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Summary. Following the research of Babuska and Prager, the author studies the approx
imation power of periodic interpolation in the mean square norm thus extending his own 
former results. 
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0 . INTRODUCTION 

Babuska [1] introduced the concept of the periodic Hilbert space for studying 
optimal quadrature formulas, Prager [8] continued these investigations and related 
these problems to the minimum norm interpolation (optimal periodic interpolation) 
in periodic Hilbert spaces. These ideas have been further developed in a number 
of papers [2, 3, 4, 5, 6, 7]. In this paper we will study the approximation power of 
optimal periodic interpolation in the mean square norm an thereby extended results 
of [4]. 
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1. PERIODIC HILBERT SPACES 

We denote by C the algebra of continuous complex-valued functions on LR with 
period 2K. C is a Banach algebra with respect to the uniform norm |H|oo = sup |u(x)|. 

Next we denote by C2 the Hilbert space of square integrable periodic functions 
with an inner product 

r2n 1 [À* 
(u,v) = — / u(x)v(x)* dx. 

The exponentials are given by ek(x) = el/cx, k G I. The finite Fourier transform of 
u G C2 is given by 

1 [2n 

(u,ek) = — I u(x)ek(x)* dx, k G Z. 

oo 

Its inversion is the Fourier series of u, Yl (u,ek)ek, which converges in the £2-norm 
fc=—oo 

to U. 

Next we introduce the Wiener algebra A of functions u G C2 having absolutely 
convergent Fourier series. A is a Banach algebra with respect to the norm 

oo 

||u||a= £ |(«,et)|. 
k= — oo 

Clearly, >l is a subalgebra of C. We have the estimates 

I H I ^ IHIoo^lHU (xeu,ueA) 

and the inclusions 

ACCCC2. 

To introduce the periodic Hilbert space 7 ^ we need a biinfinite symmetric positive 
/i-sequence d = (dk), i.e., we have 

oo 

d_fc = dk > 0 (fc G Z), ^ 2 dfc < °°-
fc= —oo 

It is also convenient to assume the monotonicity condition 

dk > dk+l (k ^ 0). 
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We define by Hd the linear space of all functions u G C2 satisfying 

oo ^ 

Y. d~k^
u'6k^2<OQ' 

k= — oo 

The inner product of rid is defined by 

oo 1 

(u,v)d= ^ — (u,ek)(v,eky. 
/c= —oo 

We list some properties of %d- Each lid is a subspace of the Wiener algebra and 
therefore also of C, the imbeddings being continuous: 

ridCAcC. 

We denote by r the algebra of trigonometric polynomials. For m ^ 0 and u G C2 we 
denote by 

m 

Sm(u) = ^Z (W>e*)efc 
/c= —m 

the Fourier partial sum polynomial of w of order m. It is immediate that 

and 
lim \\u - Sm(u)\\d = 0, ueTid-

m—•oo 

Moreover, 7-1̂  as well as its norm \\u(-—a)\\d = \\u\\d are translation invariant (u G T-Ld, 
a G R). The characterizing sequence a7 = (a^) defines the kernel function 

g(z) = ^Z dkCk^x) 
k= — oo 

which is an element of 1-id • %<* is a reproducing kernel Hilbert space with the kernel 
function g(y,x) = K(y,x). We have 

u(x) = (u,g(- - x))d(u G Hd, x G R), 

which implies the estimate 

\u(x)\^\\u\\d-\\g\\d, \\g\\d = Vg~(0J-

We conclude this section by presenting two examples. 
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E x a m p l e 1. The sequence d is given by 

db = l, dk = k~2r ( * # 0 ) . 

Here r is a positive integer. The periodic Hilbert space is the periodic Sobolev space 

W r . The kernel function is given by 

g(x) = l + (-l)rB2r(x) 

where Bq(x) denotes the Bernoulli function (polynomial) of degree q. 

E x a m p l e 2. In this case the sequence d is given by 

dk = e"'*' 6 (k E 1) 

where b is a positive real number. The periodic Hilbert space consists of restrictions 

of functions to the real axis which are holomorphic in the strip |Im(z) | < b. The 

kernel function is in this case the well known Poisson kernel 

/ . sin h(b) 
9(x) = cos h(b) — cos(ж)' 

2. OPTIMAL PERIODIC INTERPOLATION 

We first treat the problem of interpolation with shifts of the kernel function g 

which are related to the knots Xj, 0 ^ j < n, satisfying 

0 ^ XQ < x\ < . . . < xn-i < 2K. 

It follows from the theory of trigonometric interpolation that for any data yj, 0 ^ j < 

n, there is a trigonometric polynomial w G r satisfying the interpolation conditions 

w(xj) = Vj, 0^j<n. 

