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RECTIFIABILITY AND PERIMETER IN STEP 2 GROUPS
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Abstract. We study finite perimeter sets in step 2 Carnot groups. In this way we extend
the classical De Giorgi’s theory, developed in Euclidean spaces by De Giorgi, as well as its
generalization, considered by the authors, in Heisenberg groups. A structure theorem for
sets of finite perimeter and consequently a divergence theorem are obtained. Full proofs
of these results, comments and an exhaustive bibliography can be found in our preprint
(2001).
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1. Definitions

1.1. ������ �����	. We recall the definition of Carnot groups of step 2 and

some of its properties (see [5], [15], [12] and [16]). Let � be a connected, simply
connected nilpotent Lie group whose Lie algebra g admits a step 2 stratification,

i.e. there exist linear subspaces V1, V2 such that

(1) g = V1 ⊕ V2, [V1, V1] = V2, [V1, V2] = 0,

where [V1, Vi] is the subspace of g generated by commutators [X, Y ] with X ∈ V1

and Y ∈ Vi. A base e1, . . . , en of g is adapted to the stratification if e1, . . . , em is
a base of V1 and em+1, . . . , en is a base of V2. Let X = {X1, . . . , Xn} be the family
of left invariant vector fields such that Xi(0) = ei. Given (1), the vector fields
X1, . . . , Xm together with their commutators of length 2 generate all g; we will refer

to X1, . . . , Xm as a family of generating vector fields of the group.
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The exponential map exp is a one to one map from g to � . Hence any p ∈ �

can be written, in a unique way, as p = exp(p1X1 + . . . + pnXn). Using these
exponential coordinates, we identify p with the n-tuple (p1, . . . , pn) ∈ �n and � with
(�n , ·), where the new product in �n is such that exp(p · q) = exp(p) exp(q). The
identification � � (�n , ·) is used from now on, without being mentioned anymore.
The n-dimensional Lebesgue measure Ln is the Haar measure of the group � .

As a consequence of the stratification (1), a natural family of automorphisms of
� are the so called intrinsic dilations. For any x ∈ � and λ > 0, the dilation

δλ : � → � , is defined as

(2) δλ(x1, ..., xn) = (λx1, ..., λxm, λ2xm+1, . . . , λ
2xn).

The subbundle of the tangent bundle T� spanned by the first m vector fields

X1, . . . , Xm is called the horizontal bundle H� ; the fibers of H� are

H� x = span {X1(x), . . . , Xm(x)}, x ∈ � .

Sections of H� are called horizontal sections and vectors of H� x are horizontal
vectors. Each horizontal section ϕ is identified by its coordinates (ϕ1, . . . , ϕm) with

respect to the moving frame X1(x), . . . , Xm(x). That is, horizontal sections are
functions �n → �m .

A subriemannian structure is defined on � , endowing each fiber of H� with a
scalar product making the basis X1(x), . . . , Xm(x) an orthonormal basis. That is, if

v = (v1, . . . , vm) and w = (w1, . . . , wm) are in H� x , then 〈v, w〉x :=
m∑

j=1
vjwj and

|v|2x := 〈v, v〉x. It will simplify our notation to extend the scalar product 〈v, w〉x also
to v, w ∈ T� x , keeping the same definition: 〈v, w〉x :=

m∑
j=1

vjwj .

Given a sub-riemannian structure there is a standard procedure introducing a
natural distance, i.e. the Carnot-Carathéodory distance, on � (see e.g. [11]). Consider

the family of the so-called sub-unit curves in � : an absolutely continuous curve
γ : [0, T ]→ � is a sub-unit curve with respect to X1, . . . , Xm if for a.e. t ∈ [0, T ],

γ̇(t) ∈ H� γ(t) , and |γ̇(t)|γ(t) � 1.

Definition 1.1 [Carnot-Carathéodory distance]. If p, q ∈ � , their cc-distance is
defined by

dc(p, q) = inf {T > 0: γ : [0, T ]→ � is sub-unit, γ(0) = p, γ(T ) = q} .

