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LOCALIZATION EFFECTS FOR EIGENFUNCTIONS NEAR TO

THE EDGE OF A THIN DOMAIN
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Abstract. It is proved that the first eigenfunction of the mixed boundary-value problem
for the Laplacian in a thin domain Ωh is localized either at the whole lateral surface Γh of
the domain, or at a point of Γh, while the eigenfunction decays exponentially inside Ωh.
Other effects, attributed to the high-frequency range of the spectrum, are discussed for
eigenfunctions of the mixed boundary-value and Neumann problems, too.
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1. Plate-like domains and spectral problems

Let ω ⊂ �
2 be a domain bounded by a simple smooth contour ∂ω and Ω0h =

ω×(−h/2, h/2) a cylindrical plate of a small thickness h ∈ (0, 1]. Owing to separating
variables, the spectral problem in Ω0h,

(1)
−∆xu(h, x) = Λ(h)u(h, x), x ∈ Ωh,

u(h, x) = 0, x ∈ Σ±h ; ∂νu(h, x) = 0, x ∈ Γh,

only admits the solutions

(2)
Λk,j = �

2k2h−2 + λj ,

uk,j(h, x) = wj(y)sin
{
�k[h−1z + 1/2]

}

where k, j ∈ � = {1, 2, ...} and the couple {λj , wj} verifies the spectral problem

(3) −∆yw(y) = λw(y), y ∈ ω; ∂nw(y) = 0, y ∈ ∂ω.
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Here ∂ν and ∂n stand for derivatives along the outward normals ν and n to the

surfaces ∂Ωh and ∂ω, respectively, ∆x = ∆y + ∂2/∂z2 and ∆y are the Laplacians
in �3 and �2 while, for the cylindrical plate Ωh = Ω0h, the sets Σ

±
h and Γh denote

the bases ω × {±h/2} and the lateral side ∂ω × (−h/2, h/2). It is a fair interpre-

tation of the problem (3) as a two-dimensional model for the spatial problem (1).
Moreover, formulas (2) express high-frequency asymptotic forms for eigenvalues and

eigenfunctions in the thin domain Ωh. Although the spectral elasticity problem for
the isotropic plate Ω0h possesses low-frequency h2µ−1,j+O(h3) and middle-frequency

h0µ0,j +O(h1) eigenvalue subsequences (cf. [1]–[3]), problem (1) used to be regarded
as a scalar analogue for demonstrating basic properties of high-frequency range of

the plate spectrum. In particular, a formal procedure was proposed in [4], [5] to
derive the so-called two-dimensional models of high-frequency long-wave oscillations

of isotropic elastic plates. As discussed in [6], the boundary layer phenomenon de-
stroys the asymptotic forms employed in [4], [5] and, therefore, the above mentioned

model cannot be justified rigorously. Indicating high-frequency eigenfunctions which
concentrate near the edge of a thin domain and therefore avoid the asymptotic form

(2)2, this paper as well as the preceding papers [7], [8] further contribute to the
conclusion on the invalidity of the models introduced in [4], [5].

In the sequel we consider a non-cylindrical plate with the perturbed lateral surface

(4) Γh = {x : s ∈ ∂ω, η1 = −Υ(η2), |η2| < 1/2}

where η1 = h−1n, η2 = h−1z are rapid variables; |n| = dist(y, ∂ω), n > 0 out-
side ω; s stands for both, a point on ∂ω and the arc length along the contour ∂ω;

Υ ∈ C∞[−1/2, 1/2] is a profile function, Υ > 0 as |η2| < 1/2, Υ(±1/2) = 0.
If Υ is even in z, then, by restricting an even eigenfunction u to the upper half-

plate Ω+h = {x ∈ Ωh : z > 0} and using the odd extension over the plane {x :
z = h/2} ⊃ Σ+h , one gets rid of the Dirichlet conditions and changes them to the
Neumann conditions on bases of the new plate. This arguing demonstrates that the
Neumann spectral problem in a thin domain inherits localized eigenfunctions from

the mixed boundary-value problem (1) which has been singled out here only because
the localization effects observed below attribute to the first eigenfunction.
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2. Trapped modes

