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Abstract. In the paper we deal with weak Boolean products of bounded dually residuated
l-monoids (DRl-monoids). Since bounded DRl-monoids are a generalization of pseudo MV-
algebras and pseudo BL-algebras, the results can be immediately applied to these algebras.
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Introduction

Commutative dually residuated lattice-ordered monoids (commutative DRl-

monoids) were introduced by K.L.N. Swamy in [26] as a common generalization of

Abelian lattice-ordered groups and Brouwerian algebras. Dropping the commutativ-

ity assumption, T.Kovář in his thesis [13] defined generalDRl-monoids which include

all lattice-ordered groups. Recently, it was shown in [20], [21], [23], [24] and [15]

that also algebras of logics behind fuzzy reasoning and their non-commutative ver-

sions, namely, MV-algebras and pseudo MV-algebras, and BL-algebras and pseudo

BL-algebras, can be regarded to be particular cases of bounded DRl-monoids.

Boolean and weak Boolean products of MV-algebras, BL-algebras and bounded

commutative DRl-monoids were studied in [4], [7] and [22]. In this paper we con-

centrate on weak Boolean products of bounded (non-commutative) DRl-monoids.

We prove that non-trivial bounded DRl-monoids are representable as weak Boolean

products of directly indecomposable bounded DRl-monoids, we characterize weak

Boolean products of bounded DRl-chains, and show that the prime spectrum of a

weak Boolean product of bounded DRl-monoids is built up from the prime spectra of
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the components of this product. Our results can be immediately applied to pseudo

MV-algebras and pseudo BL-algebras.

1. Definitions and basic properties

An algebra (A;⊕, 0,∨,∧,⊘, ⊘) of type 〈2, 0, 2, 2, 2, 2〉 is called a dually residuated

l-monoid or a DRl-monoid if

(i) (A;⊕, 0,∨,∧) is an l-monoid, i.e., (A;⊕, 0) is a monoid, (A;∨,∧) is a lattice

and ⊕ distributes over both ∨ and ∧,

(ii) for any a, b ∈ A, a⊘ b is the least x ∈ A with x ⊕ b > a, and a ⊘b is the least

y ∈ A such that b⊕ y > a,

(iii) A satisfies the identities

((x⊘ y) ∨ 0) ⊕ y 6 x ∨ y, y ⊕ ((x ⊘y) ∨ 0) 6 x ∨ y,

x⊘ x > 0, x ⊘x > 0.

We note that the condition (ii) is equivalent to the identities

(x⊘ y) ⊕ y > x, y ⊕ (x ⊘y) > x,

x⊘ y 6 (x ∨ z) ⊘ y, x ⊘y 6 (x ∨ z) ⊘y,

(x⊕ y) ⊘ y 6 x, (y ⊕ x) ⊘y 6 x,

and hence the class of all DRl-monoids is a variety. T.Kovář proved that this variety

is arithmetical and weakly regular.

A DRl-monoid A is said to be bounded if there exists an element 1 in A such that

a 6 1 for all a ∈ A. As a matter of fact, if 1 is the greatest element of A then 0 is

the least one.

In what follows, the greatest element 1 of a bounded DRl-monoid A will be con-

sidered to be a new nullary operation, and thus bounded DRl-monoids are algebras

of the language {⊕, 0,∨,∧,⊘, ⊘, 1}.

R em a r k. Of course, our DRl-monoids are termwise equivalent to a certain class

of residuated lattices. These residuated lattices are called generalized BL-algebras

(GBL-algebras) in [1], [8] and [12].

