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Summaiy. In this paper we obtain existence conditions and a closed form of the general 
solution of higher order singular regular boundary value problems. The approach is based 
on the concept of co-solution of algebraic matrix equations of polynomial type that permits 
the treatment of the problem without considering an extended first order system as it has 
been done in the known literature. 
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1. INTRODUCTION 

TYoughout this paper C m x n denotes the set of all in x n matrices with complex 

entries. Systems of higher order differential equations of the type 

(1.1) Apx^(t) + Ap-Vx^-l)(t) + . . . + A0x(t) = /(f), 

where Ai for 0 ^ i -̂  p are matrices in C n x n and x(t), f(t) lie in C n x i , appear 
in vibrational systems theory [4], in thermal and electrical problems [4] and in the 
solution of partial differential equations by means of the method of lines [14]. 

The aim of this paper is to find a closed form expression for the general solution 
of multipoint boundary value problems defined by (1.1) together with the conditions 

v 
(1.2) ] T Eihx

{h-l)(ai) = F{, 1 ^ i ^ </, 0 = ax < a2 < ... < aq = a, 
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where Eih € Cnxn, F{ G C n x i . f(t) is sufficiently differentiable and the matrix 
coefficients Ai, 0 -̂  i ^ p, satisfy the regularity condition 

there exists a complex number Ao such that 
(13) _, 

P(A0) = Ap\p
0 + Ap-i\l + . . . + Ai Ao + Ao is invertible. 

The system (1.1) has been considered by several authors [2], [5], [6], [7], [8], [10], 
but all of the papers are based on the consideration of an extended first order system 
which involves an increase of the problem dimension and a lack of flexibility in the 
expression of the general solution of (1.1) that is required to find a closed form of 
the general solution of problem (1.1)-(1.2). 

The paper is organized as follows. In Section 2 we introduce the concept of rect­
angular co-solution of the associated algebraic matrix equation 

(1.4) AvZ
p + Ap.xZ

p~l + . . . + A0 - 0 

which permits us to find a closed form expression of the general solution of the 
homogeneous system 

(1.5) Apx
{p)(t) + Ap-xx^'^it) + . . . + A0x(t) = 0. 

Section 3 is concerned with the construction of a particular solution of the non-
homogeneous problem (1.1). Finally, in Section 4, existence conditions and a closed 
form expression of the general solution of the boundary value problem (1.1) (1.3) 
are presented. 

If 5 is a rectangular matrix in Cmx?i, we denote by 5+ its Moore-Penrose pseudo-
inverse and recall that an efficient procedure for computing 5+ may be found in 
[12]. If T is a matrix in Cnxn> w e denote by TD its Drazin inverse. An efficient 
algorithm for computing the Drazin inverse of a matrix is given in [1]. An account 
of properties of the Drazin inverse may be found in [3]. In particular, we recall that 
if T is invertible then T~l coincides with TD and if T is a nilpotent matrix then 
TD = 0. 

2 . ON THE SOLUTION OF THE HOMOGENEOUS DIFFERENTIAL SYSTEM 

We begin this section with some algebraic preliminaries related to the concept 
of rectangular co-solution for the non-monic algebraic matrix equation (1.4), which 
generalizes the analogous concept defined in [9] for the monic case. 

190 



Definition 2.1. We say that (X ,T) with A" G C n x r , Ar ^ 0, T e C r X r , is an 

(n,r) co-solution of equation (1.4) if 

(2.1) ApXTp + Ap-XXTp~l + . . . + AxXT + A0X = 0. 

R e m a r k 1. Note that if (Ar, T) is an (n,r) co-solution of equation (1.4), then 

x(t) = X ex\)(tT)v with v £ C r X i defines a solution of the homogeneous system (1.5) 

because 

Apx^(t) + Ap^
p-l\t) + . . . + A0x(t) 

= (ApXTp + Ap-iXTp~l + . . . + AQX)exp(tT)v = 0. 

Let us suppose that the regularity condition (1.3) is satisfied and let us consider 

in (1.5) the transformation defined by 

(2.2) x(t) = exp(t\o)y(t). 