It is a classical result in the control theory, usually known as Chow’s theorem,
that, under assumption (1), the set of sub-unit curves joining p and q is not empty.
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Hence dc(p, q) is never infinity and dc is a distance on � inducing the same topology

as the standard Euclidean distance.
The Carnot-Carathéodory distance is usually difficult to compute and sometimes

it is more convenient to deal with distances, equivalent with dc, but such that they

can be explicitly evaluated. Several ones have been used in literature, here we choose
d∞(x, y) = d∞(y−1 · x, 0), where

(3) d∞(p, 0) = max

{( m∑

j=1

p2j

)1/2
, ε

( n∑

j=m+1

p2j

)1/4}
.

Here ε ∈ (0, 1) is a suitable positive constant.
Finally, we denote by Uc(p, r) and U∞(p, r) the open balls associated, respectively,

with dc and d∞.

Related with these distances, different Hausdorff measures can be constructed,
following Carathéodory’s construction as in [4], Section 2.10.2.

Definition 1.2. For α > 0 denote by Hα the α-dimensional Hausdorff measure
obtained from the Euclidean distance in �n � � , by Hα

c the one obtained from dc in

� , and by Hα
∞ the one obtained from d∞ in � . Analogously, Sα, Sα

c and Sα
∞ denote

the corresponding spherical Hausdorff measures.

The homogeneous dimension of � is the integer Q := dimV1 + 2dimV2 = m +

2(n−m) that is the Hausdorff dimension of � with respect to the cc-distance dc (see
[14]).

1.2. � -�
����� �������	 ��� 	����
	. The following definitions
about intrinsic differentiability are due to Pansu ([16]), or have been inspired by his

ideas.

A map L : � → � is � -linear if it is a homomorphism from � ≡ (�n , ·) to (�,+)
and if it is positively homogeneous of degree 1 with respect to the dilations of � ,

that is L(δλx) = λLx for λ > 0 and x ∈ � . It is easy to see that L is � -linear if and

only if there is a ∈ �m such that Lx =
m∑

j=1
ajvj for all x ∈ � .

Given f : � → � such that X1f, . . . , Xmf exist, we denote by ∇� f the horizontal
section defined as

∇� f :=
m∑

i=1

(Xif)Xi,

whose coordinates are (X1f, ..., Xmf). Moreover, if ϕ = (ϕ1, . . . , ϕm) is a horizontal
section such that Xjϕj exist for j = 1, . . . , m, we define div� ϕ as the real valued
function

div� (ϕ) :=
m∑

j=1

Xjϕj .
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Definition 1.3. f : � → � is Pansu-differentiable or � -differentiable (see [16]

and [13]) at x0 if there is a � -linear map d� fx0 such that

lim
x→x0

f(x)− f(x0)− d� fx0(x
−1
0 · x)

dc(x, x0)
= 0.

Notice that if f is � -differentiable in x0 then Xjf(x0) exist for j = 1, . . . , m and

d� fx0(v) = 〈∇� f, v〉x0 =
m∑

j=1

vjXjf(x0).

Conversely, if for j = 1, . . . , m all of Xjf(x) are continuous in an open set Ω, then f

is differentiable at each point of Ω. We denote by C1
�
(Ω) the set of continuous real

functions in Ω such that Xjf(x) are continuous in Ω for j = 1, . . . , m. Moreover,

we denote by C1
�
(Ω, H� ) the set of all sections ϕ of H� whose all canonical coor-

dinates ϕj ∈ C1� (Ω). The corresponding spaces of Euclidean differentiable functions
are denoted by C1(Ω), C1(Ω, H� ); C10(Ω, H� ) is the space of smooth, compactly
supported sections of H� .

�
���� 1.4. We recall that C1(Ω) ⊂ C1
�
(Ω) and that the inclusion may be

strict, indeed, the functions in C1
�
(Ω) are, a priori, only Hölder continuous functions

with respect to the Euclidean metric. An example is provided in Remark 6 of [7].

Following [8], we define � -regular hypersurfaces in a Carnot group � as non critical

level sets of functions in C1
�
(� ).

Definition 1.5 [� -regular hypersurfaces]. S ⊂ � is a � -regular hypersurface if
for every x ∈ S there exist a neighborhood U of x and f ∈ C1

�
(U) such that

(i) S ∩ U = {y ∈ U : f(y) = 0};
(ii) ∇� f(y) �= 0 for y ∈ U .
Notice that the dc Hausdorff dimension of a � -regular hypersurface is always Q−1

(see [8]).

Definition 1.6 [Tangent group]. If S = {x ∈ � : f(x) = 0} is a � -regular
hypersurface, the tangent group T g

�
S(x0) to S at x0 is

T g
�
S(x0) := {v ∈ � : d� fx0(v) = 0}.