In accordance with [9; Chapter 15], rewriting the problem (1) in the curvilinear
coordinates (s, η), omitting lower-order terms, replacing Λ by h−2µ, and putting

h = 0 leads to the limit problem in the half-strip Π with a curved end

(5)
−∆ηw(η) − µw(η) = 0, η ∈ Π = {η : η1 > −Υ(η2), |η2| < 1/2},

w(η1,±1/2) = 0, η1 > 0; ∂νw(η) = 0, η ∈ ∂Π, η1 < 0.

In order to initiate further asymptotic analysis we formulate an assertion proved in
[8] with the help of an approach developed in [10].

Lemma 1. Under the condition

(6)
∫ 1/2

−1/2
cos(2�η2)Υ(η2) dη2 > 0,

the problem (5) has an eigenvalue µ ∈ (0, �2) to which there corresponds an eigen-
function w ∈ H1(Π) such that ‖w;L2(Π)‖ = 1 and w(η) = O(exp[−(�2 − µ)1/2η1])
as η1 →∞.

The eigenfunction w is called a trapped mode. We consider the first eigenvalue µ0

which is known to be simple (see [8] for the case of a multiple eigenvalue).

By separating variables, any function which satisfies the scalar problem (5) in the
half-strip Π0 = (−1/2, 1/2)× �+ and decays exponentially as η1 → +∞, vanishes
in Π0 totally, i.e., the straight end of the half-strip denies a trapped mode in the
problem (5). In contrast to scalar problems, the elasticity problem in Π0 does not

admit separation of variables and, moreover, trapped modes have been detected in
[11] for an isotropic half-strip whose boundary is free of traction and in [8] for the

half-strip which is clamped over its infinite sides1. Thus, it is readily predictable that
spectral problems related to oscillating cylindrical plates and gaskets enjoy the same

localization effects as the scalar problem (1) in the case of non-cylindrical lateral
side.

1 In the first case the corresponding eigenvalue lies in the continuous spectrum.
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3. A rough result about the localization of eigenfunctions

For the cylindrical plate Ω0h, the first eigenvalue Λ1,1(h) is equal to �
2h−2 and

the eigenfunction u1,1(h, x) = sin{�[h−1z + 1/2]} is uniformly distributed along the
plate. The next assertion proves that, if an eigenvalue of problem (1) satisfies the
inequality

(7) Λ � �
2h−2(1− ε), ε > 0,

the eigenfunction decays exponentially in a distance from the lateral side (4).

Proposition 2. For an eigenfunction u which corresponds to the eigenvalue (7)
and is normalized in L2(Ωh), the estimates

(8)
‖Eδ∇xu;L2(Ωh)‖ � Λ1/2(ε− 2δ�−1)−1/2,
‖Eδu;L2(Ωh)‖ � (1 + h−1δΛ−1/2)(ε− 2δ�−1)−1/2

hold, where δ ∈ (0, �ε/2) and Eδ is a Lipschitz exponential weight function,

(9)
Eδ(x) = 1 as x ∈ Ωh \ Ω0h,

Eδ(x) = exp{h−1δ dist(y, ∂ω)} as x ∈ Ω0h.

�����. Multiplying equation (1)1 by E2δ u and integrating by parts in Ωh yields

(10) ‖Eδ∇xu;L2(Ωh)‖2 + 2Jδ(u; Ω0h) = Λ‖Eδu;L2(Ωh)‖2

where, by the relations |∇xEδ(x)| � h−1δEδ(x) and ∇xEδ(x) = 0 for x ∈ Ωh \ Ω0h,

(11)
2|Jδ(u; Ω0h)| = 2

∣∣∣∣
∫

Ω0h

Eδu∇xEδ · ∇xu dx

∣∣∣∣

� h−2�δ‖Eδu;L2(Ω0h)‖2 + �
−1δ‖Eδ∇xu;L2(Ω0h)‖2.