E x am p l e 1.1. Pseudo MV-algebras were independently introduced by the sec-

ond author in [24] and by G.Georgescu and A. Iorgulescu in [9] as a non-commutative

extension of the well-known MV-algebras (see e.g. [3]):

226



A pseudo MV-algebra is an algebra (A;⊕,¬,∼, 0, 1) of type 〈2, 1, 1, 0, 0〉 satisfying

the following axioms:

(A1) (x⊕ y) ⊕ z = x⊕ (y ⊕ z),

(A2) x⊕ 0 = 0 ⊕ x = x,

(A3) x⊕ 1 = 1 ⊕ x = 1,

(A4) ¬1 =∼ 1 = 0,

(A5) ¬(∼ x⊕ ∼ y) =∼ (¬x⊕ ¬y),

(A6) x⊕ (y⊙ ∼ x) = y ⊕ (x⊙ ∼ y) = (¬x⊙ y) ⊕ x = (¬y ⊙ x) ⊕ y,

(A7) (¬x⊕ y) ⊙ x = y ⊙ (x⊕ ∼ y),

(A8) ∼ ¬x = x,

where the additional operation ⊙ is defined via

x⊙ y =∼ (¬x ⊕ ¬y).

Obviously, if ⊕ is commutative then ¬ and ∼ coincide and (A;⊕,¬, 0, 1) is an MV-

algebra.

Mutual relationships between pseudo MV-algebras and DRl-monoids were de-

scribed in [24]. If we put x 6 y iff ¬x⊕ y = 1, then (A;6) is a bounded distributive

lattice (with 0 at the bottom and 1 at the top) in which x ∨ y = x⊕ (y⊙ ∼ x) and

x ∧ y = (¬x ⊕ y) ⊙ x for all x, y ∈ A. Moreover, by defining x ⊘ y = ¬y ⊙ x and

x ⊘y = x⊙ ∼ y, the structure (A;⊕, 0,∨,∧,⊘, ⊘, 1) becomes a bounded DRl-monoid

satisfying the identities

(i) 1 ⊘ (1 ⊘x) = x = 1 ⊘(1 ⊘ x),

(ii) 1 ⊘ ((1 ⊘x) ⊕ (1 ⊘y)) = 1 ⊘((1 ⊘ x) ⊕ (1 ⊘ y)).

Conversely, if (A;⊕, 0,∨,∧,⊘, ⊘, 1) is a bounded DRl-monoid that fulfils these equa-

tions and if we put ¬x = 1 ⊘ x and ∼ x = 1 ⊘x, then (A;⊕,¬,∼, 0, 1) is a pseudo

MV-algebra.

E x am p l e 1.2. Pseudo BL-algebras established in [5] are another special case of

bounded DRl-monoids:

An algebra (A;∨,∧,⊙,→, , 0, 1) of type 〈2, 2, 2, 2, 2, 0, 0〉 is called a pseudo BL-

algebra if (A;∨,∧, 0, 1) is a bounded lattice, (A;⊙, 1) is a monoid and the following

conditions hold for all x, y, z ∈ A:

(i) x⊙ y 6 z iff x 6 y → z iff y 6 x z,

(ii) x ∧ y = (x→ y) ⊙ x = x⊙ (x y),

(iii) (x→ y) ∨ (y → x) = (x y) ∨ (y  x) = 1.

Pseudo BL-algebras generalize BL-algebras (see e.g. [10]) in the same way in which

pseudo MV-algebras generalize MV-algebras: if ⊙ is commutative then → and  
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coincide and the algebra (A;∨,∧,⊙,→, 0, 1) is a BL-algebra. Moreover, pseudo BL-

algebras include pseudo MV-algebras: by [5], pseudo BL-algebras satisfying (x →

0) 0 = (x 0) → 0 = x are polynomially equivalent to pseudo MV-algebras.

It was proved by the first author in [15] that pseudo BL-algebras correspond one-

to-one to bounded DRl-monoids satisfying the identities

(∗)
(x⊘ y) ∧ (y ⊘ x) = 0,

(x ⊘y) ∧ (y ⊘x) = 0;

they are the duals of such DRl-monoids. Let (A;∨,∧,⊙,→, , 0, 1) be a pseudo

BL-algebra and define x⊕ y = x ⊙ y, x ∨′ y = x ∧ y, x ∧′ y = x ∨ y, x⊘ y = y → x,

x ⊘y = y  x, 0′ = 1 and 1′ = 0. Then (A;⊕, 0′,∨′,∧′,⊘, ⊘, 1′) is a bounded

DRl-monoid satisfying (∗). Also conversely, if (A;⊕, 0,∨,∧,⊘, ⊘, 1) is a bounded

DRl-monoid which fulfils (∗) then (A;∨′,∧′,⊙,→, , 0′, 1′) is a pseudo BL-algebra.

