Applications of Mathematics

Tadeusz Jankowski

One-step methods for two-point boundary value problems in ordinary differential equations with parameters

Applications of Mathematics, Vol. 39 (1994), No. 2, 81-95

Persistent URL: http://dml.cz/dmlcz/134246

Terms of use:

© Institute of Mathematics AS CR, 1994
Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

ONE-STEP METHODS FOR TWO-POINT BOUNDARY VALUE PROBLEMS IN ORDINARY DIFFERENTIAL EQUATIONS WITH PARAMETERS

Tadeusz Jankowski, Gdańsk
(Received May 11, 1990)

Summary. A general theory of one-step methods for two-point boundary value problems with parameters is developed. On nonuniform nets h_{n}, one-step schemes are considered. Sufficient conditions for convergence and error estimates are given. Linear or quadratic convergence is obtained by Theorem 1 or 2 , respectively.

Keywords: One-step methods, two-point boundary value problems.
AMS classification: 65 L 10

1. Introduction.

We study the first order nonlinear system of ordinary differential equations

$$
\begin{equation*}
y^{\prime}(t)=f(t, y(t), \lambda), \quad t \in I=[a, b], \quad a<b \tag{1}
\end{equation*}
$$

with the boundary conditions

$$
\begin{align*}
y(a) & =y_{a} \in \mathbf{R}^{q}, \tag{2}\\
B_{1} \lambda+B_{2} y(b) & =b_{0} \in \mathbf{R}^{p}, \tag{3}
\end{align*}
$$

where $f: I \times \mathbf{R}^{q} \times \mathbf{R}^{p} \rightarrow \mathbf{R}^{q}$ is continuous and $\lambda \in \mathbf{R}^{p}$ is a parameter. Here B_{1} is a matrix of dimension $p \times p$ and B_{2} is a matrix of dimension $p \times q$. By a solution (φ, λ) of the $\operatorname{BVP}(1-3)$ we mean a function $\varphi \in C^{1}\left(I, \mathbf{R}^{q}\right)$ and a parameter $\lambda \in \mathbf{R}^{p}$ that satisfy the BVP(1-3) ($C^{1}\left(I, \mathbf{R}^{q}\right)$ denotes the space of all continuous functions
from I into \mathbf{R}^{q} with a continuous first derivative). Conditions under which (1-3) has a solution were determined in many papers (for example, see [4, 9, 10, 11]).

Indeed, $y(t)=y(t ; \lambda)$. It is well known that if f has continuous first order partial derivatives f_{y} and f_{λ} with respect to the second and third variables, then

$$
\frac{\partial y(t ; \lambda)}{\partial \lambda} \equiv Y(t ; \lambda)
$$

where the $q \times p$ matrix Y is the solution of

$$
\left\{\begin{array}{l}
Y^{\prime}(t ; \lambda)=f_{y}(t, y(t ; \lambda), \lambda) Y(t ; \lambda)+f_{\lambda}(t, y(t ; \lambda), \lambda), \quad t \in I \tag{4}\\
Y(a ; \lambda)=0_{q \times p}
\end{array}\right.
$$

Let $y(t)=y(t ; \lambda)$ be a solution of (1-2). It is also a solution of the BVP (1-3) provided (3) is satisfied, that is if λ is a root of the equation

$$
\begin{equation*}
\Phi(\lambda) \equiv B_{1} \lambda+B_{2} y(b ; \lambda)=b_{0} . \tag{5}
\end{equation*}
$$

Since

$$
\begin{equation*}
\Phi^{\prime}(\lambda)=B_{1}+B_{2} Y(b ; \lambda) \tag{6}
\end{equation*}
$$

Newton's method can be used for finding the root of (5).
In the present paper we discuss the numerical solution of the BVP (1-3) using a variable step size $h_{n}>0$. On the interval I we place a net of points $\left\{t_{n}\right\}$ with

$$
\begin{equation*}
t_{0}=a, \quad t_{n+1}=t_{n}+h_{n}, \quad n=0,1, \ldots, N-1 \quad \text { and } t_{N}=b \tag{7}
\end{equation*}
$$

Our analysis refers to a family of such nets in which $N \rightarrow \infty$ while $h \rightarrow 0$ where $h=\max _{n=0,1, \ldots, N-1} h_{n}$. Now the numerical solution $\left(y_{h}, \lambda_{h j}\right)$ of (1-3) at each point t_{n} may be defined by

$$
\begin{gather*}
\left\{\begin{array}{l}
y_{h}\left(t_{0} ; \lambda_{h j}\right)=y_{a}, \\
y_{h}\left(t_{n+1} ; \lambda_{h j}\right)=y_{h}\left(t_{n} ; \lambda_{h j}\right)+h_{n} F\left(t_{n}, h_{n}, y_{h}\left(t_{n} ; \lambda_{h j}\right), \lambda_{h j}\right),
\end{array}\right. \tag{8}\\
\left\{\begin{array}{r}
Y_{h}\left(t_{0} ; \lambda_{h j}\right)=0_{q \times p^{\prime}} \\
Y_{h}\left(t_{n+1} ; \lambda_{h j}\right)=\left[I+h_{n} F_{y}\left(t_{n}, h_{n}, y_{h}\left(t_{n} ; \lambda_{h j}\right), \lambda_{h j}\right)\right] Y_{h}\left(t_{n} ; \lambda_{h j}\right) \\
+h_{n} F_{\lambda}\left(t_{n}, h_{n}, y_{h}\left(t_{n} ; \lambda_{h j}\right) \lambda_{h j}\right),
\end{array}\right.
\end{gather*}
$$

and

$$
\left\{\begin{array}{l}
\lambda_{h 0}=\lambda_{0} \in \mathbf{R}^{p}, \tag{10}\\
\lambda_{h, j+1}=\lambda_{h j}-\left[B_{1}+B_{2} Y_{h}\left(b ; \lambda_{h j}\right)\right]^{-1}\left[B_{1} \lambda_{h j}+B_{2} y_{h}\left(b ; \lambda_{h j}\right)-b_{0}\right]
\end{array}\right.
$$

for $n=0,1, \ldots, N-1$ and $j=0,1, \ldots$. Here the increment function F has first order partial derivatives F_{y} and F_{λ} with respect to the third and fourth variables, respectively. Taking $F=f$ we have the Euler scheme. Sometimes it is useful to write (9) in the following way:

$$
Y_{h}\left(t_{n} ; \lambda_{h j}\right)=\sum_{i=0}^{n-1}\left(\prod_{r=i+1}^{n-1} A_{n+i-r, j}\right) B_{i j}
$$

where

$$
\begin{aligned}
& A_{n j}=I+h_{n} F_{y}\left(t_{n}, h_{n}, y_{h}\left(t_{n} ; \lambda_{h j}\right), \lambda_{h j}\right) \\
& B_{n j}=h_{n} F_{\lambda}\left(t_{n}, h_{n}, y_{h}\left(t_{n} ; \lambda_{h j}\right), \lambda_{h j}\right) .
\end{aligned}
$$

