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ROUTE SYSTEMS ON GRAPHS
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Abstract. The well known types of routes in graphs and directed graphs, such as walks,
trails, paths, and induced paths, are characterized using axioms on vertex sequences. Thus
non-graphic characterizations of the various types of routes are obtained.
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1. Introduction

The concept of route system was introduced by Nebeský [1], [2] to study the set of
all geodesics (shortest paths) in a connected graph. Using the idea of route systems,
Nebeský was able to give a nice, non-metric characterization of geodesics, see [3].
In this note, motivated by Nebeský’s original idea of a route system, we define

a quite general notion of route system on a finite non empty set V as a collection
of sequences of elements in V satisfying some simple axioms. To specialize various
types of route systems, we use ‘extension axioms’ and ‘exclusion axioms’. Given a
route system, one can define the underlying graph. An important question is what
the routes in the route system signify in the underlying graph. If the route system
satisfies a symmetry axiom, then the underlying graph is undirected, otherwise the
underlying graph will be directed. We present axioms for the route systems (directed
as well as undirected) which give, respectively, the walks, the trails, the paths, the
minimal paths, and the triangular minimal paths, in the underlying (di)graph.

This work was done while the first author was visiting the Econometric Institute of
Erasmus University, Rotterdam, as a BOYSCAST fellow of the Department of Science
and Technology (DST) of the Ministry of Science and Technology of India, March–
September 1998. The financial support of the DST, New Delhi, and the hospitality of
the Econometric Institute, Rotterdam, are greatly acknowledged.
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2. Route systems

Let V be a nonempty, finite set. By L(V ) we denote the set of all finite sequences
of elements in V . For α, β in L(V ), the sequence αβ is the concatenation of the
sequences α and β. The empty sequence is denoted by ω. Thus, for any sequence
α in L(V ), we have ωα = αω = α. If α = v1v2 . . . vk, then |α| = k is the length of
the sequence, and α = vkvk−1 . . . v2v1 is the sequence obtained from α by reversing
the order of the elements in α. We call this sequence the inverse of α. In particular,
|ω| = 0, and ω = ω. In the sequel, we will denote elements of V by roman letters, and
sequences in L(V ) by Greek letters. Thus, the sequence uαv has u as first element
and v as last element, whereas α is a, possibly empty, sequence in L(V ).

Let α be a nonempty sequence in L(V ). We denote the first element of α by Φ(α).
Let α, β, and γ be, possibly empty, sequences in L(V ). Then we write β ∈ αβγ.
Note that β is a subsequence consisting of consecutive elements of αβγ. If β is non
empty, we write α < αβ. Note that the < symbol is only used for sequences having
the same first element. Of course, if we allow β to be empty, then we write α � αβ.

A route system on the set V is a family of nonempty sequencesR ⊆ L(V ) satisfying
the following axioms:

(r0) u ∈ R for any u ∈ V ,

(r1) uαv ∈ R ⇒ uα, αv ∈ R.
Let R be a route system. The sequences in R are called routes. The length of a

route α is |α| − 1. The axiom (r0) serves only to exclude certain degenerate cases.
Let α be a route in R, and let β ∈ α. Then we call β a subroute of α. Axiom (r1)
states that every subroute of a route is itself a route. Hence we call (r1) the subroute
axiom.

The underlying digraph DR = (V, A) of R has vertex set V and (u, v) is an arc
in DR if and only if uv is a route in R. We will write uv = (u, v), for short.
Note that, if we would drop (r0), then we should take as vertex set of D the set
W = {v ∈ V ; v ∈ R}.
The next two axioms are symmetry axioms:

(s0) uv ∈ R ⇒ vu ∈ R,
(s1) α ∈ R ⇒ α ∈ R.
Axiom (s0) is the weak symmetry axiom, and axiom (s1) is the strong symmetry

axiom, or the symmetry axiom, for short. The underlying graph GR = (V, E) of a
weakly symmetric route system has vertex set V and uv is an edge in GR if and only
if uv lies in R.
In the sequel we will prove a number of results on route systems. The symmetric,

or undirected analogues usually follow straightforward from the general, or directed
case by applying (s1). It turns out that, in each case, we will only require weak
symmetry, and that strong symmetry follows from weak symmetry and the other