Let us remark that the logical system corresponding to pseudo BL-algebras was

recently described by P.Hájek in [11].

When doing calculations, we make use of the following list of basic rules:

Lemma 1.3 [13]. In any DRl-monoid we have:

(1) x⊘ x = 0 = x ⊘x;

(2) ((x⊘ y) ∨ 0) ⊕ y = x ∨ y = y ⊕ ((x ⊘y) ∨ 0);

(3) x⊘ (y ⊕ z) = (x⊘ z) ⊘ y, x ⊘(y ⊕ z) = (x ⊘y) ⊘z;

(4) if x 6 y then x ⊘ z 6 y ⊘ z and z ⊘ x > z ⊘ y, likewise x ⊘z 6 y ⊘z and

z ⊘x > z ⊘y;

(5) x 6 y iff x⊘ y 6 0 iff x ⊘y 6 0;

(6) x⊘ (y ∧ z) = (x⊘ y) ∨ (x ⊘ z), x ⊘(y ∧ z) = (x ⊘y) ∨ (x ⊘z);

(7) (x ∨ y) ⊘ z = (x⊘ z) ∨ (y ⊘ z), (x ∨ y) ⊘z = (x ⊘z) ∨ (y ⊘z);

(8) (x⊘ y) ⊕ (y ⊘ z) > x⊘ z, (y ⊘z) ⊕ (x ⊘y) > x ⊘z.

Now, we briefly recall the necessary facts concerning ideals of DRl-monoids (see

[14] and [16]). Let A be any DRl-monoid. We define the absolute value of a ∈ A via

|a| = a ∨ (0 ⊘ a). A non-empty subset I of A is said to be an ideal in A if

(i) a⊕ b ∈ I whenever a, b ∈ I,

(ii) if |b| 6 |a| and a ∈ I then b ∈ I.

In the case that A is bounded we have |a| = a for all a ∈ A, and therefore any ideal

in A is an ideal in the lattice l(A) = (A;∨,∧). By [14], the ideals of any DRl-monoid

A form an algebraic distributive lattice I(A). If I(X) denotes the ideal generated

by ∅ 6= X ⊆ A, then

I(X) = {a ∈ A : |a| 6 |x1| ⊕ . . .⊕ |xn| for some x1, . . . , xn ∈ X,n ∈ N}.
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We call an ideal H normal if (a⊘ b)∨0 ∈ H iff (a ⊘b)∨0 ∈ H for all a, b ∈ A. There

is a one-to-one correspondence between the normal ideals of any DRl-monoid and its

congruence relations under which a normal ideal H corresponds to the congruence

ΘH defined by

(a, b) ∈ ΘH iff (a⊘ b) ∨ (b⊘ a) ∈ H.

We write a/H instead of [a]ΘH
and A/H for the quotient DRl-monoid A/ΘH .

For a bounded DRl-monoid A, denote by B(A) the set of all a ∈ A such that the

complement a′ of a in the lattice l(A) exists. By [17], B(A) is a subalgebra of A in

which a ⊕ b = a ∨ b and a ⊘ b = a ∧ b′ = a ⊘b; thus B(A) is a Boolean algebra.

Moreover, if X ⊆ B(A) then (X ], the lattice ideal in l(A) generated by X , is a

normal ideal of A. Note that in general (X ] need not be an ideal in A.

An ideal I ∈ I(A) is prime if, for all J,K ∈ I(A), if J ∩K ⊆ I then J ⊆ I or

K ⊆ I; equivalently, I is prime iff |a| ∧ |b| ∈ I implies a ∈ I or b ∈ I. The set of all

proper prime ideals in A is denoted by Spec(A).

2. Weak Boolean products

Let {Ax : x ∈ X} be a non-empty family of DRl-monoids. Recall that a DRl-

monoid A is a subdirect product of {Ax : x ∈ X} if there is an embedding ϕ of A into

the direct product
∏

{Ax : x ∈ X} such that the homomorphisms ϕπx map A onto

Ax for all x ∈ X , where πx is the natural projection of
∏

{Ax : x ∈ X} onto Ax.

