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CAUCHY PROBLEM FOR THE NON-NEWTONIAN 

VISCOUS INCOMPRESSIBLE FLUID 

MILAN POKORNY, Olomouc 

(Received October 25, 1994) 

Summary. We study the Cauchy problem for the non-Newtonian incompressible fluid 
with the viscous part of the stress tensor r (e) = r(e) — 2uiAe, where the nonlinear 
function r(e) satisfies rz-j(e)ez-j ^ c|e|p or Tij(e)eij ^ c(|e| + |e |p) . First, the model for 
the bipolar fluid is studied and existence, uniqueness and regularity of the weak solution is 
proved for p > 1 for both models. Then, under vanishing higher viscosity txi, the Cauchy 
problem for the monopolar fluid is considered. For the first model the existence of the weak 
solution is proved for p > ^dr̂ r, its uniqueness and regularity for p ^ 1 + ---rj • In the case 
of the second model the existence of the weak solution is proved for p > 1. 

Keywords: non-Newtonian incompressible fluids, Navier-Stokes equations, Cauchy prob
lem 

AMS classification: 35Q30, 76A05 

1. INTRODUCTION 

a. Equations and constitutive laws. 

Let n = 2 or 3. The motion of incompressible viscous fluid in Rn is described by 

the system of equations 

(1.1) d i v u = ^ = 0 , 
OXi 

(1.2) , _ + ^ _ = _ _ + , , . . , = i > 2 , . . . , „ . 

Here the equations (1.1)—(1.2) express the balance of mass and the balance of mo

mentum, respectively. In the equations u = (1x1,1x2, •• • ,wn) represents the velocity 

field, g = const > 0 the density, f = (/1, / 2 , . . . , fn) the specific body force and r^-

are the components of the stress tensor. All quantities are evaluated at (x, t), where 
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x = (a;i, .r2 , . . . ,xn) is the actual position and t the present time. When no misun
derstanding can occur, we will write only u instead of the correct u(x, t). Hereafter, 
for simplicity in writing, we put g = 1 and use summation* convention. 

In order to make the system of equations complete it is necessary to prescribe the 
constitutive relation for the stress tensor. Due to physical considerations, the stress 
tensor is decomposed as 

(1.3) Tij = -irSij + rV, 

where TT is the pressure, Sij is the Kronecker delta and TV is the viscous part of the 

stress, which must be defined by a set of constitutive relations. 

In the present work we will assume the stress tensor TV of the form 

(1.4) TV =T{e) 

with r a symmetric tensor, where the components of the deformation velocity tensor 
e are given by 

1 (dui t duj (L5) e- = e-(u) = U ^ + ̂  
In our considerations the polynomial growth 

(1.6) M e ) | ^ Cl(|e| + l e r 1 ) , Cl > 0,p > 2, 
|rii(e)Kc1|er1, Kp<2 

as well as the strong coercivity condition 

(1.7) Tij{e)eij ^ c2 |e|p, 1 < p < oo, c2 > 0 

will play an important role. Here |e| means the Euclidean norm of the tensor e, i.e. 

(1.8) |e| = (eijeij)^. 

We will assume the existence of the scalar potential $ for the stress tensor 

^ <^(e) 
(1-9) ^ W = - f l ^ 

with t?(-) twice continuously differentiate in IR"2, tf ̂  0, tf(o) = 0 such that we have 

for all £ e R£ m : 

(1.10) | " - 5 - ~ - f e 6 * > C 3 ( l + | e r 2 ) ^ £ ; « , P ^ 2 , 
deijdeki 

•f^T-tiifa > C3|e|"-2$y£;.i. P < 2-deijdeki 
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It is possible to show that (1.7) is a direct consequence of (1.9), (1.10) and the 
fact that ů(o) = 0. 

There are several phenomena which appear studying non-Newtonian fluids: shear 
thinning and shear thickenning, ability of a creep, ability to relax stresses, presence 
of normal stress differences in simple shear flow, presence of yield stress. For more 
detailed description see [17]. Our model includes shear thinning (p < 2) and shear 
thickenning (p > 2). 

1.11. R e m a r k . Generally it is possible to assume that тv is a function of Du. 

However the principle of material frame indifference (see [9]) implies that тv can 

depend only on the symmetric part of the velocity gradient. 

We have in mind two exampies: first, for p > 2 

(1.12) тi:j(e) = (џ0 + џi\e\p'2)eij 

with /x0, џi positive constants and second, for p Є (1,2) 

(1.13) îïi(e) = | e | p - 2 c ť i . 

It is an easy matter to check that the potentials 

1 ľeí;e«; u-2 
#(e) = õ / (Џo+ Џis 2 ) d s 

for p > 2 and 
1 ГЄiІЄ £-2 

i?(e) = - / s - ds 
2 Jo 

for p < 2 satisfy the assumptions (1.9)-(1.10). 

We will also study separately the model (1.12) for p < 2 for which we will be able 

to prove the existence of a weak solution for all p > 1. Of course, we have to modify 

the conditions (1.6), (1.7) and (1.10). The condition (1.6) will be the same for both 

p < 2 and p ^ 2, instead of (1.7) we have to use TІJ(Є)ЄІJ ^ c( |e | p + | e | 2 ) . The 

condition (1.10) must be replaced by Q^.$klţijţik > c 3 (l + \e\p~2)ţijţij. We will 
call this model the perturbated linear model. 

b. Problem formulation and survey of results. 