The Friedrichs inequality ‖Eδu;L2(Ωh)‖ � �
−1h‖Eδ∇xu;L2(Ωh)‖ now yields

{1− �
−1δ − �

−2h2(Λ + h2�δ)}‖Eδ∇xu;L2(Ωh)‖2

� (1− �
−1δ)‖Eδ∇xu;L2(Ωh)‖2 − (Λ + h−2�δ)‖Eδu;L2(Ω

0
h)‖2

� Λ‖Eδu;L2(Ωh \ Ω0h)‖2 � Λ.

Since the sum in the curly brackets is equal to 1− h2�−2Λ− 2δ�−1 � ε− 2δ�−1, the
first formula in (8) is verified. The second formula follows from (10) and (11). �
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4. Asymptotic reduction to an intermediate problem

In view of Lemma 1, we search for an eigenvalue of problem (1) in the form

(12) Λ(h) = h−2µ0 + λ∗(h)

where λ∗(h) = o(h−2) as h → 0+. Since µ0 < �
2, the eigenvalue (12) satisfies

(7) and, by virtue of Proposition 2, the corresponding eigenfunction concentrates

near the lateral side (4). Recalling the general asymptotic procedure developed in
[12] (see also [9; Chapter 16]), we accept the following asymptotic expansion for the

eigenfunction:

(13) u(h, x) = w(η)v∗(h, s) + h1W1(v∗; s, η) + h2W2(v∗; s, η) + . . .

Here w stands for the eigenfunction of problem (5) corresponding to the eigenvalue
µ0, v∗ for a smooth function on the contour ∂ω and Wi for a lower-order asymptotic

term. The asymptotic structures of λ∗(h) and v∗(h, s) are not fixed yet and in the
next three sections we will complete the assumption (12) and the expansion (13) in

different ways.

In the coordinates (s, η) introduced in (4), the Laplacian allows the following
decomposition with respect to the small parameter h:

(14)
∆x = h−2L0 + h−1L1 + h0L2 + . . . ,

L0(∇η) = ∆η, L1(s,∇η) = −k(s)∂1, L2(s, η, ∂s,∇η) = k(s)2η1∂1 + ∂2s

where k(s) is the curvature of the arc ∂ω at the point s and ∂s = ∂/∂s, ∂i = ∂/∂ηi.

We now insert the decompositions (12)–(14) into equalities (1), gather terms of

similar order in h, and finally obtain a recurrent sequence of inhomogeneous prob-
lems of type (5) depending on the parameter s ∈ ∂ω. Since µ0 is a simple eigenvalue,

each of the limit problems needs one compatibility condition, more precisely, a fam-
ily of alike compatibility conditions parameterized by s ∈ ∂ω. In order to fulfil

these conditions we employ a projection trick proposed in [12] (see also [13] and
[9; Chapter 16]) and thus we subtract from the right-hand sides the expressions

w(η)Mj(s, ∂s)v∗(h, s) with appropriate j-th order differential operatorsMj . The fol-
lowing intermediate problem, i.e., an ordinary differential equation on the contour

∂ω, is intended to compensate for additional discrepancies introduced artificially:

(15)
2∑

j=0

hjMj(s, ∂s)v∗(h, s) = 0, s ∈ ∂ω.
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Equation (15) still contains the small parameter h and accurate descriptions of an

asymptotic algorithm serving to derive intermediate problems can be found in [12],
[13], [9].
The limit problems in question take the form

(16)
−∆ηWj − µ0Wj = Fj − wMjv∗ in Π,

Wj = 0 on {η ∈ ∂Π: η1 > 0}, ∂νWj = 0 on {η ∈ ∂Π: η1 < 0}.

Since F0 = 0 and v∗ does not depend on η, the productW0 = wv∗ becomes a solution

of the problem (16) at j = 0; thus, M0 = 0. By virtue of the formula (14)2, we have

(17) F1 = L1wv∗ = −v∗k∂1w, F2 = λ∗(h)wv∗ + L1W1 + L2wv∗.

