ vi

ui

|g(ξi)− g(t)| dt

+ sup
x∈[a,b]

∣∣∣∣
∫ b

x

p∑

i=1

{
f(ξi)χ[ui,vi](t)− f(t)χ[ui,vi](t)

}
dt

∣∣∣∣ Var(g, [a, b]) < ε,

thereby completing the proof of the theorem.

By modifying the proof of the above theorem, we obtain the following well-known
theorem.
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Theorem 3.4. Each BV function is a multiplier for each of the generalized Rie-
mann integrals:

(i) the McShane integral;
(ii) the classical Henstock-Kurzweil integral;

(iii) the C̃-integral in [5];
(iv) the improper Lebesgue integral in [4].
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