A weak Boolean product of a collection {Ax : x ∈ X} of bounded DRl-monoids

is their subdirect product A such that X can be endowed with a Boolean topology

(i.e., X is a compact T2-space in which the clopen subsets form a basis) having the

following properties:

(i) for all a, b ∈ A, the set [[a = b]] = {x ∈ X : a(x) = b(x)} is open in X ,

(ii) if U is a clopen subset of X and a, b ∈ A, then a↾U ∪ b↾X\U ∈ A, where

(a↾U ∪ b↾X\U )(x) =

{

a(x) if x ∈ U,

b(x) if x ∈ X \ U.

We proved in [14] that a = b iff (a ⊘ b) ∨ (b ⊘ a) = 0, and therefore, (i) can be

replaced by the condition

(i′) [[a = 0]] is an open subset in X for all a ∈ A.

Since DRl-monoids form a variety, it follows that a weak Boolean product of

bounded DRl-monoids is still a bounded DRl-monoid.

Let now B be any Boolean algebra and let Ω(B) be the Stone space of B, i.e. the

set of all maximal (= proper prime) ideals in B equipped with the topology whose
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basis consists of the sets of the form σ(a) = {P ∈ Ω(B) : a /∈ P}. It is well-known

that Ω(B) is a Boolean space which determines B to within isomorphism.

Theorem 2.1. Let A be a non-trivial bounded DRl-monoid and let C be a

subalgebra of B(A). Then A is isomorphic to a weak Boolean product of {A/I(P ) :

P ∈ Ω(C)}.

P r o o f. In order to see that A is a subdirect product of {A/I(P ) : P ∈ Ω(C)},

we have to show that
⋂

{I(P ) : P ∈ Ω(C)} = {0}.

Let a ∈ A \ {0} and let a /∈ P for P ∈ Spec(A). Then P ∩C is obviously a proper

prime ideal of C. Assume that a ∈ I(P ∩C) = (P ∩C], i.e. a 6 c for some c ∈ P ∩C.

Hence a∧ c′ = 0 ∈ P , which entails c′ ∈ P since a /∈ P . Then 1 = c∨ c′ = c⊕ c′ ∈ P ,

a contradiction. Thus a /∈ I(P ∩ C) proving
⋂

{I(P ) : P ∈ Ω(C)} = {0}.

In what follows, we will regard A as the corresponding subalgebra of the direct

product
∏

{A/I(P ) : P ∈ Ω(C)}; so a ∈ A is a mapping P 7→ a(P ) = a/I(P ),

P ∈ Ω(C).

For (i), we have to prove that, for any a ∈ A, [[a = 0]] is an open set in Ω(C). Let

P ∈ [[a = 0]], i.e. a(P ) = a/I(P ) = I(P ), so a ∈ I(P ) and there is p ∈ P with a 6 p.

Therefore, P ∈ σ(p′) = [[p = 0]] ⊆ [[a = 0]] proving that [[a = 0]] is open.

For (ii), let U be a clopen subset of Ω(C). Then U = σ(c) for some c ∈ C since U is

a compact clopen set. If a, b ∈ A then a↾U∪b↾Ω(C)\U = (a∧c)∨(b∧c′) ∈ A. Indeed, if

P ∈ U then (a↾U ∪ b↾Ω(C)\U )(P ) = a/I(P ) = (a/I(P )∧ c/I(P ))∨ (b/I(P )∧ c′/I(P ))

since b/I(P ) ∧ c′/I(P ) = b/I(P ) ∧ I(P ) = I(P ) and a/I(P ) ∧ c/I(P ) = a/I(P )

because a⊘ c 6 c′ ∈ I(P ), i.e. a/I(P ) 6 c/I(P ). Similarly for P ∈ Ω(C) \ U . �

An ideal I of a bounded DRl-monoid A is called Stonean if for every a ∈ I there

exists b ∈ B(A) ∩ I such that a 6 b, i.e. I = (B(A) ∩ I]. In addition, I is a maximal

Stonean ideal of A if B(A) ∩ I is a maximal (= prime) ideal of B(A).