Hence, the compatibility conditions for the problem (16) at j = 1 lead to the formulas

(18)

M1(s, ∂s)v∗(h, s) =
∫

Π
w(η)F1(h, s, η) dx =

1
2
k(s)v∗(h, s)

∫

Π

∂

∂η1
w(η)2 dη

= b0k(s)v∗(h, s), b0 =
1
2

∫ 1/2

−1/2
w(−Υ(η2), η2)2 dη2 > 0.

We readily conclude that W1(v∗; s, η) = k(s)w1(η)v∗(h, s) where w1 is a function in

H1(Π), chosen to be orthogonal to w in L2(Π). A direct calculation of the integral∫
wF2 dη furnishes the differential operator M2,

(19) M2(s, ∂s)v∗ = λ∗v∗ + b1k
2v∗ + ∂2sv∗, b1 =

∫

Π
w(∂1w1 − η1∂1w) dη.

Thus, in view of (18) and (19) the intermediate problem (15) reads

(20) −∂2sv∗(h, s)− (h−1b0k(s) + b1k(s)2)v∗(h, s) = λ∗(h)v∗(h, s), s ∈ ∂ω.

5. A circular plate Ωh

The simplest case for asymptotic analysis of equation (20) is k(s) = R−1, i.e., ω

is a circle of radius R. We set

v∗(h, s) = v(s) + . . . , λ∗(h) = −h−1b0k0 + λ+ . . .

and reduce promptly the intermediate problem (20) to the limit problem

(21) −∂2sv(s)− b1R
−2v(s) = λv(s), s ∈ ∂ω = �R,
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solutions of which are evidently of the form

vp(s) = exp(ips/R), λp = (p
2 − b1)R

−2

where p ∈ �= {0,±1,±2, . . .} and i =
√
−1.

Theorem 3. Let the hypothesis (6) be fulfilled. If ∂ω is the circle of radius R and

µ0 the first eigenvalue of the problem (5), then the entries of the eigenvalue sequence

of the spectral problem (1),

(22) 0 < Λ0(h) < Λ1(h) � . . . � Λp(h) � . . . → +∞,

verify the following estimates with a constant cp independent of h ∈ (0, 1]:
∣∣Λ2p+q(h)− {h−2µ0 − h−1b0R

−1 + (p2 − b1)R−2}
∣∣ � cph

1/2

where q = 0 as p = 0 and q = −1, 0 as p > 0.

6. Arbitrary shape of the middle-section ω

Let a point s0 constitute a local maximum of the curvature function ∂ω 	 s →
k(s),

(23) k(s) = k(s0)−K0(s− s0)
2 +O(|s − s0|3).

Assuming K0 > 0 and α = (b0K0)1/4, we introduce the rapid variable σ = h−1/4(s−
s0) and assume that the solution of the intermediate problem (20) has the following
form:

(24) v∗(h, s) = v(σ) + . . . , λ∗(h) = −h−1b0k0(s0) + h−1/2λ+ . . .

Inserting (23) and (24) into (20), we collect coefficients at h−1/2, put h = 0, and

finally obtain the limit problem, posed on the whole real axis,

(25) −∂2σv(σ) + b0K0σ
2v(σ) = λv(σ), σ ∈ �.

Solutions to the spectral problem (25) are known to be of the form

λm = α2(2m− 1), v(σ) = exp
(
1
2
α2σ2

)[
dm−1

dtm−1
exp(−t2)

]∣∣∣∣
t=ασ

, m ∈ �.
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Theorem 4. Let the hypothesis (6) be fulfilled. If µ ∈ (0, �2) is a simple eigen-
value of the problem (5) and the formula (23) holds true with K0 > 0, then there
exists at least one eigenvalue Λp(h) of the problem (1) such that

(26) |Λp(h)− [h−2µ− h−1b0k(s0) + h−1/2(b0K0)1/2(2m− 1)]| � c(µ, s0, m)h−1/4

where c(µ, s0, m) is independent of h ∈ (0, 1]. Moreover, in the case that µ = µ0 is

the first eigenvalue and the curvature k admits its global maximum at the only point

s0 with K0 > 0 in (23), the eigenvalue Λm(h) from the sequence (22) satisfies the
inequality (26) with µ = µ0, p = m and there is no other eigenvalue subject to (26).