Then an easy computation yields that y(t) satisfies 

BpyM(t) + Bp-iyl'-V(t) + . . . + Biy^(t) + y(t) = 0, 
(2.3) 

Bj = ji[P(\0)}
 lPU)(X0), l^jšp. 

The following lemma relates co-solutions of nionic and non-monic algebraic matrix 

equations of polynomial type. 

Lemma 1. If (Z,S) is an (?i,r) co-solution of the equation 

(2.4) Wp + BiWp-1 + . . . + Bp-iW + BP = 0 

and S is not a nilpotent matrix, then for q ^ 1 the pair (ZSq+lSD, SD) is an (n, r) 
co-solution of the matrix equation 

(2.5) BpY
p + Bp-^P"1 + . . . + BXY + / = 0. 

P r o o f . Since (Z, S) is an (n, r) co-solution of (2.4), it follows that 

ZSP + BxZSp-1 + . . . + Bp-iZS + BPZ = 0. 
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Postmultiplying this equation by Sq 1(SD)P l one gets 

(2.6) 
BpZS,l-l{SDү-1 + Bp.iZS''(SD)p-1 + ... 

+ BlZSp+q-'2(SD)p-1 + Z S p + ' 7 _ 1 ( 5 D ) ř ' _ 1 = 0. 

Taking into account that from the properties of the Drazin inverse [3], p. 8 we have 

(2.7) SSD = SDS, SDSSD = S D , 

we see that (2.6), (2.7) implies 

BpZSq+lSD(SD)p + Bp-VZSq+lSD(SD)p-1 +... 

+ BlZSq+iSDSD + ZSq+lSD = 0. 

Thus the result is established. 

For the sake of clarity of presentation we include a definition given in [9]. 

D 

Definition 2.2 ([9]). Let (Xi,T{) be an (n,nii) co-solution of equation (2.4) for 
1 ^ i ^ fe. We say that {(Xi,T{), 1 ^ i ^ fe} is a fe-complete set of co-solutions of 
equation (2.4), if the generalized block Vandermonde matrix 

(2.8) 

is invertible in C 

V = 

Xx X2 
•. xk 

Л-iT. x2т2 . XkTk 

À-iTf"-1 X2T
p~l . • • xkт

p-1 

npXnp-

The proof of the next result may be found in [9]. 

Theorem 1 ([9]). Let C be the companion matrix defined by 

(2.9) C = 

0 
0 

-Bp —Bp-\ —Bp-2 - - - ~~B\ 

and let M = (Mij) be an invertible matrix in Cnpx7ip such that Mij G C n x n j , 

1 ^ i ^ p, 1 ^ j ^ fe, 7ii + ... + nk = np and 

(2.10) 
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where J = d iag(5i , . . . ,Sk) is the Jordan canonical form of C with Sj G C U i X n i , 
1 ^ I ^ k. Then {(Mij,Sj); 1 ^ j ^ k} is a k-complete set of co-solutions of (2.4). 
The general solution of the system 

(2.11) IV (P)(0 + DxW
{p'l){t) + . . . + Bp-iW^\t) + BpW(t) = 0 

is given by 

k 

(2.12) W(t) = Y^Mljexp(tSj)qj, Qj G C n . x i . 
j = i 

R c in a r k 2. It is interesting to recall that the Jordan canonical form of a matrix 
can be efficiently computed by using MACSYMA, [11], and the matrix exponential 
exp(fSj) of a Jordan block Sj has a well known expression in terms of the eigenvalue 
associated to Sj, [13], p. 66. 