Assume for a moment that $p=q$ and the matrix $B_{1}+B_{2}$ is nonsingular. In such a situation we can determine another sequence $\left\{\lambda_{h j}^{*}\right\}$ by

$$
\begin{equation*}
\lambda_{h, j+1}^{*}=\lambda_{h j}^{*}-\left(B_{1}+B_{2}\right)^{-1}\left[B_{1} \lambda_{h j}^{*}+B_{2} y_{h}\left(b ; \lambda_{h j}^{*}\right)-b_{0}\right], \quad j=0,1, \ldots \tag{11}
\end{equation*}
$$

It means that in this case we do not need the approximate solution Y_{h} of (4). Now the method $(8,11)$ is convergent to the solution (φ, λ) of the $\mathrm{BVP}(1-3)$ if we suppose among other that the condition

$$
\begin{equation*}
\left\|\left(B_{1}+B_{2}\right)^{-1} B_{2}\right\|\left[1+\frac{M_{2}}{M_{1}}\left(\exp \left(M_{1}(b-a)\right)-1\right)\right]<1 \tag{12}
\end{equation*}
$$

holds where $M_{1}, M_{2}>0$ are Lipschitz constants of F with respect to the last two variables. This was obtained in [5] for the constant step size h. The condition (12) does not differ too much from the corresponding Keller result [7] (see also [2, 12]).

The condition (12) is superfluous for the convergence of the method (8-10). Assuming that the derivatives F_{y} and F_{λ} satisfy the Lipschitz condition we can prove the convergence of (8-10) if λ_{0} is not too far from λ. The location of λ_{0} is one of the problems in computations. The estimates of errors are given, too. The result of this paper extends the corresponding Keller result [8] to boundary value problems with parameters.

2. Definitions

We introduce the usual definitions.
Definition 1. We say that the method (8-10) is convergent to the solution (φ, λ) of the BVP(1-3) if

$$
\begin{aligned}
& \lim _{\substack{N \rightarrow \infty \\
j \rightarrow \infty}} \max _{n=0,1, \ldots, N}\left\|y_{h}\left(t_{n} ; \lambda_{h j}\right)-\varphi\left(t_{n}\right)\right\|=0 \\
& \lim _{\substack{h \rightarrow 0 \\
j \rightarrow \infty}}\left\|\lambda_{h j}-\lambda\right\|=0 .
\end{aligned}
$$

Definition 2. We say that the method (8-10) is consistent with the problem (13) on the solution (φ, λ) if there exist functions $\gamma_{1}, \gamma_{2}: I \times H \rightarrow \mathbf{R}_{+}=[0, \infty), H=$ $\left[0, h^{*}\right], h^{*}>0$ such that

$$
\begin{equation*}
\left\|h_{n} F\left(t_{n}, h_{n}, \varphi\left(t_{n}\right), \lambda\right)+\varphi\left(t_{n}\right)-\varphi\left(t_{n+1}\right)\right\| \leqslant \gamma_{1}\left(t_{n}, h_{n}\right) \tag{i}
\end{equation*}
$$

(ii) $\left\|\left(I+h_{n} F_{y}\left(t_{n}, h_{n}, \varphi\left(t_{n}\right), \lambda\right)\right) Y\left(t_{n} ; \lambda\right)+h_{n} F_{\lambda}\left(t_{n}, h_{n}, \varphi\left(t_{n}\right), \lambda\right)-Y\left(t_{n+1} ; \lambda\right)\right\|$

$$
\leqslant \gamma_{2}\left(t_{n}, h_{n}\right)
$$

for $n=0,1, \ldots, N-1$ and

$$
\begin{equation*}
\lim _{h \rightarrow 0} \bar{\gamma}_{s}(h)=0, \quad \bar{\gamma}_{s}(h)=\sum_{i=0}^{N-1} \gamma_{s}\left(t_{i}, h_{i}\right), \quad s=1,2, \quad h=\max _{i} h_{i}, \tag{iii}
\end{equation*}
$$

where Y is the bounded solution of the IVP(4).
The method (8-10) is said to be H-consistent with (1-3) on (φ, λ) if only the conditions (i) and (iii) (for $s=1$) are satisfic!

Remark 1. Because (φ, λ) and Y are solutions of (1-3) and (4), respectively, the conditions (i) and (ii) can also be written in the following way:

$$
\begin{aligned}
& \left\|h_{n} F\left(t_{n}, h_{n}, \varphi\left(t_{n}\right), \lambda\right)-\int_{t_{n}}^{t_{n+1}} f(\tau, \varphi(\tau), \lambda) \mathrm{d} \tau\right\| \leqslant \gamma_{1}\left(t_{n}, h_{n}\right), \\
& \| h_{n}\left[F_{y}\left(t_{n}, h_{n}, \varphi\left(t_{n}\right), \lambda\right) Y\left(t_{n} ; \lambda\right)+F_{\lambda}\left(t_{n}, h_{n}, \varphi\left(t_{n}\right), \lambda\right]\right. \\
& -\int_{t_{n}}^{t_{n+1}}\left[f_{y}(\tau, \varphi(\tau), \lambda) Y(\tau ; \lambda)+f_{\lambda}(\tau, \varphi(\tau), \lambda)\right] \mathrm{d} \tau \| \leqslant \gamma_{2}\left(t_{n}, h_{n}\right) .
\end{aligned}
$$

It is known that our method is consistent with (1-3) on (φ, λ) if

$$
\begin{aligned}
& \lim _{h \rightarrow 0} F(t, h, y, \lambda)=f(t, y, \lambda) \\
& \lim _{h \rightarrow 0} F_{y}(t, h, y, \lambda)=f_{y}(t, y, \lambda) \\
& \lim _{h \rightarrow 0} F_{\lambda}(t, h, y, \lambda)=f_{\lambda}(t, y, \lambda)
\end{aligned}
$$

for all $(t, y, \lambda) \in I \times \mathbf{R}^{q} \times \mathbf{R}^{p}$.