608



axioms. To obtain the undirected case, sometimes just a simple adaptation of the
proof is necessary. We omit proofs for the undirected case.
We start with our most general case, the route system of all walks, and specialize

as we proceed. Basically we require two types of axioms for the special cases, namely
an extension axiom to generate new routes from existing ones and an exclusion axiom
to exclude the non-routes from the route system. We list the axioms as follows: the
extension axiom will have an even number 2i, while the associated exclusion axiom
will have the odd number 2i+1. Extension axioms (r2) and (r2)∗ have no matching
exclusion axiom.
There are several possibilities for the extension and exclusion axioms for the var-

ious types of routes that we consider. We propose two types. The first type always
involves two routes of the same length in the extension axiom. The second type al-
ways extends an existing route respectively with an arc or edge only. To distinguish
between the two types, we denote the axioms of the second type by (rk)∗.
First we list all axioms, where α is understood to be a, possibly empty, sequence:
(r2) uαx, αxv ∈ R ⇒ uαxv ∈ R,
(r4) uαx, αxv ∈ R, uΦ(αx) �= xv, ⇒ uαxv ∈ R,
(r5) uαxv ∈ R ⇒ uΦ(αx) �= xv;
(r6) uαx, αxv ∈ R, u �= v ⇒ uαxv ∈ R,
(r7) uαv ∈ R ⇒ u �= v,
(r8) uαx, αxv ∈ R, u �= v, uv /∈ R ⇒ uαxv ∈ R,
(r9) uαxv ∈ R ⇒ uv /∈ R,
(r10) uv, vw ∈ R, u �= w ⇒ uvw ∈ R,

uαxy, αxyv ∈ R, u �= v, uv /∈ R ⇒ uαxyv ∈ R,
(r11) uαxyv ∈ R ⇒ uv /∈ R,
(r2)∗ αv, vw ∈ R ⇒ αvw ∈ R,
(r4)∗ αv, vw ∈ R, vw /∈ αv ⇒ αvw ∈ R,
(r4)∗∗ αv, vw ∈ R, vw /∈ αv, wv /∈ αv ⇒ αvw ∈ R,
(r5)∗ αxv ∈ R ⇒ xv /∈ αx,
(r5)∗∗ αxv ∈ R ⇒ xv /∈ αx and vx /∈ αx,
(r6)∗ αv, vw ∈ R, w /∈ αv ⇒ αvw ∈ R,
(r7)∗ = (r7),
(r8)∗ αv, vw ∈ R, w /∈ αv, and α′w /∈ R (for α′ � α) ⇒ αvw ∈ R,
(r9)∗ = (r9),
(r10)∗ uv, vw ∈ R, u �= w ⇒ uvw ∈ R,

αv, vw ∈ R, w /∈ αv, and α′w /∈ R (for α′ < α) ⇒ αvw ∈ R,
(r11)∗ = (r11).
To avoid confusion, we list some terminology on graphs and digraphs. All our

graphs will be without multiple edges or arcs, but we allow loops. Let D = (V, A) be
a digraph. A directed walk in D is a sequence of vertices v1v2 . . . vk such that vivi+1 is
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an arc for 1 � i < k. Similarly, a walk in a graph G = (V, E) is a sequence of vertices
v1v2 . . . vk such that vivi+1 is an edge for 1 � i < k. The length of the walk is k−1. A
(directed) trail is a (directed) walk without repetition of arcs or edges, respectively.
Note that in our terminology a single loop is a trail in the directed as well as in
the undirected case. A (directed) path is a (directed) trail without repetition of
vertices. A (directed) minimal path is a (directed) path in which vivj is not an arc
nor an edge, respectively, for 1 � i < j − 1 � k. A (directed) triangular minimal
path is a (directed) path, in which vivj is not an arc nor an edge, respectively, for
1 � i < j − 2 < k. A (directed) geodesic is a (directed) path of minimal length
between its endpoints. A (directed) triangular geodesic is a (directed) triangular
minimal path such that, if we take a minimal (directed) subpath P contained in it,
then it is a (directed) geodesic, and each other vertex of the path is adjacent to only
two consecutive vertices of P .

Let D = (V, A) be a digraph, and let G = (V, E) be a graph. Clearly, the family of
all directed walks in D is a route system satisfying (r2) as well as (r2)∗. The family
of all directed trails in D is a route system satisfying (r4) and (r5), as well as (r4)∗

and (r5)∗. The family of all directed paths in D is a route system satisfying (r6) and
(r7), as well as (r6)∗ and (r7)∗. The family of all directed minimal paths in D is a
route system satisfying (r7), (r8) and (r9), as well as (r7)∗, (r8)∗ and (r9)∗. The
family of directed triangular minimal paths in D is a route system satisfying (r7),
(r10) and (r11), as well as (r7)∗, (r10)∗ and (r11)∗. Clearly, the walks, trails, paths,
minimal paths, and triangular minimal paths of G all satisfy axioms (s0) and (s1),
and the respective extension and exclusion axiom.

A nice and non-trivial characterization of the route system consisting of all geodes-
ics of a graph was given by Nebeský in [3]. Thus he was able to produce a non-metric
characterization of the set of all geodesics of a graph. The characterization of the
directed route system of all directed geodesics in a digraph is still open, as is the
characterization of the (directed) route system of all (directed) triangular geodesics
of a (di)graph.