T g
�
S(x0) is a proper subgroup of � . We define the tangent plane to S at x0 as

T�S(x0) := x0 · T g
�
S(x0).
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The above definition is a good one: indeed, the tangent group does not depend

on the particular function f defining the surface S because of point (iii) of Implicit
Function Theorem below that yields

T g
�
S(x) = {v ∈ � : 〈νE(x), v〉x = 0}

where νE , the inward unit normal, is defined in (7) and depends only on the set S.

�
���� 1.7. The class of � -regular hypersurfaces is strongly different from the

class of Euclidean C1 embedded surfaces in �n . On one hand, EuclideanC1-surfaces
are not � -regular at points x where the Euclidean tangent space TxS ⊃ H� x . On

the other hand, as one can guess from Remark 1.4, � -regular surfaces can be very
irregular as subsets of Euclidean �n . It is less obvious that they could even have
Euclidean Hausdorff dimension larger than n− 1. It is rather amazing that, even for
such surfaces, the notion of the tangent plane and the related properties are utterly
natural.

1.3. BV� ��������	 ��� ����
 �
���
�
� 	
�	. The definition of BV

functions in a group follows closely the one in Euclidean �n ; simply the horizon-

tal vector fields Xj , j = 1, . . . , m take the place of the partial derivatives ∂
∂xi
for

i = 1, . . . , n (see e.g. [10]).

If Ω is an open subset of � , then the space BV� (Ω) is the set of functions f ∈ L1(Ω)
such that

(4) ‖∇� f‖(Ω) := sup
{∫

Ω
f(x) div� ϕ(x) dx : ϕ ∈ C10(Ω, H� ), |ϕ| � 1

}
< ∞.

The space BV�,loc(Ω) is the set of functions belonging to BV� (U) for each open set

U ⊂⊂ Ω.
By Riesz representation theorem we have

Theorem 8 [Structure of BV� functions]. If f ∈ BV�,loc(Ω) then ‖∇� f‖ is a
Radon measure on Ω, there exists a ‖∇� f‖-measurable horizontal section σf : Ω→
H� such that |σf (x)| = 1 for ‖∇� f‖-a.e.x ∈ Ω, and, for all ϕ ∈ C10(Ω, H� ),

(5)
∫

Ω
f(x) div� ϕ(x) dLn =

∫

Ω
〈ϕ, σf 〉d‖∇� f‖.
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Following De Giorgi, we define sets with a finite perimeter:

Definition 1.9 [� -Caccioppoli sets]. A measurable set E ⊂ � is of finite � -

perimeter (of locally finite � -perimeter or a � -Caccioppoli set) in Ω if the charac-
teristic function 1E ∈ BV (Ω) (respectively, 1E ∈ BV�,loc(Ω)). We call the measure

(6) |∂E|� := ‖∇�1E‖

the perimeter of E, and the horizontal vector

(7) νE(x) := −σ1E(x)

the (generalized inward) � -normal to ∂E.

It is interesting to observe that (5), when applied to the characteristic function of

a finite perimeter set E, reads as an abstract divergence theorem

(8)
∫

E

div� ϕdLn = −
∫

�

〈ϕ(x), νE(x)〉x d|∂E|� ;

giving more geometric substance to (8) is one of the main results here presented.
Notice that for � -Caccioppoli sets whose boundary is a Euclidean regular surface,

the perimeter measure coincides with the natural definition of the surface area in
Carnot groups.

Proposition 1.10. If E is a � -Caccioppoli set with a Euclidean C1-boundary,
then there is an explicit representation of the � -perimeter in terms of the Euclidean

(n− 1)-dimensional Hausdorff measure: Hn−1

|∂E|� (Ω) =
∫

∂E∩Ω

( m∑

j=1

〈Xj , n〉2�n

)1/2
dHn−1,

where n = n(x) is the Euclidean unit outward normal to ∂E.