3. Convergence

We are now in a position to establish the main convergence theorems and the associated error estimates.

Let

$$
0 \leqslant z_{n+1} \leqslant D\left[A z_{n}^{2}+B z_{n}+C\right], \quad A, B, C, D>0, \quad n=0,1, \ldots
$$

We will need the following lemma.
Lemma 1 (see [6]). Assume that there exists d such that

$$
D B<d<1, \quad 4 \bar{p}^{2} A C<1, \quad \text { where } \bar{p}=\frac{D}{d-D B}
$$

If $z_{0} \leqslant \varepsilon=D C /(1-d) \leqslant 1 /(\bar{p} A)$ then

$$
z_{n} \leqslant d^{n} \varepsilon+D C \frac{1-d^{n}}{1-d^{\prime}} \quad n=0,1, \ldots
$$

Remark2. It is easy to see that $z_{n} \leqslant \varepsilon, \quad n=0,1, \ldots$.
Proof of Lemma 1 [6]. We can write

$$
Q(z)=D\left[A z^{2}+B z+C\right]=D q(z)+d z, \quad \text { where } \quad q(z)=A z^{2}-z / \bar{p}+C
$$

The quadratic function q has two distinct positive zeros z_{-}and z_{+}, where $z_{+}>$ $z_{-}>0$. The function Q is increasing for $z>0$ so if $z_{0} \leqslant \varepsilon$ then $q(z) \leqslant C$ for $0 \leqslant z \leqslant \varepsilon$ and by induction $z_{n} \leqslant \varepsilon$ for $n=0,1, \ldots$. Now

$$
z_{n+1} \leqslant D C+d z_{n}, \quad n=0,1, \ldots
$$

and hence we have our estimate for z_{n}.

Now we can formulate the theorem.
Theorem 1. Let the following assumptions be satisfied:
1° there exists a unique solution (φ, λ) of the BVP (1-3),
2° the function $F: I \times H \times \mathbf{R}^{q} \times \mathbf{R}^{p} \rightarrow \mathbf{R}^{q}$ is continuous and has first order partial derivatives F_{y} and F_{λ} with respect to the third and fourth variables, respectively,
3° there exist constants $L_{1}, L_{2}, K_{1}, K_{2}, K_{3} \geqslant 0$ and functions $\varepsilon_{1}, \varepsilon_{2}: I \times H \rightarrow \mathbf{R}_{+}$ such that for $(t, h, x, \bar{x}, \mu, \bar{\mu}) \in I \times H \times \mathbf{R}^{q} \times \mathbf{R}^{q} \times \mathbf{R}^{p} \times \mathbf{R}^{p}$ we have

$$
\begin{equation*}
\| F_{y}\left(t, h, x, \mu\left\|\leqslant L_{1}, \quad\right\| F_{\lambda}\left(t, h, x, \mu \| \leqslant L_{2} ;\right.\right. \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
\left\|F_{y}(t, h, x, \mu)-F_{y}(t, h, \bar{x}, \mu)\right\| \leqslant K_{1}\|x-\bar{x}\|+\varepsilon_{1}(t, h) ; \tag{ii}
\end{equation*}
$$

$$
\begin{equation*}
\left\|F_{\lambda}(t, h, x, \mu)-F_{\lambda}(t, h, \bar{x}, \bar{\mu})\right\| \leqslant K_{2}\|x-\bar{x}\|+K_{3}\|\mu-\bar{\mu}\|+\varepsilon_{2}(t, h), \tag{iii}
\end{equation*}
$$

and

$$
\lim _{h \rightarrow 0} \delta_{s}(h)=0, \quad \delta_{s}(h)=\sum_{i=0}^{N-1} h_{i} \varepsilon_{s}\left(t_{i}, h_{i}\right), \quad s=1,2, \quad h=\max _{i} h_{i},
$$

where the matrix norm is consistent with the vector norm (see [12]);
4° the method (8-10) is H-consistent with the BVP(1-3) on the solution (φ, λ);
5° the matrix $B_{1}+B_{2} Y_{h}\left(b ; \lambda_{h j}\right)$ is nonsingular for $j=0,1, \ldots$ and there exists a constant $D>0$ such that

$$
\left\|\left(B_{1}+B_{2} Y_{h}\left(b ; \lambda_{h j}\right)\right)^{-1} B_{2}\right\| \leqslant D, \quad j=0,1, \ldots .
$$

Then for sufficiently small \bar{h} there exists a positive constant $d<1$ such that the method ($8-10$) is convergent to the solution (φ, λ) of the BVP ($1-3$) provided

$$
\begin{equation*}
\left\|\lambda_{0}-\lambda\right\| \leqslant u_{0}(h)=\sup _{x \leqslant \bar{h}} \frac{D C(x)}{1-d}, \quad h \leqslant \bar{h} . \tag{13}
\end{equation*}
$$

Moreover, the estimates

$$
\begin{gather*}
\left\|\lambda_{h j}-\lambda\right\| \leqslant u_{j}(h), \quad j=0,1, \ldots \tag{14}\\
\max _{n=0, \ldots, N}\left\|y_{h}\left(t_{n} ; \lambda_{h j}\right)-\varphi\left(t_{n}\right)\right\| \leqslant c\left[L_{2}(b-a) u_{j}(h)+\bar{\gamma}_{1}(h)\right], \quad j=0,1, \ldots
\end{gather*}
$$

hold for $h=\max _{i} h_{i} \leqslant \bar{h}$ with

$$
u_{j}(h)=d^{j}\left\|\lambda_{0}-\lambda\right\|+D C(h) \frac{1-d^{j}}{1-d}, \quad j=1,2, \ldots
$$

and

$$
C(h)=c \bar{\gamma}_{1}(h)\left[\frac{K_{1}}{2}(b-a) c^{2} \bar{\gamma}_{1}(h)+c \delta_{1}(h)+1\right], \quad c=\exp \left(L_{1}(b-a)\right) .
$$

Proof. Put

$$
\begin{aligned}
& v_{n}^{j}=y_{h}\left(t_{n} ; \lambda_{h j}\right)-\varphi\left(t_{n}\right), \quad V_{n}^{j}=\left\|v_{n}^{j}\right\|, \\
& z_{h}^{j}=\lambda_{h j}-\lambda, \quad Z_{h}^{j}=\left\|z_{h}^{j}\right\|, \\
& w_{n}^{j}=Y_{h}\left(t_{n} ; \lambda_{h j}\right) z_{h}^{j}-v_{n}^{j}, \quad W_{n}^{j}=\left\|w_{n}^{j}\right\|, \\
& C_{n}=h_{n} F\left(t_{n}, h_{n}, \varphi\left(t_{n}\right), \lambda\right)+\varphi\left(t_{n}\right)-\varphi\left(t_{n+1}\right) .
\end{aligned}
$$