Lemma 2.2. Let A be a bounded DRl-monoid, a ∈ A and b ∈ B(A). Then

1 ⊘ (a ∨ b) = (1 ⊘ a) ∧ (1 ⊘ b), 1 ⊘(a ∨ b) = (1 ⊘a) ∧ (1 ⊘b).

P r o o f. First observe that (a⊘b)∧(b⊘a) 6 (1⊘b)∧b = 0, so (a⊘b)∧(b⊘a) = 0

since b ∈ B(A). Therefore

1 ⊘ (a ∨ b) = (1 ⊘ (a ∨ b)) ⊕ ((a⊘ b) ∧ (b ⊘ a))

= ((1 ⊘ (a ∨ b)) ⊕ (a⊘ b)) ∧ ((1 ⊘ (a ∨ b)) ⊕ (b ⊘ a))

= ((1 ⊘ (a ∨ b)) ⊕ ((a ∨ b) ⊘ b)) ∧ ((1 ⊘ (a ∨ b)) ⊕ ((a ∨ b) ⊘ a))

> (1 ⊘ b) ∧ (1 ⊘ a)

by Lemma 1.3 (7) and (8). The other inequality is obvious. �
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An ideal I ∈ I(A) is called a direct factor of A if there is an ideal J ∈ I(A) such

that the mapping (a, b) 7→ a⊕b is an isomorphism of the direct product I×J onto A,

in which case we write A = I ⊕J . In other words, A = I ×J and I is identified with

{(a, 0): a ∈ I} and J with {(0, a) : a ∈ J}. By [19], Proposition 3.2.3, I ∈ I(A) is a

direct factor if and only if I∨I⊥ = A, where I⊥ = {x ∈ A : |x|∧|a| = 0 for all a ∈ I}

is the pseudo-complement of I in the ideal lattice I(A). Therefore, given a bounded

DRl-monoid A, if a ∈ B(A) then A = (a] ⊕ (a′]. We have obtained

Proposition 2.3. A bounded DRl-monoid A is directly indecomposable if and

only if B(A) = {0, 1}.

Proposition 2.4. Let A be a bounded DRl-monoid. If I is a maximal Stonean

ideal of A then A/I is directly indecomposable.

P r o o f. Since I is a Stonean ideal of A, it is normal.

Let a ∈ A be such that a/I ∈ B(A/I)). Then a/I∧(1/I⊘a/I) = (a∧(1⊘a))/I = I,

so that a ∧ (1 ⊘ a) ∈ I. Hence a ∧ (1 ⊘ a) 6 b for some b ∈ B(A) ∩ I. Let c = a ∨ b;

then

c ∧ (1 ⊘ c) = (a ∨ b) ∧ (1 ⊘ (a ∨ b))

= (a ∨ b) ∧ (1 ⊘ a) ∧ (1 ⊘ b)

= (a ∧ (1 ⊘ a) ∧ (1 ⊘ b)) ∨ (b ∧ (1 ⊘ a) ∧ (1 ⊘ b))

= 0,

which yields c ∈ B(A). Since B(A)∩ I is a prime ideal of the Boolean algebra B(A),

we have either c ∈ B(A) ∩ I or c′ ∈ B(A) ∩ I. If c ∈ B(A) ∩ I then a ∈ B(A) ∩ I as

a 6 c. Then clearly a/I = I. If c′ ∈ B(A) ∩ I then

(1 ⊘ a) ∨ b = ((1 ⊘ a) ∨ b) ∧ ((1 ⊘ b) ∨ b)

= ((1 ⊘ a) ∧ (1 ⊘ b)) ∨ b

= (1 ⊘ (a ∨ b)) ∨ b

= (1 ⊘ c) ∨ b ∈ B(A) ∩ I.