The topological boundary of a finite perimeter set can be really bad, and it can

even have positive Ln-measure. One of the main achievements of De Giorgi’s theory
is proving the existence of a subset of the topological boundary, the so called reduced

boundary, that carries all the perimeter measure (the |∂E|� measure in our case) and
is reasonably regular: i.e. it is a rectifiable set. So, following once more De Giorgi,

we define the reduced boundary ∂∗
�
E of a � -Caccioppoli set E ⊂ � :

Definition 1.11 [Reduced boundary]. Let E be a � -Caccioppoli set; we say
that x ∈ ∂∗

�
E if
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(i) |∂E|� (Uc(x, r)) > 0 for any r > 0;

(ii) there exists lim
r→0

∫
Uc(x,r) νE d|∂E|� ;

(iii)
∣∣ lim

r→0

∫
Uc(x,r) νE d|∂E|�

∣∣
�m1
= 1.

The limits in Definition 1.11 should be understood as convergence of the averages
of the coordinates of νE .

2. Main results

The main results of the present paper are

(1) At each point of the reduced boundary of a � -Caccioppoli set there is a (gen-

eralized) tangent group;

(2) the reduced boundary is a (Q− 1)-dimensional � -rectifiable set;
(3) |∂E|� = cSQ−1

∞ ∂∗E, i.e. the perimeter measure equals a constant times the

spherical (Q − 1)-dimensional Hausdorff measure restricted to the reduced
boundary;

(4) an intrinsic divergence theorem holds for C1
�
(� , H� ) vector fields in � -

Caccioppoli sets.

We now briefly discuss each of these points.

First of all we recall a result of independent interest. An Implicit Function Theo-
rem holds in � , stating that any � -regular hypersurface S = {y ∈ � : f(y) = 0} is
locally the graph, along the integral curves of a horizontal vector field, of a function
of n−1 variables. Moreover, the � -perimeter of E can be written explicitly in terms
of the associated parameterization and of ∇� f .

Theorem 2.1 [Implicit Function Theorem]. Let Ω be an open set in �n , 0 ∈ Ω,
and let f ∈ C1

�
(Ω) be such that f(0) = 0 and X1f(0) > 0. Define E = {x ∈

Ω: f(x) < 0}, S = {x ∈ Ω: f(x) = 0}, and, for δ > 0, h > 0, Iδ = {ξ =
(ξ2, . . . , ξn) ∈ �n−1 , |ξj | � δ}, Jh = [−h, h]. If ξ = (ξ2, . . . , ξn) ∈ �n−1 and t ∈ Jh,

denote by γ(t, ξ) the integral curve of the vector field X1 at the time t issued from

(0, ξ) = (0, ξ2, . . . , ξn) ∈ �n , i.e.

γ(t, ξ) = exp(tX1)(0, ξ).

Then there exist δ, h > 0 such that the map (t, ξ) → γ(t, ξ) is a homeomorphism of
a neighborhood of Jh × Iδ onto an open subset of �n , and, if we denote by U ⊂⊂ Ω
the image of Int(Jh × Iδ) through this map, we have

(i) E has a finite � -perimeter in U ;
(ii) ∂E ∩ Ω = S ∩ U ;
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(iii) νE(x) = − ∇�f(x)
|∇�f(x)|x for all x ∈ S ∩ Ω, where νE is the generalized inner unit

normal defined by (7). Moreover, there exists a unique continuous function

ϕ = ϕ(ξ) : Iδ → Jh such that the following parameterization holds: if ξ ∈ Iδ,

put Φ(ξ) = γ(ϕ(ξ), ξ), then

(iv) S ∩ Ω̃ = {x ∈ Ũ : x = Φ(ξ), ξ ∈ Iδ}; the � -perimeter has an integral represen-
tation

(v) |∂E|� (Ũ) =
∫

Iδ

( m∑
j=1

|Xjf(Φ(ξ))|2
)1/2(

X1f(Φ(ξ))
)−1
dξ.

2.1. ��
 �
�
�����
� ����
�� ����
. For any set E ⊂ � , x0 ∈ � and
r > 0 we consider the translated and dilated sets Er,x0 defined as

Er,x0 = {x : x0 · δr(x) ∈ E} = δ 1
r
(x−10 · E).

If v ∈ H� x0 , then the halfspace S+
�
(v) is {x : 〈x, v〉0 � 0}, and its topological

boundary is the subgroup T g
�
(v) of � defined as {x : 〈x, v〉0 = 0}.We say that E has

a generalized tangent plane at a point x0 if the sets Er,x0 converge to S+
�
(νE(x0)) as

r → 0 in L1loc(� ). The following blow-up theorem states that at each point of ∂
∗
�
E

there is a generalized tangent plane. Besides its intrinsic interest, it provides one of

the key tools for our structure theorem.