All the lemmata below are proved by induction on the length of the routes. The
basic idea for characterizing the route system as the family of directed walks in a
directed graph is given in Lemma 1. The undirected analogue is given in Lemma 2.

Lemma 1. Let R and S be route systems on V with DR = DS . If R and S both
satisfy (r2), then R = S.

�����. By induction on the lengths of the routes in R, we prove that R ⊆ S.
Let α = v1v2 . . . vk be a route in R. If k = 1, then α lies in S, by (r0). If k = 2, then
α lies in S, by the fact that the underlying digraphs of R and S have the same arcs.
So assume that k � 3. By (r1), it follows that v1v2 . . . vk−1 and v2 . . . vk−1vk are in
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R. So, by induction, they are in S, whence, by (r2), it follows that α lies in S, and
we are done. Similarly, it follows that S ⊆ R, by which the lemma is proved. �

The next lemma follows immediately from Lemma 1, and we omit the proof.

Lemma 2. Let R and S be weakly symmetric route systems on V with GR = GS .
If R and S both satisfy (r3), then R = S.

As observed above, the directed walks in a digraph, as well as the walks in a graph,
form a route system satisfying (r2). Hence the next theorem follows immediately
from Lemmata 1 and 2.

Theorem 3. Let V be a finite nonempty set, and let R be a route system on V .
Then R is the family of all directed walks of DR if and only if R satisfies (r2). If R
satisfies (s0), then R is the family of all walks of GR if and only if R satisfies (r2).

Lemma 4. Let R and S be route systems on V with DR = DS . If R and S both
satisfy (r2i) and (r2i+ 1), then R = S for i = 2, 3, 4, 5.

�����. By induction on the lengths of the routes in R, we prove that R ⊆ S.
Let α = v1v2 . . . vk be a route in R. If k = 1, then α lies in S, by (r0). If k = 2, then
α lies in S, by the fact that the underlying digraphs of R and S have the same arcs.
So assume that k � 3. In the cases i = 4, 5 we assume that v1vk is not in DR = DS .
Since R satisfies (r2i + 1), we know that v1v2 �= vk−1vk in the case i = 2, or that
v1 �= vk in the cases i = 3, 4, 5. By (r1), it follows that v1v2 . . . vk−1 and v2 . . . vk−1vk

are in R. So, by induction, they are in S. Since S satisfies (r2i), it follows that α is
in S. Similarly, it follows that S ⊆ R, by which the lemma is proved. �

The weakly symmetric analogue of Lemma 4 is given in the next lemma. The
proof is straightforward.

Lemma 5. Let R and S be weakly symmetric route systems on V with GR = GS .
If R and S both satisfy (r2i) and (r2i+ 1) then R = S for i = 2, 3, 4, 5.

Lemmata 4 and 5 provide us with the following batch of theorems, in which the
route systems associated with the various types of walks in a (di)graph are charac-
terized.

Theorem 6. Let V be a finite nonempty set, and let R be a route system on
V . Then R is the family of all directed trails of DR if and only if R satisfies (r4)
and (r5). If R satisfies (s0), then R is the family of all trails of GR if and only if R
satisfies (r4) and (r5).
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Theorem 7. Let V be a finite nonempty set, and let R be a route system on V .
Then R is the family of all directed paths of DR if and only if R satisfies (r6) and
(r7). If R satisfies (s0), then R is the family of all paths of GR if and only if R
satisfies (r6) and (r7).

Theorem 8. Let V be a finite nonempty set, and let R be a route system on V .
Then R is the family of all directed minimal paths of DR if and only if R satisfies
(r7), (r8) and (r9). If R satisfies (s0), then R is the family of all minimal paths of
GR if and only if R satisfies (r7), (r8) and (r9).

Theorem 9. Let V be a finite nonempty set, and let R be a route system on
V . Then R is the family of all directed triangular minimal paths of DR if and only
if R satisfies (r7), (r10) and (r11). If R satisfies (s0), then R is the family of all
triangular minimal paths of GR if and only if R satisfies (r7), (r10) and (r11).

All the above results remain true if we replace (rk) by (rk)∗ for k = 2, 4, . . . , 11,
except in the undirected case of Theorem 6. In that case we replace (r4), (r5) by
(r4)∗∗, (r5)∗∗. Of course, the proofs of the Lemmata have to be slightly adapted in
each case.
In this note we have shown how route systems may be utilized in association with

routing in graphs. This is only a start of the study of route systems. The problems
of the characterization of the route system of the directed geodesics in a digraph
and the (directed) triangular geodesics in (di)graphs are still open. Many other
properties may be studied. To name a few examples, we call a route system R on a
set V weakly connected if, for any u and v in V, there exists a route uαv or a route
vαu. Now the study of various types of connectivity comes into view. Another type
of problems arises when we study route systems which consist of only certain walks
or paths in a graph. For example, do there exist Menger type theorems for such
route systems?
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