The mean value theorem yields the relation

$$
\begin{align*}
v_{n+1}^{j}= & v_{n}^{j}+h_{n}\left[F\left(t_{n}, h_{n}, y_{h}\left(t_{n} ; \lambda_{h j}\right) \lambda_{h j}\right)\right. \tag{16}\\
& -F\left(t_{n}, h_{n}, \varphi\left(t_{n}\right), \lambda_{h j}\right) \\
& \left.+F\left(t_{n}, h_{n}, \varphi\left(t_{n}\right), \lambda_{h j}\right)-F\left(t_{n}, h_{n}, \varphi\left(t_{n}\right), \lambda\right)\right]+C_{n} \\
= & {\left[I+h_{n} \int_{0}^{1} F_{y}\left(t_{n}, h_{n}, \varphi\left(t_{n}\right)+\tau v_{n}^{j}, \lambda_{h j}\right) \mathrm{d} \tau\right] v_{n}^{j} } \\
& +h_{n} \int_{0}^{1} F_{\lambda}\left(t_{n}, h_{n}, \varphi\left(t_{n}\right), \lambda+\tau z_{h}^{j}\right) \mathrm{d} \tau z_{h}^{j}+C_{n}, \\
& n=0,1, \ldots, N-1,
\end{align*}
$$

or

$$
V_{n+1}^{j} \leqslant\left(1+h_{n} L_{1}\right) V_{n}^{j}+h_{n} L_{2} Z_{h}^{j}+\gamma_{1}\left(t_{n}, h_{n}\right), \quad n=0,1, \ldots, N-1 .
$$

Hence we get

$$
V_{n}^{j} \leqslant \sum_{i=0}^{n-1}\left(\prod_{r=i+1}^{n-1}\left(1+h_{r} L_{1}\right)\right)\left(h_{i} L_{2} Z_{h}^{j}+\gamma_{1}\left(t_{i}, h_{i}\right)\right)
$$

for $n=0,1, \ldots, N, \quad j=0,1, \ldots$ (here $\sum_{r}^{s}=0, \prod_{r}^{s}=1$, if $r>s$, or

$$
\begin{equation*}
V_{n}^{j} \leqslant c\left[(b-a) L_{2} Z_{h}^{j}+\bar{\gamma}_{1}(h)\right], \quad n=0,1, \ldots, N . \tag{17}
\end{equation*}
$$

Now we need some relation for z_{h}^{j}. By the definition (10) we have

$$
\begin{equation*}
z_{h}^{j+1}=\left(B_{1}+B_{2} Y_{h}\left(b ; \lambda_{h j}\right)\right)^{-1} B_{2} w_{N}^{j}, \quad j=0,1, \ldots \tag{18}
\end{equation*}
$$

By (9) it is easy to see

$$
w_{n+1}^{j}=A_{n j} w_{n}^{j}+A_{n j} v_{n}^{j}-v_{n+1}^{j}+B_{n j} z_{h}^{j}, \quad n=0,1, \ldots, N-1,
$$

where $A_{n j}$ and $B_{n j}$ are defined in (9^{\prime}). According to 3° and (16), the last relation implies

$$
W_{n+1}^{j} \leqslant\left(1+h_{n} L_{1}\right) W_{n}^{j}+b_{n}^{j}
$$

with

$$
\begin{aligned}
b_{n}^{j}=h_{n} & {\left[\frac{K_{1}}{2}\left(V_{n}^{j}\right)^{2}+K_{2} V_{n}^{j} Z_{h}^{j}+\frac{K_{3}}{2}\left(Z_{h}^{j}\right)^{2}\right] } \\
& +\gamma_{1}\left(t_{n}, h_{n}\right)+h_{n}\left[\varepsilon_{1}\left(t_{n}, h_{n}\right) V_{n}^{j}+\varepsilon_{2}\left(t_{n}, h_{n}\right) Z_{h}^{j}\right]
\end{aligned}
$$

for $n=0,1, \ldots, N-1$ and $W_{0}^{j}=0$.
Using now (17) we have

$$
W_{n}^{j} \leqslant \sum_{i=0}^{n-1}\left(\prod_{r=i+1}^{n-1}\left(1+h_{r} L_{1}\right)\right) b_{i}^{j}, \quad n=0,1, \ldots, N-1, \quad j=0,1, \ldots,
$$

and hence

$$
\begin{equation*}
W_{N}^{j} \leqslant A\left(Z_{h}^{j}\right)^{2}+B(h) Z_{h}^{j}+C(h), \quad j=0,1, \ldots, \tag{19}
\end{equation*}
$$

where

$$
\begin{gathered}
A=c(b-a)\left\{\frac{K_{1}}{2}\left(c(b-a) L_{2}\right)^{2}+K_{2} c(b-a) L_{2}+\frac{K_{3}}{2}\right\} \\
B(h)=c\left\{(b-a) c\left[K_{1} c(b-a) L_{2}+K_{2}\right] \bar{\gamma}_{1}(h)+c(b-a) L_{2} \delta_{1}(h)+\delta_{2}(h)\right\}
\end{gathered}
$$

Combining this with (18) we see that

$$
\begin{equation*}
Z_{h}^{j+1} \leqslant D\left[A\left(Z_{h}^{j}\right)^{2}+B(h) Z_{h}^{j}+C(h)\right], \quad j=0,1, \ldots \tag{20}
\end{equation*}
$$

Now for a sufficiently small \bar{h} there exists a positive constant $d<1$ such that

$$
\left\{\begin{array}{l}
D B(h)<d<1 \tag{21}\\
4 \bar{p}^{2}(h) A C(h)<1, \quad \bar{p}(h)=D /(d-D B(h)), \\
D C(h) A \bar{p}(h)+\dot{d} \leqslant 1
\end{array}\right.
$$

hold for $h=\max _{i} h_{i} \leqslant \bar{h}$. Hence by Lemma 1 we can get (14) and (15) for $h \leqslant \bar{h}$.
The proof is completed.