If n = 2m + 1, then w can be made unique by assuming that w has order m, i.e., 

w G Tm. If n = 2m then w £ Tm exists and can be made unique by deleting cos(m:r) 

or sin(m:r) depending on the position of knots. 

The space of interpolating functions related to g is given by 

(g(- - xo),g(- - xi),... ,g(- - rrn_i)). 

270 



Proposition 2.1. The space (g(- - x0),g(- — x\),... ,g(- - xn-\)) has dimen

sion n. 

P r o o f . Recall that 

u(x) = (u,g(- - x))d (u e Hd, x E R). 

Let Wk E r m be a trigonometric polynomial satisfying 

wk(xj) = 6jik, 0^j,k<n. 

Thus 

(wk,g(- ~Xj))d =5j,k, 0^j,k<n, 

which yields the linear independence of the shifted functions g(- — xo),g(- - x\),..., 

g(--xn-i). • 

Let Qn denote the unique orthogonal projector having the n-dimensional space 
(g(- -x0),g(- - £ ! ) , . . . , # ( • - r r n _ i ) ) as its range: 

K>(Qn) = (g(- - x0),g(- - xx),... ,g(- - xn-i)). 

For u E T~Ld the function Qn(u) is the unique best approximation of u in (g(- — xo), 

g('-xi),...,g(--xn-i))-

Proposition 2.2. Given u G Hd, the best approximant Qn(u) ofu in (g(- — xo), 

g(- — x\),... ,g(- — xn_i)) is also the unique interpolant ofu at Xj, 0 -̂  j < n, with 

the minimum norm in Hd •' 
(i) Qn(u)(xj) = U(XJ), 0 ^ j < n; 

(ii) ||Qn(i-)IU = min{||^||d: V(XJ) = U(XJ), 0^j< n}. 

^roof . The characterization of the best approximation in Hilbert spaces yields 

the equation 

(u - Qn(u),g(- - Xj))d = 0 (0^j< n). 

Taking into account 

u(x) = (u,g(- -x))d 

we obtain 

Qn(u)(xj) = U(XJ), 0 ^ j < n. 

This proves (i). 
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As a consequence there exists a Lagrange basis 

h0,...,hn-i of (g(- -x0),g('-xi),...,g(- - _ n _ i ) ) : 

(g(' -x0),...,g(-xn-i)) = (ho,...,hn-i), 

hk(xj) = 6jik, 0^j,k< n. 

Using the Lagrange basis of (g(- — xo),.. • ,g(- — xn-\)) it follows from U(XJ) = V(XJ), 

0 ^ j < n, that Qn(u) = Qn(v). Taking into account 

(v-Qn(v),Qn(v))d = 0 

we can conclude 

(V, V)d = (Qn(v), Qn(v))d + (v - Qn(v),V - Qn(v))d ^ (Qn(u), Qn(u))d 

with equality if and only if v = Qn(u). This proves (ii). • 

3. OPTIMAL PERIODIC INTERPOLATION ON UNIFORM MESHES 

In this section we treat the much more explicit case of uniformly distributed knots: 

2* . n . 
Xj = — 7 , 0 ^ 7 < n. 

3 nJ-> ^ J 

It is easily established that the space of interpolants 

(g(--xo),...,g(--xn-i)) 

is translation invariant with respect to the mesh size -jj-: 

VJ e (g(- -x0),...,g(- -xn-i)) =>w[ J e (g(- -x0),...,g(- - xn-i)). 

Thus the Lagrange basis bo, • • •. ^n-i of (g(- — xo(,... ,g(- — xn-\)) is obtained 
by translation: 

hk = ho(- - xk), 0 ^ k < n. 

Thus the interpolation projector Qn possesses the Lagrange representation 

n - l 

Qn(v)(x) = Y^u(Xj)llo(x -Xk). 
3=0 
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We will now use the discrete Fourier transform to obtain an alternative representation 

of the optimal periodic interpolant Qn(u). Recall that the discrete Fourier transform 

of u is defined by 

1 n _ 1 

Ck,n(u) = — ^2 u(xj)ek(xj)*ì 0 ^ k < n. 
3=0 

The inverse Fourier transform is given by 

и(Хз) = ^2 СкАи)ек(хз), ° ^ 3 < П. 
k=0 

The fundamental property of the discrete Fourier transform is the convolution the

orem. Let w be the discrete convolution of u and v: 

n—1 n—1 

w(xk) = ^2 u(xj)v(xk ~ xj) = ^2 U(Xj)V(Xk-j)-
j=0 j=0 

Then the convolution theorem yields 

n • cktn(u)ck,n(v) = ck,n(w), 0 ^ k < n. 