In view of the exponential behavior of the functions w and vm, the eigenfunction
um(h, x) corresponding to Λm(h) in (22) concentrates in the vicinity of the point

x0 = (s0, 0) ∈ �3 and decays as o(exp[−βh−1n]× exp[−βh−1/2|s− s0|]) with β > 0
while x moves from x0. The decay rates are different in the normal and tangential

directions. Theorem 4 can be easily reduced to the convergence statement

h1/2
{
Λm(h)−

[
h−2µ− h−1b0k(s0)

]}
→ (b0K0)1/2 (2m−1) as h → +0, m ∈ �.

7. Eigenfunctions oscillating along the edge

Since the equation (20) still involves a (large) parameter, we can employ the WKB

assumptions for eigenfunctions with an asymptotic behavior which crucially differs
from (24),

(27) v∗(h, s) ∼ exp
[
ih−1/2A(h, s)

] ∞∑

j=0

hj/2v
(j)
∗ (h, s).

Preserving the eigenvalue in the form (12), an application of the WKB method yields

(28) A(h, s) =
∫ s

s0

(
b0k(t) + hλ∗(h)

)1/2
dt, v0∗ = (∂sA)−1/2 = (b0k + hλ∗(h))−1/4.

Furthermore, the quantum condition of the Bohr-Sommerfeld type

(29)
∫ s0+|∂ω|

s0

(b0k(t) + hλ
(n)
∗ (h))1/2 dt = 2�nh1/2

where n ∈ � and |∂ω| denotes the length of the contour, yields the necessary peri-
odicity of functions in (27), (28) but requires n = O(h−1/2), λ(n)∗ (h) = O(h−1).

290



Theorem 5. If µ is a simple eigenvalue of the problem (5) and λ
(n)
∗ (h) satisfies

(29) with n ∈ �, there exists an eigenvalue of the problem (1) such that

|Λp(h)− [h−2µ− λ
(n)
∗ (h)]| � cµ.

The rate O(h−1/2) of the oscillations along plate’s edge is lower than the rate

O(h−1) of the exponential decay in the normal direction. This fact becomes the key
point in justifying the WKB asymptotic forms.

8. Remarks on the justification

We have avoided to reproduce here any asymptotic formula for eigenfunctions of

the problem (1) for the sake of brevity only. Using the assumptions for the asymp-
totics expansions and appropriate cut-off functions, asymptotic representations can

be easily presented.

The exponential decays of the constructed approximations for eigenfunctions make
it impossible to apply the standard approach (see, e.g., [1], [3], [6]) to deriving the

convergence theorems for the spectrum of the problem (1). In order to prove Theo-
rems 3–5 another method based on direct and inverse reductions of singularly per-

turbed spectral problems has been successfully employed in [8]. As usual, the inverse
reduction implies a construction of an approximate solution to the problem (1) from

a solution to a limit problem and an application of the classical lemma on “almost
eigenvalues and eigenvectors”. Consequently, this reduction only delivers proofs of

Theorem 5 and the first assertion in Theorem 4. In contrast, the direct reduction
employs a solution to the original problem (1) for constructing an approximate so-

lution to either the intermediate problem (20), or to a limit problem. The repeated
application of the above mentioned lemma provides then a comparison of the spectra

of these problems and finally furnishes proofs of Theorem 3 and the second assertion
of Theorem 4.