Remark 3. Let $p=q=1$ and

$$
F_{y}(t, h, x, \mu)=h^{\alpha}(|\sin (x)|)^{1 / 2}+\xi(t, h, \mu)
$$

where $\alpha>0$ and $\xi: I \times H \times \mathbf{R} \rightarrow \mathbf{R}$. The function F_{y} does not satisfy the Lipschitz condition with respect to the third variable but it satisfies (ii) with $K_{1}=0$ and $\varepsilon_{1}(t, h)=2 h^{\alpha}$. Hence $\delta_{1}(h) \leqslant 2 h^{\alpha}(b-a)$ and $\delta_{1}(h) \rightarrow 0$ as $h \rightarrow 0$.

Now we try to formulate some conditions which guarantee that 5° of Theorem 1 holds. We have

Lemma 2. Let the assumptions $1^{\circ}-3^{\circ}$ of Theorem 1 hold with (ii) replaced by $\| F_{y}(t, h, x, \mu)-F_{y}\left(t, h, \bar{x}, \bar{\mu}\left\|\leqslant K_{1}\right\| x-\bar{x}\left\|+K_{0}\right\| \mu-\bar{\mu} \|+\varepsilon_{1}(t, h), \quad K_{1}, K_{0} \geqslant 0\right.$. Let the method (8-10) be consistent with the BVP (1-3) on the solution (φ, λ). Moreover, let the matrix $B_{1}+B_{2} Y(b ; \lambda)$ be nonsingular and

$$
\left\|\left(B_{1}+B_{2} Y(b ; \lambda)\right)^{-1}\right\| \leqslant \beta_{1}, \quad\left\|B_{2}\right\| \leqslant \beta_{2}
$$

Then for sufficiently small $h \leqslant \bar{h}$ the condition 5° of Theorem 1 holds if λ_{0} is not too far from λ.

Proof. Put

$$
Q_{n}(u)=B_{1}+B_{2} Y_{h}(b ; u) \quad Q(u)=B_{1}+B_{2} Y(b ; u)
$$

Note that for $j=0,1, \ldots$

$$
\begin{equation*}
Q_{h}\left(\lambda_{h j}\right)=Q(\lambda)\left\{I+Q^{-1}(\lambda)\left[Q_{h}\left(\lambda_{h j}\right)-Q(\lambda)\right]\right\} \tag{22}
\end{equation*}
$$

and

$$
\begin{equation*}
Q_{h}\left(\lambda_{h j}\right)-Q(\lambda)=B_{2} q_{N}^{j} \tag{23}
\end{equation*}
$$

where

$$
q_{n}^{j}=Y_{h}\left(t_{n} ; \lambda_{h j}\right)-Y\left(t_{n} ; \lambda\right), \quad n=0,1, \ldots, N, \quad j=0,1, \ldots
$$

Now we need an estimate for \boldsymbol{q}_{N}^{j}. By the definition of Y_{n} we have

$$
\begin{aligned}
q_{n+1}^{j}= & {\left[I+h_{n} F_{y}\left(t_{n}, h_{n}, y_{h}\left(t_{n} ; \lambda_{h j}\right), \lambda_{h j}\right)\right]\left[Y_{h}\left(t_{n} ; \lambda_{h j}\right)-Y\left(t_{n} ; \lambda\right)\right]+Y\left(t_{n} ; \lambda\right) } \\
& +h_{n}\left[F_{y}\left(t_{n}, h_{n}, y_{h}\left(t_{n} ; \lambda_{h j}\right), \lambda_{h j}\right)-F_{y}\left(t_{n}, h_{n}, \varphi\left(t_{n}\right), \lambda\right)\right] Y\left(t_{n} ; \lambda\right) \\
& +h_{n} F_{y}\left(t_{n}, h_{n}, \varphi\left(t_{n}\right), \lambda\right) Y\left(t_{n} ; \lambda\right)+h_{n} F_{\lambda}\left(t_{n}, h_{n}, \varphi\left(t_{n}\right), \lambda\right)-Y\left(t_{n+1} ; \lambda\right) \\
& +h_{n}\left[F_{\lambda}\left(t_{n}, h_{n}, y_{h}\left(t_{n} ; \lambda_{h j}\right), \lambda_{h j}\right)-F_{\lambda}\left(t_{n}, h_{n}, \varphi\left(t_{n}\right), \lambda\right)\right] .
\end{aligned}
$$

Our assumptions yield

$$
\begin{aligned}
Q_{n+1}^{j} \leqslant & \left(1+h_{n} L_{1}\right) Q_{n}^{j}+h_{n}\left[K_{1} V_{n}^{j}+K_{0} Z_{h}^{j}+\varepsilon_{1}\left(t_{n}, h_{n}\right)\right] Y_{b}+\gamma_{2}\left(t_{n}, h_{n}\right) \\
& +h_{n}\left[K_{2} V_{n}^{j}+K_{3} Z_{h}^{j}+\varepsilon_{2}\left(t_{n}, h_{n}\right)\right], \quad Q_{n}^{j}=\left\|q_{n}^{j}\right\|
\end{aligned}
$$

where Y is bounded by Y_{b}, V_{n}^{j} and Z_{n}^{j} are defined in the proof of Theorem 1. Now using the estimate (17) we get
$Q_{n+1}^{j} \leqslant\left(1+h_{n} L_{1}\right) Q_{n}^{j}+h_{n}\left[P_{1} Z_{h}^{j}+P_{2} \bar{\gamma}_{1}(h)+Y_{b} \varepsilon_{1}\left(t_{n}, h_{n}\right)+\varepsilon_{2}\left(t_{n}, h_{n}\right)\right]+\gamma_{2}\left(t_{n}, h_{n}\right)$ for $n=0,1, \ldots, N-1, j=0,1, \ldots$, where P_{1} and P_{2} are some nonnegative constants. Hence

$$
Q_{N}^{j} \leqslant c(b-a) P_{1} Z_{h}^{j}+\eta(h)
$$

and for $\beta=\beta_{1} \beta_{2}$ we have

$$
\begin{equation*}
\left\|Q^{-1}(\lambda)\left[Q_{h}\left(\lambda_{h j}\right)-Q(\lambda)\right]\right\| \leqslant \beta Q_{N}^{j} \leqslant c \beta(b-a) P_{1} Z_{h}^{j}(h)+\beta \eta(h) \tag{24}
\end{equation*}
$$

where

$$
\eta(h)=c\left[(b-a) P_{2} \bar{\gamma}_{1}(h)+Y_{b} \delta_{1}(h)+\beta_{2}(h)+\bar{\gamma}_{2}(h)\right] .
$$