Next we are looking for a trigonometric polynomial 

a e (e 0 , . . . , e n _i) 

such that the optimal periodic interpolant Qn(u) is given by 

n - l 

Qn(u)(x) = ^2 a(xj)d(x ~xj)-
3=0 

The interpolation conditions yield the convolution equation 

n - l 

u(xk) = ^2 a(xj)g(xk - X J ) . 
3=0 

Now the convolution theorem implies 

ck,n(u) = n • ck,n(a)ck,n(g). 
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Since g £ A aliasing is applicable and we get 

oo 

ck,n(g) = 2 ^ ^ + m > 0. 
r= —oo 

Thus we have 
/ x Ck,n(u) 

Ck,n(a) = 7-r, 0 ^ k < n. 
n-ck,n(g) 

Using the inverse discrete Fourier transform we obtain 

n —1 , x 

a{xj) = J2 Cfc'n U, ek(xj), O^j <n. 

It is obvious that the trigonometric polynomial is given by 
Ck,n{u) ( \ V ^ ck,nK'U 

Proposition 3.1. Let u eTid- Then the optimal periodic interpolant Qn(u) with 

respect to the uniform knots Xj = ^-j, 0 ^ j < n, is given by 

П—Ì / n — 1 

Qn(u)(x) = ]T ( - C ^ 7 1 U(Q)ek<<X^)g<<X~X^' 
j=0 ^ k=0 k,n\g) J 

Note that for u = ho we get 

Ck,n(ho) = - , 0 ^ k < n. 
n 

This implies the representation formula for the fundamental Lagrange function /i0 of 

optimal periodic interpolation 

n—1 / n— 1 1 >. 

ho{x)=§ v £ ^^)ekiXj)rx -Xj)-
R e m a r k 3.L It follows from the proof of Proposition 3.1 that this result re

mains valid for any g € C if and only if 

Ck,n(g) 7- 0, 0 ^ k < n. 

See Locher [7], Cheney [2]. If these conditions are violated for some k, a modified 
approach is possible. See Delvos [3]. 
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4. EXPONENTIAL INTERPOLANTS 

We apply the representation formula of Proposition 3.1 to the exponentials ek. 

In this connection it is appropriate to list some properties of the projector Qn of 
optimal periodic interpolation. Since the kernel g is real valued we have 

QniD = Qnif)*. 

As a special case we have 

Qn(e-k = Qn(ek)\ kel. 

Moreover, for the sequel it is convenient to assume 

n = 2m + 1. 

Proposition 4 .1 . The exponential interpolants are given by 

1 °° 
Qn(ek)(x) = r - r Y d*+rne*+rn(.r), 0 ^ k < 71. 

P r o o f . Recall that for arbitrary u we have 

n - l 

Qn(u)(x) = ^ a(Xj)d(x - xj) 
3=0 

with 
n — 1 / >> 

a(xj) = T] ~~T^eii<xo)^ O^j <n. 

Replacing u by e^ the orthogonality properties of the discrete Fourier transform yield 

ci,n(ek) = 0 , l-k£nl, 

ciiU(ek) = 1, l-k Enl. 

Thus we get 

a(xj) = —efc(:Tj), 0 -̂  j < n. 
n' Ck,n{g) 

Now we can conclude 

Qn(ek)(x) = -^j-r • i £ > ( * - XJWXJ) = C-k'f*{*7')]-
Ck,n(9) n ^ Ck,n(g) 
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Recall the formula of aliasing for w £ A: 

CO 

ck,n(W) = Yl (W'ek+rn)-
r=—oo 

Since 
CO oo 

g(x-t)= ^2 dses(x)es(-t) = ^ d-se-s(x)es(t) 
s = — oo s = —oo 

we get 

oo oo 

c-k,n(g(x - ')) = 22 dk-rnek-rn(x) = ^ J dk+rnek+rn(x), 
r= — oo r=—oo 

which completes the proof in view of 

Qn(ek)(x) = — T - 7 . 
ck,n(g) 

a 

Proposition 4.2. Let n = 2ra -f- 1. Then Qn(u) possesses the discrete Fourier 

representation 
m 

Qn(u) = ^2 Ck,n(U)Qn(ek). 
k= — m 

P r o o f . The trigonometric polynomial 

m 

Tm(u) = Y2 CkAU)(ek) 
k=—m 

satisfies the interpolation conditions 

V(XJ) = U(XJ), 0 ^ j < n. 