Theorem 2.2 [Blow-up Theorem]. If E is a � -Caccioppoli set, x0 ∈ ∂∗
�
E and

νE(x0) ∈ H� x0 is the inward normal as defined in (7) then

(9) lim
r→0
1Er,x0

= 1S+
�
(νE(x0))

in L1loc(� )

and for all R > 0

lim
r→0

|∂Er,x0 |� (Uc(0, R)) = |∂S+
�
(νE(x0))|� (Uc(0, R)) = Hn−1(T g

�
(νE(0)) ∩ Uc(0, R)).

The proof of the above theorem relies on careful asymptotic estimates and on the

following lemma, which is far from being trivial as the corresponding statement in
the Euclidean space, and relies on the structure of step 2 groups.

Lemma 2.3. Let � be a step 2 group and let Y1, . . . , Ym be left invariant ortho-

normal (horizontal) sections of H� . Assume that g : � → � satisfies

(10) Y1g � 0 and Yj(g) = 0 if j = 2, . . . , m.

Then the level lines of g are “vertical hyperplanes orthogonal to Y1”, that is sets that

are group translations of

S(Y1) := {p : 〈p, Y1〉0 = 0}.
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Notice that for more complicated groups, as are groups of step 3 or larger, the

above statement is false and also Theorem 2.2 fails; indeed, there are examples of
points of the reduced boundary where no tangent group exists, even in our generalized
sense.

The existence of a generalized tangent at each point of the reduced boundary,
together with a suitable Whitney type extention theorem, yields, through a fairly

standard procedure from the geometric measure theory, the rectifiability of the re-
duced boundary as stated in the following structure theorem.

2.2. ��������
 � � -����������� 	
�	 ��� ���
��
��
 ��
��

�
�. The following differentiation lemma plays a key role in the present paper,
showing that in fact the perimeter measure is concentrated on the reduced bound-

ary. In the Euclidean setting it is a simple consequence of Lebesgue-Besicovitch
differentiation lemma, while in Carnot groups (where such lemma fails to hold: see

[13], [17]) it relies on a deep asymptotic estimate proved by Ambrosio in [1].

Lemma 2.4. Assume E is a � -Caccioppoli set, then

lim
r→0

∫

Uc(x,r)
νE d|∂E|� = νE(x) for |∂E|� -a.e. x,

that is |∂E|� -a.e.x ∈ � belongs to the reduced boundary ∂∗
�
E.

We can now state our main results.

Theorem 2.5 [Structure of � -Caccioppoli sets]. If E ⊆ � is a � -Caccioppoli set,

then

(i) ∂∗
�
E is (Q − 1)-dimensional � -rectifiable, that is ∂∗

�
E = N ∪

∞⋃
h=1

Kh, where

HQ−1
c (N) = 0 and Kh is a compact subset of a � -regular hypersurface Sh;

(ii) νE(p) is � -normal to Sh at p for all p ∈ Kh, that is νE(p) ∈ H� p and

〈νE(p), v〉p = 0 for all v ∈ T�Sh(p);

(iii) |∂E|� = θcSQ−1
c ∂∗

�
E, where θc(x) = Hn−1(∂S+

�
(νE(x)) ∩ Uc(0, 1)). If we

replace theHc-measure by theH∞-measure, the corresponding density θ∞ turns

out to be a constant. More precisely,

(iv) |∂E|� = θ∞SQ−1
∞ ∂∗

�
E, where (ε is the one from (3)) θ∞ =

ωm−1ωn−mε2(m−n)

ωQ−1
.

Notice that ωm−1ωn−mε2(m−n) = Hn−1(∂S+
�
(νE(0))∩U∞(0, 1)) is independent

of νE(0).

Theorem 2.6 [Divergence Theorem]. If E is a � -Caccioppoli set, then
(i) |∂E|� = θ∞SQ−1

∞ ∂∗
�
E, and the following version of the divergence theorem

holds:

(ii) −
∫
E
div� ϕdLn = θ∞

∫
∂∗
�

E
〈νE , ϕ〉dSQ−1

∞ , for every ϕ ∈ C10(� , H� ).
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38050, Povo (Trento) Italy, e-mail: serapion@science.unitn.it; Francesco Serra Cassano,
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