Let

$$
\left\|\lambda_{0}-\lambda\right\| \leqslant \varrho=\sup _{h \leqslant \bar{h}} D C(h) /(1-d) \quad \text { and } \quad c \beta(b-a) P_{1} \varrho \leqslant \alpha_{1}<1
$$

where \bar{h} is sufficiently small that (21) holds. It means that there exists α such that for sufficiently small $h<\bar{h}$ we get

$$
c \beta(b-a) P_{1} \varrho+\beta \eta(h) \leqslant \alpha<1 .
$$

By Lemma 4.4.14([12]), p. 180) we conclude that $I+Q^{-1}(\lambda)\left[Q_{h}\left(\lambda_{0}\right)-Q(\lambda)\right]$ is nonsingular. Now by (22), $Q_{h}\left(\lambda_{0}\right)$ is also nonsingular and

$$
\begin{equation*}
\left\|Q_{h}^{-1}\left(\lambda_{0}\right)\right\| \leqslant \frac{\beta_{1}}{1-\alpha} . \tag{25}
\end{equation*}
$$

Hence the condition 5° of Theorem 1 is true for $j=0$ with $D=\beta /(1-\alpha)$.
Put $u_{0}(h)=\varrho$. By (20) and Remark 2 we have $Z_{h}^{1} \leqslant \varrho$. Moreover, (24) yields

$$
\left\|Q^{-1}(\lambda)\left[Q_{h}\left(\lambda_{h 1}\right)-Q(\lambda)\right]\right\| \alpha<1
$$

It means that $I+Q^{-1}(\lambda)\left[Q_{h}\left(\lambda_{h 1}\right)-Q(\lambda)\right]$ is nonsingular and

$$
\left\|Q_{h}^{-1}\left(\lambda_{h 1}\right)\right\| \leqslant \frac{\beta_{1}}{1-\alpha}
$$

and hence the condition 5° of Theorem 1 is true for $j=1$. Now by induction with respect to n we can prove that 5° holds.

This completes the proof.

Theorem 1 says that under some assumptions the method (8-10) converges to (φ, λ) provided that λ_{0} is not far from λ. This convergence is linear. Under a little stronger assumptions we can get quadratic convergence of (8-10). To this end λ_{0} must be nearer to λ than it was in Theorem 1. We have

Theorem 2. Assume that the assumptions of Lemma 2 are satisfied with $\varepsilon_{1}(t, h)=\varepsilon_{2}(t, h)=0, t \in I, h \in H$. Then

$$
\begin{equation*}
\left\|\lambda_{h, j+1}-\lambda_{h j}\right\| \leqslant T\left\|Q_{h j}^{-1}\right\|\left\|\lambda_{h j}-\lambda_{h, j-1}\right\|^{2}, \quad j=1,2, \ldots \tag{26}
\end{equation*}
$$

where

$$
\begin{aligned}
& T_{0}=c(b-a)\left[K_{2}(b-a) L_{2} c+K_{3}\right] / 2+c(b-a)^{2} L_{2}\left[K_{1}(b-a) L_{2} c+K_{0}\right] / 2 \\
& T=\left\|B_{2}\right\| T_{0}, \quad Q_{h j}=B_{1}+B_{2} Y_{h}\left(b ; \lambda_{h j}\right)
\end{aligned}
$$

Moreover, for a sufficiently small \bar{h} and $\left\|\lambda_{h 1}-\lambda_{h 0}\right\| \leqslant e<1 /(T D)$ the method (8-10) is convergent to (φ, λ) and the estimates (14-15) hold for $h=\max _{i} h_{i} \leqslant \bar{h}$ with

$$
\begin{aligned}
& u_{j}(h)=\frac{1}{T D}(T D e)^{2^{j-1}}+m(h), \quad j=1,2, \ldots, \\
& u_{0}(h)=m(h)
\end{aligned}
$$

where $\left\|Q_{h j}^{-1}\right\| \leqslant D$ and

$$
m(h)=2 \frac{C(h)}{x_{h}+\left(x_{h}^{2}-4 A C(h)\right)^{1 / 2}}, \quad x_{h}=\frac{1-D B(h)}{D} .
$$

Proof. Let

$$
\begin{aligned}
& k_{n j}=y_{h}\left(t_{n} ; \lambda_{h j}\right)-y_{h}\left(t_{n} ; \lambda_{h, j-1}\right), \\
& \bar{A}_{n j}=I+h_{n} \int_{0}^{1} F_{y}\left(t_{n}, h_{n}, y_{n}\left(t_{n} ; \lambda_{h, j-1}\right)+\tau k_{n j}, \lambda_{h, j-1}+\tau\left(\lambda_{h j}-\lambda_{h, j-1}\right)\right) \mathrm{d} \tau, \\
& \bar{B}_{n j}=h_{n} \int_{0}^{1} F_{\lambda}\left(t_{n}, h_{n}, y_{n}\left(t_{n} ; \lambda_{h, j-1}\right)+\tau k_{n j}, \lambda_{h, j-1}+\tau\left(\lambda_{h j}-\lambda_{h, j-1}\right)\right) \mathrm{d} \tau .
\end{aligned}
$$

for $n=0,1, \ldots, N, \quad j=1,2, \ldots$. Then we have
$\left\|\prod_{r=i+1}^{n-1} \bar{A}_{n+i-r, j}\right\| \leqslant \prod_{r=i+1}^{n-1}\left(1+h_{n+1-r} L_{1}\right) \leqslant c, \quad i=0,1, \ldots, n-1, n=1,2, \ldots, N$.