Consequently, 1 ⊘ a ∈ I, whence 1/I ⊘ a/I = (1 ⊘ a)/I = I, so 1/I 6 a/I,

i.e. 1/I = a/I. In either case, B(A/I) = {I, 1/I}, which entails that A/I is di-

rectly indecomposable by the previous proposition. �
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Theorem 2.5. Let A be a weak Boolean product of a non-empty family {Ax : x ∈

X} of non-trivial bounded DRl-monoids. Define

C = {a ∈ A : a(x) ∈ {0x, 1x} for all x ∈ X}

and

Px = {a ∈ C : a(x) = 0x}, x ∈ X.

Then

(i) C is a subalgebra of B(A);

(ii) the mapping ϕ : x 7→ Px is a homeomorphism of X onto Ω(C);

(iii) for any x ∈ X , Ax is isomorphic to A/I(Px);

(iv) C = B(A) if and only if all the algebras Ax are directly indecomposable.

P r o o f. (i) This should be evident.

(ii) First, we prove that Px ∈ Ω(C). It is obvious that Px is a proper ideal of C

since 1 /∈ Px. Assume that a∧b ∈ Px for a, b ∈ C. Then (a∧b)(x) = a(x)∧b(x) = 0x,

which yields a(x) = 0x or b(x) = 0x, and so a ∈ Px or b ∈ Px. Thus Px is prime.

Let x, y ∈ X , x 6= y. Since X is a Boolean space (= a T2-space with a basis of

clopen sets), there exists a clopen subset U of X such that x ∈ U and y /∈ U . One

readily sees that a = 0↾U ∪ 1↾X\U ∈ A. Moreover, a ∈ C as a(z) ∈ {0z, 1z} for each

z ∈ X . From x ∈ U it follows that a(x) = 0x, so a ∈ Px, and from y /∈ U we obtain

a(y) = 1y, so a /∈ Py. Thus Px 6= Py and the mapping ϕ : x 7→ Px is one-to-one.

Assume that ϕ is not onto, i.e., there exists P ∈ Ω(C) with P 6= Px for any x ∈ X .

We have Px * P since both Px and P are maximal ideals of B(A). Hence for any

x ∈ X , there is ax ∈ Px such that ax /∈ P . Then ax(x) = 0x, so x ∈ [[ax = 0]], which

entails X =
⋃

{[[ax = 0]] : x ∈ X}. Consequently, X = [[ax1
= 0]] ∪ . . . ∪ [[axn

= 0]]

for some x1, . . . , xn ∈ X . It is easily seen that X = [[ax1
= 0]] ∪ . . . ∪ [[axn

= 0]] ⊆

[[ax1
∧ . . .∧axn

= 0]], whence X = [[ax1
∧ . . .∧axn

= 0]], and thus ax1
∧ . . .∧axn

= 0.

But P is a prime ideal of C, and hence axi
∈ P for some 1 6 i 6 n, which contradicts

ax /∈ P for any x ∈ X .

We have proved that ϕ is a bijection of X onto Ω(C).

Let c ∈ C. Then x ∈ ϕ−1(σ(c)) iff Px ∈ σ(c) iff c /∈ Px iff c
′ ∈ Px iff x ∈ [[c′ = 0]];

thus ϕ−1(σ(c)) = [[c′ = 0]]. Since the sets σ(c) form a basis for Ω(C), it follows that ϕ

is continuous. Since bothX and Ω(C) are compact T2-spaces, ϕ is a homeomorphism.

(iii) Denote Ker(πx) = {a ∈ A : a(x) = 0x}, where πx is the natural map of A

onto Ax. It is clear that Ker(πx) is a normal ideal of A and A/Ker(πx) ∼= Ax. We

will show that I(Px) = Ker(πx).

If a ∈ I(Px) then a 6 b for some b ∈ Px, whence a(x) 6 b(x) = 0x, so a(x) = 0x

proving I(Px) ⊆ Ker(πx).

232



Conversely, let a ∈ Ker(πx). Then x ∈ [[a = 0]] so that Px = ϕ(x) ⊆ ϕ([[a = 0]]),

where ϕ([[a = 0]]) is an open set in Ω(C). Therefore, there exists c ∈ C such that

Px ∈ σ(c′) ⊆ ϕ([[a = 0]]). To complete the proof of (iii) it suffices to show that

a 6 c, which along with c ∈ Px (we have c
′ /∈ Px) entails a ∈ I(Px).