Since Qn(Tm(u)) = Qn(u) the linearity of Qn completes the proof. D 

Proposition 4.3. The exponential interpolants are orthogonal: 

(i) (Qn(e/b), Qn(ei))d = 0, 0 < \k - l\ < n. 

(ii) (Qn(e fc), Qn(ei)) = 0, 0 < \k - l\ < n. 

Moreover, the relations 
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(iii) (Qn(ek),Qn(ek))d = Ck^g)* ___ dk+rn, 0 ^ k < n, 
r— — oo 

oo 
(iv) (Qn(efc),<?n(efc)) = ^ 4 - p - £ (dfc+m)2, 0 < fc < n 

r = —oo 

hold. 

P r o o f . The relations of Proposition 4.3 follow from Fourier expansions of 
the exponential interpolants and the definition of the inner product of the periodic 
Hilbert space. • 

5. CONVERGENCE OF THE EXPONENTIAL INTERPOLANTS 

We start with investigating the approximation order of the exponential interpolant 

in the norm of Wd. For this purpose we introduce the quantities 

oo 

Dr,n = Crtn(g) -dr = ^ dr+in, 0 ^ r ^ m, n = 2ra + 1. 

Recall that 

d-k =dk>0 (k G 1), dk > dk+i (k ^ 0). 

Then we have 

oo 

Dr,n ^ ^ dim ='- Dn, 0 ^ T ^ 771, 71 = 2?7l + 1. 

/ = 1 

It is obvious that 

Dn > Dn+i, lim Dn = 0. 
n—yoo 

In many cases we have 

Dn ^ a•dm 

where a is a constant independent of n. In particular this is true for our examples. 

E x a m p l e 1. 
^ oo oo 

^ = iEs-2r=^Es-2r-
s = l s = l 

E x a m p l e 2. 

_ — mb 
n _ V^ e " ш ò < — - d 
^n ^ Є ^ ^ _ e - 6 ~ " m 1 _ e - 6 • 

p - m ö 1 
^ - s m б ^ ___ _ j __ 

s = l 
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Proposition 5.1. The asymptotic relation 

\\ek - Qn(ek)\\d = 6(y/D~n) (n -• oo) 

holds. 

P r o o f . We assume without loss of generality that 0 ^ k ^ m, n = 2m + 1. 

Recall that 

Qn(Єk) = 7- 2_. dk+rnЄk+rn(x)-
Cк,n(g) „ f 

Then we obtain 

||ejb -Qn(ek)\\d)2 = ~r 
dk 

_ 1_ 

dk 

1 < * * 2 • Х У ^ 
1 7—Г 1 7-̂ Г7Г / . "А:-ггп 

С*,пЫ С*,п(#)2 ^ 
Ак.п I2 1 

Н ГТ^Вк,п Ck,n(g) I ck,n(g)2 

< § + Ì Г - ' ( § Г ) - ' ( J W 

as n —» oo. D 

Proposition 5.2. The estimate 

\\ek - Qn(ek)\\ < V2^ 
dk 

holds for \k\ ^ m, n = 2m + 1. In particular we have 

\\ek-Qn(ek)\\ = 0(Dn)(n->oo). 

P r o o f . As in the proof of Proposition 5.1 we have for 0 ^ k ^ m and n = 2 m + 1 

í|efc-o„(efc)||
2 = dk 

ck,n(g) 

Dк,r ' 2 

+ 7T77AÍ E ^ + - ) 2 
Ck,n(g) 

r ^ O 

+ 
1 

Г ( ^ , n ) 2 

Cifefn(p)l Ck,n(g)2 

<l! ^ «« ' 

D 
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Using the discrete Fourier representation of the optimal periodic interpolant Qn (u) 

we extend Proposition 5.2 to trigonometric polynomials. 

Propos i t ion 5.3. Let u £ r m he a trigonometric polynomial of order m. Then 
the estimate 

\\u-Qn(u)\\^V2Dn\\u\\d2 

holds with n = 2ra + 1 and (<f)k = (dk)2. 

Proof . It follows from Proposition 4.1 that 

(ek - Qn(ek),ei - Qn(ei)) = 0, 0 < \k - 1| < n. 

Taking into account Proposition 4.2 and Proposition 5.2 we can conclude 

\\u-Qn(u)f= £ (u,ek)[ek-Qn(ek)]f 
k=—m 

= Y^ |(u.efc)|
2||efc-Qn(efe)||

2 

^ 
m ^ 

£ yi(«.«-)is 
k=—m 

•2Dl 

i.e., we have shown 
\\u-Qn(u)f^2-D2

n\\u\\d2. 