Moreover, for $n=0,1, \ldots, N$ we have

$$
k_{n+1, j}=k_{n j}+h_{n}\left[F\left(t_{n}, h_{n}, y_{h}\left(t_{n} ; \lambda_{h j}\right), \lambda_{h j}\right)-F\left(t_{n}, h_{n} y_{h}\left(t_{n} ; \lambda_{h, j-1}\right), \lambda_{h, j-1}\right)\right],
$$

and by the mean value theorem this yields

$$
k_{n+1, j}=\bar{A}_{n j} k_{n j}+\bar{B}_{n j}\left(\lambda_{h j}-\lambda_{h, j-1}\right), \quad n=0,1, \ldots, N-1, \quad j=1,2, \ldots
$$

Hence

$$
k_{n j}=\sum_{i=0}^{n-1}\left(\prod_{r=i+1}^{n-1} \bar{A}_{n+i-r, j}\right) \bar{B}_{i j}\left(\lambda_{h j}-\lambda_{h, j-1}\right), \quad n=0,1, \ldots, N, \quad j=1,2, \ldots,
$$

or

$$
\left\|k_{n j}\right\| \leqslant c(b-a) L_{2}\left\|\lambda_{h j}-\lambda_{h, j-1}\right\|, \quad n=0,1, \ldots, N, \quad j=1,2, \ldots .
$$

We can also get an estimate for $\bar{B}_{i j}-B_{i j}$, where $B_{i j}$ is defined in (9^{\prime}). We have now

$$
\begin{aligned}
\left\|\bar{B}_{i j}-B_{i j}\right\| & \leqslant h_{i} \int_{0}^{1}\left[K_{2}(1-\tau)\left\|k_{i j}\right\|+K_{3}(1-\tau)\left\|\lambda_{h j}-\lambda_{h, j-1}\right\|\right] \mathrm{d} \tau \\
\leqslant & \frac{h_{i}}{2}\left[K_{2}(b-a) L_{2} c+K_{3}\right]\left\|\lambda_{h j}-\lambda_{h, j-1}\right\|, \\
& i=0,1, \ldots, N, \quad j=1,2, \ldots
\end{aligned}
$$

and

$$
\begin{align*}
& \left\|\sum_{i=0}^{N-1}\left(\prod_{r=i+1}^{N-1} \bar{A}_{N+i-r, j}\right)\left[\bar{B}_{i j}-B_{i j}\right]\right\| \tag{27}\\
& \quad \leqslant \frac{c}{2}(b-a)\left[K_{2}(b-a) L_{2} c+K_{3}\right]\left\|\lambda_{h j}-\lambda_{h, j-1}\right\|, \quad j=1,2, \ldots
\end{align*}
$$

Put

$$
\begin{aligned}
& \xi_{i j}=\prod_{r=i+1}^{N-1} \bar{A}_{N+i-r, j}-\prod_{r=i+1}^{N-1} A_{N+i-r, j^{\prime}} \quad i=0,1, \ldots, N-2, \quad j=1,2, \ldots, \\
& \xi_{N-1, j}=0_{q \times q} .
\end{aligned}
$$

We will prove that

$$
\begin{align*}
& \left\|\xi_{N-s, j}\right\| \leqslant K\left\|\lambda_{h j}-\lambda_{h, j-1}\right\| \sum_{i=N-s+1}^{N-1} \prod_{\substack{N-s+1 \\
r \neq i}}^{N-1}\left(1+h_{r} L_{1}\right) h_{i}, \tag{28}\\
& s=1,2, \ldots, N, \quad j=1,2, \ldots,
\end{align*}
$$

where

$$
K=\frac{1}{2}\left[K_{1}(b-a) L_{2} c+K_{0}\right] .
$$

Indeed, it is true for $s=1$. For $s=2$ we have

$$
\begin{aligned}
\left\|\xi_{N-2, j}\right\| & =\left\|\bar{A}_{N-1, j}-A_{N-1, j}\right\| \\
& \leqslant h_{N-1} \int_{0}^{1}\left[K_{1}(1-\tau)\left\|k_{N-1, j}\right\|+K_{0}(1-\tau)\left\|\lambda_{h j}-\lambda_{h, j-1}\right\|\right] \mathrm{d} \tau \\
& \leqslant h_{N-1} K\left\|\lambda_{h j}-\lambda_{h, j-1}\right\| .
\end{aligned}
$$

so (28) is true for $s=2$.
Now we assume that (28) is satisfied for some $s<N$. Then we see that

$$
\begin{aligned}
&\left\|\xi_{N-s-1, j}\right\|= \| \bar{A}_{N-1, j} \times \ldots \times \bar{A}_{N-s+1, j} \bar{A}_{N-s, j}-A_{N-1, j} \times \ldots \times A_{N-s+1, j} A_{N-s, j} \\
&-\bar{A}_{N-1, j} \times \ldots \times \bar{A}_{N-s+1, j} A_{N-s, j} \\
&+A_{N-1, j} \times \ldots \times \bar{A}_{N-s+1, j} A_{N-s, j} \| \\
& \leqslant\left\|\bar{A}_{N-1, j} \times \ldots \times \bar{A}_{N-s+1, j}\right\|\left\|\bar{A}_{N-s, j}-A_{N-s, j}\right\|+\left\|\xi_{N-s, j}\right\|\left\|A_{N-s, j}\right\| \\
& \leqslant \prod_{r=N-s+1}^{N-1}\left(1+h_{r} L_{1}\right) K h_{N-3}\left\|\lambda_{h j}-\lambda_{h, j-1}\right\| \\
&+\left(1+h_{N-s} L_{1}\right) K\left\|\lambda_{h j}-\lambda_{h, j-1}\right\| \sum_{i=N-s+1}^{N-1} \prod_{r=N}^{N-s+1} \\
& r \neq i \\
&= K\left\|\lambda_{h j}-\lambda_{h, j-1}\right\| \sum_{i=N-s}^{N-1} \prod_{\substack{r=N-s \\
r \neq i}}^{N-1}\left(1+h_{r} L_{1}\right) h_{i}
\end{aligned}
$$

Hence (28) is true for any value of $s=1,2, \ldots, N, \quad j=1,2, \ldots$. Moreover, from (28) we may get the estimate

$$
\begin{aligned}
\left\|\xi_{N-s, j}\right\| & \leqslant K\left\|\lambda_{h j}-\lambda_{h, j-1}\right\| \sum_{i=N-s+1}^{N-1} \prod_{r=N-s+1}^{N-1}\left(1+h_{r} L_{1}\right) h_{i} \\
& \leqslant c K(b-a)\left\|\lambda_{h j}-\lambda_{h, j-1}\right\|, \quad s=1,2, \ldots, N, \quad N=1,2, \ldots
\end{aligned}
$$

and hence

$$
\begin{align*}
\| \sum_{i=0}^{N-1}\left(\prod_{r=i+1}^{N-1} \bar{A}_{N+i-r, j}\right. & \left.-\prod_{r=i+1}^{N-1} A_{N+i-r, j}\right) B_{i j} \| \tag{29}
\end{align*} \leqslant \sum_{i=0}^{N-1}\left\|\xi_{i j}\right\|\left\|B_{i j}\right\| .
$$