Note that if z ∈ [[c = 0]] then c ∈ Pz, i.e.Pz ∈ σ(c′) ⊆ ϕ([[a = 0]]), and conse-

quently, z ∈ [[a = 0]] since ϕ is a bijection; so [[c = 0]] ⊆ [[a = 0]]. Therefore, if

z /∈ [[a = 0]] then z /∈ [[c = 0]], which yields z ∈ [[c′ = 0]] since c(z) ∈ {0z, 1z} and

c(z) 6= 0z. Hence X = [[a = 0]] ∪ [[c′ = 0]] ⊆ [[a ∧ c′ = 0]], thus a ∧ c′ = 0 proving

a 6 c.

(iv) If C = B(A) then for any x ∈ X , I(Px) is a maximal Stonean ideal of

A. Indeed, Px ∈ Ω(B(A)), so Px is maximal, whence it follows that I(Px) is a

maximal Stonean ideal of A. Therefore, by Proposition 2.4, Ax
∼= A/I(Px) is directly

indecomposable.

Conversely, suppose that each Ax is directly indecomposable, but C 6= B(A).

Let a ∈ B(A) \ C, i.e., there is x ∈ X with a(x) /∈ {0x, 1x}. However, a ∈ B(A)

entails a(x) ∈ B(Ax). Hence B(Ax) 6= {0x, 1x} showing that Ax is not directly

indecomposable, the desired contradiction. �

Corollary 2.6. Every non-trivial bounded DRl-monoid is isomorphic with a weak

Boolean product of directly indecomposable bounded DRl-monoids.

Corollary 2.7. If a non-trivial bounded DRl-monoid A is a weak Boolean product

of bounded DRl-chains, then each maximal Stonean ideal of A is prime. In addition,

if A satisfies the equations (∗) then A is a weak Boolean product of bounded DRl-

chains if and only if every maximal Stonean ideal is prime.

P r o o f. We have Ax
∼= A/I(Px). By [16], Corollary 2.10, if A/I(Px) is a DRl-

chain then I(Px) is a prime ideal of A. Moreover, in view of [16], Theorem 2.12,

if it fulfils (∗) then a normal ideal I of A is prime if and only if A/I is linearly

ordered. �

3. Prime spectra

Prime spectra of pseudo MV-algebras and DRl-monoids were examined by the

authors in [25] and [18], respectively.

Recall that Spec(A) is the poset of all proper prime ideals of a DRl-monoid A; it is

partially ordered by set-inclusion. The prime spectrum of A is Spec(A) endowed with

the topology {S(X) : X ∈ I(A)}, where S(X) = {P ∈ Spec(A) : X * P}. We note

that S(X) = S(I(X)) for any X ⊆ A. Although Spec(A) does not characterize A, it
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does give a great deal of information about A, especially if A fulfils the identities (∗)

(see [16]).

We wish to generalize [22], Theorem 2, stating that the prime spectrum of a weak

Boolean product of commutative bounded DRl-monoids is the cardinal sum of the

prime spectra of its components.

Lemma 3.1. Let A be a lower-bounded DRl-monoid and I ∈ I(A). If (a ⊘ b) ∨

(b⊘ a) ∈ I and a ∈ I, then b ∈ I.

P r o o f. For any a, b ∈ A,

b 6 ((a⊘ b) ⊕ a) ∨ b 6 ((a⊘ b) ⊕ a) ∨ ((b ⊘ a) ⊕ a) = ((a⊘ b) ∨ (b⊘ a)) ⊕ a.

Therefore, if both (a⊘ b) ∨ (b ⊘ a) and a belong to I, then so does b. �

Theorem 3.2. Let A be a weak Boolean product of a family {Ax : x ∈ X} of

bounded DRl-monoids. Then the ordered prime spectrum of A, Spec(A), is isomor-

phic to the cardinal sum of the ordered prime spectra {Spec(Ax) : x ∈ X}.