Remark 1 and Lemma 1 imply that for arbitrary vectors Vj G Cnj x i, the expression 

k 

(2.13) J2 MxjS^Sf exp(tSf)vj 
i=i 

defines solutions of the non-monic system (2.3). On the other hand, let us order the 
Jordan blocks of the matrix J defined in Theorem 1 in the following way: 

5 i , . . . , 5/j, are invertible blocks of J, 

5/t+i, •.. ,Sk are nilpotcnt blocks of J, 

and taking into account that Sf = Sj1 for I ^ j ^ h and S? = 0 for h + 1 ^ j ^ k, 

the expression (2.13) takes the form 

it 

5 3 MXjS] exp(tSjx )VJ, Vj G C t l j x l . 
.7 = 1 

This result proves that in fact 

h 

(2.15) y(t) = Y,MxjSy~exp(tSjl)vj, Vj G C „ i X l 

i= i 

describes the general solution of (2.3). 
Fiom Lemma 1, for any positive integer q ^ 1, the pair (M\jSj,Sj~l) is an (n,nj) 

co-solution of (2.5) for U j ^ /t and thus for arbitrary vectors Vj G C n i X i , the 
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right-hand side of (2.15) defines a solution of (2.3). Now we prove that any solution 

z(t) of (2.3) may be represented by (2.15) with appropriate vectors Vj in C n ; X i for 

1 ^ j ^ //,. Let z(t) be a solution of (2.3) and let z{i>(0) = c£, 0 ^ i ^ p - 1. 

Considering the change defined by 

u(í) = 

y(t) 

y'(t) 

(2.16) 

Ыp-l)(t) 

Bu'(t) = u(t), "(0) = 

A) 

в 

L c î ' - 1 J 

- ß i -B2 ... - ß p - i -Bp 

I 0 . . . 0 0 

0 0 0 

and recalling Theorem 3.L3 of [2], p. 37, we conclude that the problem (2.16) is 

solvable and the solution is unique if and only if 

(2.17) 

Since 

Q) 

Lc»-i 

€ Image(ßßD) . 

B = 

from (2.10) one gets 

0 0 .. . 0 / 
0 0 . . . / 0 

/ 0 .. . 0 0 

0 0 
0 0 

/ 0 

0 / 
/ 0 

0 0 

(2.18) B = (M'ij)di*g(Sl,...,Sk)(M'ij)-
1, 

M[ò = Mp-И_ ł;, j, 1 ^ i ^ /;, 1 ^ j ^ k. 

From [2], p. 16, it follows that 

BD = (M'ij)diag(Sr\S.2-
l,...,S;l,0,...,0)(M'ij)-1, 

BBD = (M'i5) diag(/, / , . . . , / , 0, . . . , 0)(A/fj) 'Í.Г1 
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and condition (2.17) means 

(2.19) 

0) 

£ Image 

M'n M[2 ... M[h 

M21 M'22 ... M!2Һ 

M'pl M'p2 ... Mph .C}>-1 J 

On the other hand, the derivatives of y(t) defined by (2.15) take the form 

h 

y"(t) = ^MtjSp-1 exp(tS7>)Vj. 
i=i 

If we evaluate this expression at t = 0 and impose y^(0) = ci for 0 -̂  i ^ p — V it 
follows that vectors Vj, for 1 ^ j -̂  h, must verify 

c0 i rMnsr1
 MV2S?2-

1 ... M i ^ r 1 ] r î 
C l I | M n 5 r 2 MV2Sr2-'2 . . . MlhSf-2\\V2 

(2.20) 

Cn-Ì м„ м 12 мVl 
IV h 

and by virtue of 

(2.21) Mij^MijS}-1, l^i^p 

it follows that the conditions (2.19) and (2.20) are equivalent and the general solution 

of (2.3) is given by 

h h 

y(t) = Y, MxjS
prl exv(tSjl)Vj = £ Mpj exp(tSrl)Vj, 

3=1 j=l 

where Vj is an arbitrary vector in Cnj. x i for 1 ^ j ^ h. This together with (2.2) 
yields the following result: 

Theorem 2. Let us use the notation of Theorem 1 ajid let us assume that the 

regularity condition (1.3) is satisfied for some complex number Ao- T1jeu the general 

solution of (1.5) is given by 

(2.22) x(t) = Y Mpj exp ((Л0I + Sj Oч?, 
j = i 

where Vj is an arbitrary vector in Cnj. x i for 1 ^ j ^ h. 
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3. T H E NON-HOMOGENEOUS DIFFERENTIAL SYSTEM 

Let us consider the system (1.1) under the regularity condition (1.3) satisfied by 
some complex number An. Let us observe the notation of Theorems 1 and 2. If kj 

denotes the index of the Jordan block Sj for h + 1 ^ j < k, where in accordance 
with (2.14), Sfc+i,..., Sk are the nilpotent Jordan blocks of the matrix J introduced 
in Theorem 1, we define the number g by 

(3.1) Q = max {kj = lnd(Sj); h + 1 ^ j ^ k}. 