By the definition of $\lambda_{h, j+1}$ and by (9^{\prime}) we have
(30) $\left\|\lambda_{h, j+1}-\lambda_{h j}\right\|=\left\|Q_{h j}^{-1}\right\| \| B_{1}\left(\lambda_{h j}-\lambda_{h, j-1}\right)$

$$
\begin{aligned}
& +B_{2} k_{N j}-Q_{h, j-1}\left(\lambda_{h j}-\lambda_{h, j-1}\right) \| \\
= & \left\|Q_{h j}^{-1}\right\|\left\|\lambda_{h j}-\lambda_{h, j-1}\right\| \\
& \times\left\|B_{1}+B_{2} \sum_{i=0}^{N-1}\left(\prod_{r=i+1}^{N-1} \bar{A}_{N+i-r, j}\right) \bar{B}_{i j}-Q_{h, j-1}\right\| \\
= & \left\|Q_{h j}^{-1}\right\|\left\|\lambda_{h j}-\lambda_{h, j-1}\right\|\left\|B_{2}\right\| \| \sum_{i=0}^{N-1}\left(\prod_{r=i+1}^{N-1} \bar{A}_{n+i-r, j}\right) \bar{B}_{i j} \\
& -\sum_{i=0}^{N-1}\left(\prod_{r=i+1}^{N-1} A_{N+i-r, j}\right) B_{i j} \| .
\end{aligned}
$$

Using (27) and (29) we find

$$
\begin{align*}
& \left\|\sum_{i=0}^{N-1}\left(\prod_{r=i+1}^{N-1} \bar{A}_{N+i-r, j}\right) \bar{B}_{i j}-\sum_{i=0}^{N-1}\left(\prod_{r=i+1}^{N-1} A_{N+i-r, j}\right) B_{i j}\right\| \tag{31}\\
\leqslant & \left\|\sum_{i=0}^{N-1}\left(\prod_{r=i+1}^{N-1} \bar{A}_{N+i-r, j}\right)\left(\bar{B}_{i j}-B_{i j}\right)\right\| \\
& +\left\|\sum_{i=0}^{N-1}\left(\prod_{r=i+1}^{N-1} \bar{A}_{N+i-r, j}-\prod_{r=i+1}^{N-1} A_{N+i-r, j}\right) B_{i j}\right\| \\
\leqslant & T_{0}\left\|\lambda_{h j}-\lambda_{h, j-1}\right\|, \quad j=1,2, \ldots
\end{align*}
$$

Combining (27), (30) and (31) we have (26).
By Lemma 2 we know that for sufficiently small h the matrix $Q_{h j}$ is nonsingular and $\left\|Q_{h j}^{-1}\right\| \leqslant D$. It means that

$$
\left\|\lambda_{h, j+1}-\lambda_{h j}\right\| \leqslant T D\left\|\lambda_{h j}-\lambda_{h, j-1}\right\|^{2}, \quad j=1,2, \ldots .
$$

and

$$
\left\|\lambda_{h, j+1}-\lambda_{h j}\right\| \leqslant \frac{1}{T D}\left(T D\left\|\lambda_{h 1}-\lambda_{h 0}\right\|\right)^{2^{j}}, \quad j=0,1, \ldots
$$

We see that all assumptions of Theorem 1 are satisfied, so (20) yields

$$
Z_{h}^{j+1} \leqslant D\left[A\left(Z_{h}^{j}\right)^{2}+B(h) Z_{h}^{j}+C(h)\right]=D p_{h}\left(Z_{h}^{j}\right)+Z_{h}^{j}
$$

where

$$
p_{h}(z)=A z^{2}-x_{h} z+C(h)
$$

The quadratic function p_{h} has two distinct zeros z_{-}^{h} and z_{+}^{h} where $z_{+}^{h}>z_{-}^{h}>0$. If $\left\|\lambda_{h 0}-\lambda\right\| \leqslant \min \left[z_{-}^{h}, \max _{h \leqslant \bar{h}} D C(h) /(1-d)\right]$ then $\left\|\lambda_{h j}-\lambda\right\| \leqslant z_{-}^{h}, j=1,2, \ldots$. Hence

$$
\begin{aligned}
\left\|\lambda_{h, j+1}-\lambda\right\| & \leqslant\left\|\lambda_{h, j+1}-\lambda_{h j}\right\|+\left\|\lambda_{h j}-\lambda\right\| \\
& \leqslant \frac{1}{T D}\left(T D\left\|\lambda_{h 1}-\lambda_{h 0}\right\|\right)^{2^{j}}+z_{-}^{h}, \quad j=0,1, \ldots
\end{aligned}
$$

so we have (14). The rest follows from Theorem 1.
This completes the proof.

References

[1] E.A. Coddington and N. Levinson: Theory of ordinary differentical equations. Mc-Graw-Hill, New York, 1955.
[2] J.W. Daniel and R.E. Moore: Computation and theory in ordinary differential equations. W.H. Freeman, San Francisco, 1970.
[3] P. Henrici: Discrete variable methods in ordinary differential equations. John Wiley, New York, 1962.
[4] T. Jankowski: Boundary value problems with a parameter of differentical equations with deviated arguments. Math. Nachr. 125 (1986), 7-28.
[5] T. Jankowski: One-step methods for ordinary differential equations with parameters. Apl. Mat. 35 (1990), 67-83.
[6] T. Jankowski: On the convergence of multistep methods for nonlinear two-point boundary value problems. APM (1991), 185-200.
[7] H.B. Keller: Numerical methods for two point boundary value problems. Waltham, Blaisdell, 1968.
[8] H.B. Keller: Numerical solution of two-point boundary value problems. Society for Industrial and Applied Mathematics, Philadelphia 24, 1976.
[9] A. Pasquali: Un procedimento di calcolo connesso ad un noto problema ai limiti per l'equazione $\dot{x}=f(t, x, \lambda)$. Mathematiche 23 (1968), 319-328.
[10] T. Pomentale: A constructive theorem of existence and uniqueness for the problem $y^{\prime}=f(x, y, \lambda), y(a)=\alpha, y(b)=\beta$. ZAMM 56 (1976), 387-388.
[11] Z.B. Seidov: A multipoint boundary value problem with a parameter for systems of differential equations in Banach space. Sibirski Math. Z. 9 (1968), 223-228. (In Russian.)
[12] J. Stoer and R. Bulirsch: Introduction to numerical analysis. Springer-Verlag, New York, 1980.

Author's address: Tadeusz Jankowski, Technical University of Gdańsk, G. Narutowicza 11/12, 80-952 Gdańsk, Poland.