6. CONVERGENCE IN PERIODIC HILBERT SPACES 

We start with a qualitative result. Recall first that 

m 

Sm(u) = ] P (U'ek)ek 
k=—m 

satisfies 
lim \\u - Sm(u)\\d = 0, ueHd. 

ra—>oo 

Propos i t ion 6 .1 . Let u eHd. Then 

lim \\u-Qn(u)\\d = 0. 

D 
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P r o o f . Given e > 0 there exists r eN such that 

\\u-Sr(u)\\d <e. 

It follows from Proposition 5.3, that there exists a, q e N depending only on r such 
that 

\\Sr(u) - Qn(Sr(u))\\d < e, n^q. 

Since Qn is an orthogonal projector on T-Ld we can conclude 

\\U - Qn(u)\\d ^ \\U - Sr(u)\\d + \\Sr(u) - Qn(Sr(u))\\d + \\Qn(u ~ Sr(u))\\d 

^ 2||u - Sr(u)\\d + \\Sr(u) - Qn(Sr(u))\\d. 

i.e., we have 

\\u-Qn(u)\\d ^ 3e, n ^ q. 

This completes the proof of Proposition 6.1. • 

Proposition 6.2. Let u G Wd2 and n = 2ra + 1. Then 

\\Qn(u - Sm(u))\\ < Dn\\u - Sm(u)\\d2. 

P r o o f . Put 

Then we have 

Since 

v = u- Sm(u). 

(v,ek) = 0, | k | ^ r a . 

771 

Qn(v) = ^T Ck,n(v)Qn(ek) 
/c= —m 

it follows from Proposition 4.3 that 

\\Qn(v)\\2= £ KnMfllQnЫЦ2 

k— — m 

Recall that 

1 °° 
(Qn(efc), Qn(ek)) = j-т- Y_ (dk+m)2, 0 O < 

ck,n[g) r=_^ 
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which yields 

This shows 

Due to 

we obtain 

k= 

IIQnЫЦ2 < i. 

m 

ItønHlľ < £ ҜnИľ-
k=—m 

(w,Єfc) = 0, | fc | -^m 

£ |Cfc,„(u)|2= J2 £(U'e*+rn) 
k=—m ' r--:0 

< E (E^T^EťW) 
A : = - m V ^ O ^fc+rnj ^ / 

I K f H ^ O I 2 ^ 2̂ 
(áfc-frn)2 < E E 

& = — m r-t-Ю 

= (ИЫ 2 (on) 2 , 

« "(ßn)2 

i.e., we have shown that 

m 

IIQnWII2 < £ l^-WI2 < (l«IU02(on)2-
fc=—m 

Proposition 6.3. Let u € 7-^2. Then 

||u - 5 m ( u ) | K Dn\\u - Sm(u)\\#. 

P r o o f . If ueHd2 then 

| | u - S m ( u ) | | 2 = £ 
|fc|>n 

l(u,e*)la 

(áfc)2 

< £ %#(<u2 

|fc|>m 

< E 
\k\>m 

Ш2 

l(",Єfc)ľ 
(dk)2 (on) 2 , 

D 
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i.e., we have shown 
\\u-Sm(u)\\ ^Dn\\u-Sm(u)\\d2. 

• 
We conclude with the main quantitative result which extends Proposition 5.3 to 

the periodic Hilbert space H^. 

Proposition 6.4. Let u G Hd2. Then 

\\u-Qn(u)\\^4Dn\\u\\d2. 

P r o o f . Taking into account Proposition 5.3 and Proposition 6.2 we can con
clude 

lit- - Qn(u)\\ ^ \\u - Sm(u)\\ + \\Sm(u) - Qn(Sm(u)\\ + ||Qn(u - Sm(u))\\ 

^ Dn\\u - Sm(u)\\d2 + V2Dn\\Sm(u)\\d2 + Dn\\u - Sm(u)\\d2 

^4Dn\\u\\d2. 

• 
We apply Proposition 6.4 to obtain quantitative bounds for the mean square error 

of optimal periodic interpolation in our specific examples. 

E x a m p l e 1. 
.. oo oo 

s= l s=l 

If u is a function of the periodic Sobolev space W2 r then Proposition 6.4 yields 

\\u - Qn(u)\\ = <?(m~2r), n = 2ra + 1 -> oo. 

E x a m p l e 2. 
°L p - m 6 i 

-—' 1 - e~6 1 - e b 

s=l 

In this case u has to satisfy the condition 

oo 

£ |Kefc)|
2.e2fcl*l<oo. 

/ c = — oo 

Then Proposition 6.4 implies 

||ix - Qn(u)\\ - ^ ( e - m 6 ) , n = 2ra + 1 -> oo. 
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