We suppose that f(t) is a Q + p— 1 times continuously differentiate function. Taking 
into account the transformation (2.2), the system (1.1) takes the form 

(3-2) L[y(t)]=f(t), 

where 

(3.3) L[y(t)] = B„yM(t) + Bp-iy^(t) + ... + BlV^(t) + y(t), 

Bj is defined by (2.3) for 1 ^ j -$ p and 

(3.4) /(*) = [P(Ao)]_1 exp(-«Ao)/(0. 

Let M be the matrix introduced in Theorem 1, and let (M/,) be the block matrix 
defined in (2.18) with M^ = M p + i_ . , j , 1 < i ^ p, 1 < j < k. Let us denote 

(3.5) W = (Wij) = (M/j)"1, Wn e Cn i x n , 1 ^ i < k, 1 ^ j ^ p; 

then we are interested in obtaining a particular solution of (3.2) of the form 

k kj-l 

»(*)= £ £Mw-(Si)*'ww(i,(<) 
(3.6) ' - ^ i=° 

-TMpjexp^ST1) [ e x p ( - U 5 r 1 ) 5 7 1 w i i / ( u ) d U . 

Taking the derivatives of g(t) for 1 ^ r ^ p, we find that 

S(r)(j) = - £ M „ i ( S 7 1 ) p e x p ( « 5 7 1 ) / exp( -u5r 1 )5 r 1 HG 1 / (« )d U 

j=l -*0 

h r 

(3.7) " £ £ Mpj(Sj1)"Wnf(
T-"\t) 

j = i , = i 

' + £ £ M^sJWjJ^Ht). 
j=h+l t=0 
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From (3.7) and taking into account that from (2.18) one gets 

D(M'ij) = (Mij) diag(S,, S 2 , . . . , Sfc), 

we conclude that 

L[9(t)] = - £ { Ij^BiMpiiSj*)' + Mpj 

xexp(«Sr1) l" exp(-MS71)S71VFji/(«)dw| 

(3.8) * p-ip-z 

+ £ MpjWjг f(t) + £ £ Bł+„ { £ A/p- l̂Уя }/w 
j = l 2 = 1 V=l ^ j = l ' 

£ £ (èд-AípiSj-ЧлfpjSjlsfиOi/^O 
І Ü = 0 j = / i + l ^ г = l ' 

and 

£ BiMpjS?-' + Л/PІSJ = 0, /i + 1 ^ j ^ k, 
І=Ì 

v 
53 BiMp^SJ1)' + Mpi = 0, 1 ^ j < ft, 
ѓ = l 

fc 

£мp jw j l = L 
. 7 = 1 

53 MP-v,ilVil =0, 1 ̂  V ^ P - 1. 
i = i 

Hence (3.8) implies 

L[g(t)]=f(t). 

From linearity one concludes that the general solution of (3.2)-(3.4) is given by 

h 

(3.9) y(t) = ^2Mpjexp(Sr1t)vj+g(t)1 vj € C n . x l . 
3=1 

Taking into account the transformation defined by (2.2), one gets that the general 
solution of the regular system (1.1), (1.3) is given by 

Һ 
L ҡл ~ //\.r L c - l w \ . . i (*\ \л/a\ .. ^ P 

x l-
(3.10) x(t) = 5 3 Mpj exp ((AoI + Srl)t)Vj + exp(fA0M*), vâ Є C n . 
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Note that (2.21) yields 

(3.11) Mpj = MijSf1, 1 ^ j ^ h. 