P r o o f. Denote Ix = Ker(πx) = {a ∈ A : a(x) = 0x} for any x ∈ X . Let

P ∈ Spec(A) and assume that Ix * P for all x ∈ X , i.e., for any x ∈ X there

exists bx ∈ Ix \ P . Then clearly X =
⋃

{[[bx = 0]] : x ∈ X}, and consequently,

X = [[bx1
= 0]]∪ . . .∪ [[bxn

= 0]] for some x1, . . . , xn ∈ X . We also have X = [[bx1
=

0]] ∪ . . . ∪ [[bxn
= 0]] ⊆ [[bx1

∧ . . . ∧ bxn
= 0]], whence bx1

∧ . . . ∧ bxn
= 0 ∈ P , which

entails bxi
∈ P for some 1 6 i 6 n, since P is a prime ideal; a contradiction. Thus

given P ∈ Spec(A), there exists x ∈ X with Ix ⊆ P . We are going to show that

this x is unique. For that purpose, let x 6= y, Ix ⊆ P and Iy ⊆ P . Since X is a

Boolean space, there exists a clopen subset V of X such that x ∈ V while y ∈ X \V .

By the condition (ii), 0↾V ∪ 1↾X\V ∈ A, and in addition, 0↾V ∪ 1↾X\V ∈ Ix ⊆ P as

(0↾V ∪ 1↾X\V )(x) = 0x. Similarly 1↾V ∪ 0↾X\V ∈ Iy ⊆ P . However, it is easily seen

that (0↾V ∪ 1↾X\V ) ⊕ (1↾V ∪ 0↾X\V ) = 1, so 1 ∈ P , the desired contradiction.

Let now H(Ix) = {P ∈ Spec(A) : Ix ⊆ P} for x ∈ X . We have proved that for any

P ∈ Spec(A), there exists a unique x ∈ X such that Ix ⊆ P . Therefore it is obvious

that the ordered prime spectrum Spec(A) is isomorphic to the cardinal sum of the

posets H(Ix), x ∈ X . In order to complete the proof, we will show that Spec(Ax)

and H(Ix) are isomorphic.

Let P ∈ H(Ix) and ψx(P ) = {c(x) : c ∈ P}. One readily sees that ψx(P ) ∈ I(Ax).

Moreover, if 1x ∈ ψx(P ) then 1x = c(x) for some c ∈ P , so ((c⊘1)∨ (1⊘ c))(x) = 0x

and hence (c ⊘ 1) ∨ (1 ⊘ c) ∈ Ix ⊆ P . But by Lemma 3.1 this yields 1 ∈ P , which

contradicts P ∈ Spec(A). Thus ψx(P ) is a proper ideal of Ax.
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Let u, v ∈ Ax and assume that u ∧ v ∈ ψx(P ). Then there exist a, b ∈ A and

c ∈ P such that a(x) = u, b(x) = v and c(x) = u ∧ v = (a ∧ b)(x). Clearly,

((a ∧ b) ⊘ c) ∨ (c ⊘ (a ∧ b))(x) = 0x, and so ((a ∧ b) ⊘ c) ∨ (c ⊘ (a ∧ b)) ∈ Ix ⊆ P ,

which yields a ∧ b ∈ P by Lemma 3.1. Since P is prime, we have a ∈ P or b ∈ P so

that u ∈ ψx(P ) or v ∈ ψx(P ). Therefore ψx(P ) is a proper prime ideal of Ax and

ψx : P 7→ ψx(P ) is a (one-to-one) mapping from H(Ix) into Specx(Ax).

Let Q ∈ Spec(Ax) and put ̺x(Q) = {a ∈ A : a(x) ∈ Q}. It can be easily seen

that ̺x(Q) is a proper prime ideal of A with Ix ⊆ ̺x(Q), that is, ̺x(Q) ∈ H(Ix).

In addition, ψx(̺x(Q)) = Q proving that ψx is a bijection; obviously, ψ
−1
x = ̺x.

Since both ψx and ̺x preserve set-inclusion, ψx : H(Ix) → Spec(Ax) is the desired

isomorphism. �
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