For the Neumann-Beltrami Laplacian in a thin curved two-dimensional domain,

this way how to justify asymptotic representations of eigenvalues and eigenfunctions
was indicated in [14]. Similar approaches have been used in [15] (see also [9]) for

spectral problems in domains with singular perturbation of their boundaries and in
[16] for problems with a small parameter at the highest derivatives. All estimates

obtained in the cited papers as well as in [8] and here in Theorems 3–5 involve
constants which depend on the eigenvalue number in the sequence (22). However,

the book [17] presents a new approach which, using scrupulous weighted estimates
of higher-order derivatives of the eigenfunctions um and both reductions, is able
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to instate estimates of the remainders in asymptotic representations of eigenvalues

and eigenfunctions with bounds depending explicitly on attributes of the “limit”
spectrum such as the eigenvalue number, the multiplicity, and the inverse distance
to the other eigenvalues.

References

[1] Ciarlet P.G., Kesavan S.: Two dimensional approximations of three dimensional eigen-
values in plate theory. Comput. Methods Appl. Mech. Engrg. 26 (1980), 149–172.

[2] Zorin I. S., Nazarov S.A.: Edge effect in the bending of a thin three-dimensional plate.
J. Appl. Math. Mech. 53 (1989), 500–507.

[3] Dauge M., Djurdjevic I., Faou E., Rössle A.: Eigenmode asymptotics in thin elastic
plates. J. Math. Pures Appl. 78 (1999), 925–964.

[4] Berdichevskii V. L.: High-frequency long-wave oscillations of plates. Doklady AN SSSR
236 (1977), 1319–1322.

[5] Berdichevskii V. L.: Variational Principles in Mechanics of Continuous Media. Nauka,
Moskva, 1983.

[6] Nazarov S.A.: On the asymptotics of the spectrum of a thin plate problem of elasticity.
Siberian Math. J. 41 (2000), 744–759.

[7] Nazarov S. A.: Asymptotics of eigenvalues of the Dirichlet problem in a thin domain.
Sov. Math. 31 (1987), 68–80.

[8] Kamotskii I. V., Nazarov S.A.: On eigenfunctions localized in a neighborhood of the
lateral surface of a thin domain. Probl. matem. analiz 19 (1999), 105–148. (In Russian.)

[9] Maz’ya V., Nazarov S., Plamenevskij B.: Asymptotic Theory of Elliptic Boundary Value
Problems in Singularly Perturbed Domains, Vol. 1, 2. Birkhäuser, Basel, 2000.

[10] Evans D.V., Levitin M., Vasil’ev D.: Existence theorems for trapped modes. J. Fluid
Mech. 261 (1994), 21–31.

[11] Roitberg I., Vassiliev D., Weidl T.: Edge resonance in an elastic semi-strip. Q. J. Mech.
Appl. Math. 51 (1998), 1–13.

[12] Nazarov S.A.: The structure of solutions of elliptic boundary value problems in slender
domains. Vestn. Leningr. Univ. Math. 15 (1983), 99–104.

[13] Nazarov S. A.: A general scheme for averaging selfadjoint elliptic systems in multidi-
mensional domains, including thin domains. St. Petersburg Math. J. 7 (1996), 681–748.

[14] Nazarov S. A.: Singularities of the gradient of the solution of the Neumann problem at
the vertex of a cone. Math. Notes 42 (1987), 555–563.

[15] Maz’ya V.G., Nazarov S. A., Plamenevskii B. A.: On the singularities of solutions of
the Dirichlet problem in the exterior of a slender cone. Math. USSR Sbornik 50 (1985),
415–437.

[16] Nazarov S. A.: Justification of asymptotic expansions of the eigenvalues of non-self-
adjoint singularly perturbed elliptic boundary value problems. Math. USSR Sbornik 57
(1987), 317–349.

[17] Nazarov S. A.: Asymptotic Theory of Thin Plates and Rods. Dimension Reduction and
Integral Estimates. Nauchnaya Kniga, Novosibirsk, 2001. (In Russian.)

Author’s address: Serguei A.Nazarov, Center for Techno-Mathematics & Scientific
Computing Laboratory, Harrow School of Computer Science, Westminster University, Lon-
don, UK, Watford Road, Northwick Park, Harrow Campus, Harrow HA1 3TP; e-mail:
serna@snark.ipme.ru.

292


		webmaster@dml.cz
	2020-07-01T14:59:58+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