This and (3.6), (3.10), enable us to write the general solution of (1.1), (1.3) in the 
form 

x(t) = £ AJu-SjT1 exp ((A0I + SJl)t)v5 

.7 = 1 

h ,.t 

(3.12) - ^ A / w e x p ( ( A 0 / + 5r1)«) I ex^-uSJ^Sj'W^h")^ 
j=\ Jo 

k kj-l 

+ exV(tX0) ] T M^Sf1 £ 5 jWi i / ( i ) (0 -
j = / i + l t = 0 

Note that the term appearing in the last expression of (3.12) takes the form 

k kj-l 

(3.13) exp(tAo) Yl ^MuS^WjJ^Ht). 
j"=/i-hl i = 0 

By (3.13), if Sj is a Jordan block with index kj < p then since S^ + t _ 1 = 0, the 

terms of (3.13) corresponding to the block Sj do not appear in (3.13). On the other 

hand, if h + 1 ^ j ^ k and kj < p, since SJ = 0 for v ^ kj, if we denote by 

h + 1 ^ j i < J2 < • • • < jq ^ fc such that 

(3.14) Ay. = IiidfS*) ^ p, fcia = Ind(S i2) ^ p, . . . , Jy,, = Ind(S iy) ^ p 

and the other Jordan blocks Sj with h + 1 ^ j ^ k have indices Ay = IndfSj) < p for 

(3.15) h + 1 ^ j ^ k, j # j r , l^r^q, kj = Ind(Sj) < p, 

then (3.13) may be written in the form 

(3.16) P(f) = exp(fAo) £ J 3 Mpi, S], Wjrlf^(t). 
r = l i = 0 

Apart from this simplification of (3.13), it is important to remark that we do not 
need to assume that f(t) is a g + p — 1 times continuously differentiable function 
because by (3.16) the derivatives f^(t) are unnecessary for i > g when g ^ p, and if 
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Q < p, we only need to compute p — 1 derivatives of f(t). Summarizing we establish 
the following result: 

Theorem 3. Let us observe the notation of Theorem 1, let S i , . . . ,S/ t be the 
invertible Jordan blocks of J and let S/ l +i,..., Sk be the nilpotent Jordan blocks of 
J. Let kj be the index of the matrix Sj for h + 1 ^ j ^ k, and let j r for 1 -̂  r -̂  q 
satisfy h + 1 -$ j r -̂  k and kjt. ^ p, and Ind(Sj) = kj < p for h + 1 -̂  j -̂  k and 
j zfi j r j 1 r̂  r -̂  q. Let Q be defined by (3.1) and let f(t) be a w times continuously 
differentiable function where 

(3.17) w = max{p — 1, Q}. 

Then the general solution of the regular problem (1.1)—(1.3) is given by 

(3.18) 

ř fc 

.T(Í) = exp(fA0K ^ M p j e x p ^ i ) 

^ j = i 

vj - J cxi^-S^t^S-UVjJ^du] | + P(t), 

where P(t) is defined by (3.16) and Vj is an arbitrary vector in C n i x i for 1 -$ j -̂  h. 
If J has no nilpotent blocks Sj with index kj ^ p, then P(t) = 0. 

E x a m p l e 1. Let us consider the system 

(3.19) 1 - 1 
1 - 1 

*<*>(<) + -1 2 
-3 3 

x'(t) + 0 0 
3 - 2 

x(t) = 
2exp(2<) 

. exp(2<) 

Easy computation shows that taking An = 1, the matrix P ( l ) appearing in (1.3) 
"0 11 

and the corresponding matrices B\ and B2 defined in (2.3) satisfies P(\) = 

take the form 
1 0 

BІ = 
- 1 1 

1 0 

"1 - 1 " 
в2 = l - 1 
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In accordance with the notation of Theorem 1 we have 

C = 

0 0 1 0 " | 

0 0 0 1 

- 1 1 1 - 1 

- 1 1 - 1 0 J 

M 

0 1 2 П 

- 1 0 3 1 

0 1 - 2 0 

L-l - 1 - 3 0 

W = 
1 

1 4 4 4 

1 _i i 
2 2 2 

0 - ì - ì i 
U 4 4 4 

L - l 1 2 - 1 J 
5i = 

ЛI21 = 

Wn = 

1 1 

0 1 

0 1 

-1 - 1 

, 5 2 = ( - l ) , S 3 = (0), 

, M 2 2 = - , M23 = 

-1 1 

1 
*2 -

, W 2 i = [ 0 , - £ ] , VVзi = [- l , l ] . 

Note that J = diag(5i, 5 2 ,5 3 ) has no nilpotent Jordan blocks with index kj ^ 2 and 

thus tlic function P(t) from Theorem 3 is zero. By Theorem 3, the general solution 

of system (3.19) is given by 

x(t) = 
0 1 

- 1 * - 1 
exp(2ř)üi - v2 -

- 1 

t - l 2 J 
exp(2í), 

where vi is an arbitrary vector in C 2 x i and u2 is an arbitrary complex number. 

4. BOUNDARY VALUE PROBLEMS 

Let us observe the notation of the previous sections and for the sake of convenience 
let us write the general solution of (1.1), (1.3) in the form 

(4.1) x(t) = ] Г Mpj exp ((Ao/ + Sjx)t)vj + Q(t), 

where Vj is an arbitrary vector in Cnj-xi and Q(t) is given by 

h ft 

(4.2) Q(t) = P(t)-exp(t\0)J2MPJ / exp^t-i^Sr^Sr'WjJ^du, 
j=l Jo 

while P(t) is given by (3.16) if J has nilpotent Jordan blocks Sj with index kj ^ p, 

and P(t) = 0 in the other case. 
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If we assume that the function x(t) defined by (4.1)-(4.2) satisfies the boundary 

value conditions of (1.2), it follows that the vectors Vj must verify 

P Һ 

(4.3) ^ ^ ^ i s M w ( A 0 / + S7 1) s- 1exp(a i(A 0/ + S- 1)) l; j = Fi-^EisQ^H^) 
S=l j=l S = l 

for I ^ i ^ q. 

Let us denote by Gi and Sij the matrices 

(4.4) 

Sij = ] T EisMpj(X0I + ST1)*-1 exp (a,i(\0I + S r 1 ) ) , 1 ^ i ^ </, 1 ^ j ^ h, 
s = l 

p 

Gi = Fi-J2 £..Q('_1)(a.). l^i^q. 
S = l 

Then (4.3)-(4.4) imply that the vectors Vj must solve the algebraic system 

(4.5) 

where (S^) is the block partitioned matrix with entries Sij defined in (4.4) and 

vectors Gi for 1 ^ i ^ q are defined by (4.4). 

Now by Theorem 2.3.2 of [15], p. 24, the algebraic system (4.5) is compatible if 

and only if 

"«l" "GГ 

«) = 

УҺ. Gч_ 

(4.6) [/-(S«)(SУ)+] 
Gi 

G„ 

= 0, 

and under the condition (4.6) the general solution of (4.5) is given by 

(4.7) 

VI 

VҺ 

= (SІJ)+ 

G, 

Ga 

+ [/-(S«)+(Sy)]D, 

where D is an arbitrary vector in C^xi with 

h 

(4-8) <* = _ > > _ . 
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By the previous comments the following result has been established: 

Theorem 4. Let us observe the notation of Theorem 3 and let us consider the 

boundary value problem (1.1)-(1.3) where f(t) is a w times continuously differen-

tiable function on the interval [0, a]. If(Sij) and G{ are defined by (4.4) for 1 ^ i -̂  q, 

1 ^ j ' ^ h, then the boundary value problem (1.1)-(1.3) is solvable if and only if the 

condition (4.6) is satisfied. Under this condition the general solution of the problem 

is given by (4.1)-(4.2). where vectors v\,... ,Vh are determined by (4.7) and D is an 

arbitrary vector in Cdxi with d defined by (4.8). 
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