1.14. Definition. Let u 0 : IRn н-> (Rn, f: Qт ь-> (Rn be given functions. The 

problem (CMN) denotes the following: to find u(x, í) , 7г(x,t) solving (1.1), (1.2), 

(l.З)-(l.ľ), where u(x, 0) = u 0 (x) . The letters (CMN) abreviate the Cauchy problem 
for the Monopolar Non-Newtonian incompressible fluid. 
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In Chapter 3 we will assume the viscous part of the stress tensor in the form 

(1.15) TV = r ( e ) - 2 i u 1 A e , Lti > 0, 

where r is supposed to satisfy all the assumptions (1.6)—(1.10). Such fluids are 

called bipolar viscous fluids. The theory of bipolar fluids is compatible with the 

basic principles of thermodynamics, including the Clausius-Duhem inequality and 

the material frame indifference. The thermodynamical principles also imply that the 

other higher (third order) stress tensor T{jk must be considered. See [15], [3] for a 

detailed description of multipolar fluids. Here we suppose 

den 
(1-16) rijk = 2/f ^гj 

dxk 

1.17. Definition. Let u 0 : (Rn •-> [Rn, f: QT >-> Un be given functions. The 

problem (CBN) denotes the following: to find u(x, t), 7r(x, t) solving (1.1), (V2), 

(1.3), (1.5)-(1.7), (1.15), where u(x,0) = u 0 (x). The letters (CBN) abreviate 

Cauchy problem for the Bipolar Non-Newtonian incompressible fluid. 

In Chapter 3 we will prove the existence, uniqueness and regularity of a weak 

solution of the problem (CBN). In Chapter 4 we will study the limiting process 

\x\ —> 0 + in order to prove the existence of a weak solution of the problem (CMN). We 

will get the existence for p > ^ ^ and its regularity and uniqueness for p ^ 1 + - ^ . 

The mathematical theory of the problem for the monopolar fluid was introduced 

for the first time by O.A.Ladyzhenskaya (for bounded domains). She proved the 

existence of a weak solution for p ^ -g-(n = 3) and its uniqueness for p ^ | ( n = 3). 

For details see [8]. The same results were been proved in [10] for the p-laplacian, 

i.e. the existence for p ^ 1 + ^ ^ and uniqueness for p ^ n ^ , n -̂  4. The limiting 

passage from the bipolar fluids to the monopolar ones was done for the first time in 

[14] and [11]. 

This paper follows up with the papers [2] and [12]. The former uses a similar 

method as the present work, i.e. the authors first solved the problem for the bipolar 

fluid and letting fii -> 0 + they obtained a solution for the monopolar case (both 

Young measure-valued and weak). In the latter the results were obtained directly 

using the Galerkin method. In both papers the following results were proved: the 

existence of a Young measure-valued solution for the Dirichlet problem for p > - ^ , 

the existence of a weak solution for the space periodic problem for p > - ^ , its 

regularity and uniqueness for p ^ 1 + - ^ . The aim of this paper is to show that 

the same holds also for the Cauchy problem, i.e. O = Un is unbounded. 

As far as it is known to the authors, there are up to now no results in the case of 

a general unbounded domain. 
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2. FUNCTION SPACES, INEQUALITIES 

Let n - 2 or 3. Denote I = (0,T) with T > 0, QT = Un x I. The standard 
notation is used for both scalar (u: Un i-> U or <2r •"->• K) and vector-valued functions 
(u: lRn »-> Un or Q T J-> Q3n). 

We denote by C(lRn) and Cfc([Rn) (k G N or k = oo) £lie space of real continuous 

functions on (Rn and ihe space of k-times continuously differentiate functions on 
(Rn, respectively. The space of real C°° functions on Un with a compact support in 
IRn is denoted by $(Un) and its dual by $'(Un). Under D^k)u we understand the 
vector which consists of all possible derivatives of the fc-th order with respect to the 
space variables, Du = D^l)u. 

The Lebesgue spaces of scalar and vector-valued functions are denoted by Lq(Un) 

and Lq(Un)n, respectively (q G [l,oo]). The spaces are equipped with the standard 
norm denoted by || • ||q. The Sobolev spaces JVm'p([Rn) and pVm'p((Rn)n are the 
sets of all measurable functions, for which the functions and all their generalized 
derivatives up to the order m belong to Lp(Un) and Lp(IRn)n, respectively. The 
spaces are equipped with the standard norms and seminorms denoted by || • ||m>9 and 
I • Im.g. For more detailed descriptions see e.g. [1]. 

Let s be a noninteger positive number, s = [s] + {s}, where [s] is the integer and 
{s} the fractional part of s. Let 1 -̂  p < oo. Then the Slobodeckij spaces TVs'p(IRn) 
(VVs'p((Rn)n) are subsets of the Sobolev spaces W^p(Un) (IVM'p(IRn)n), where 

/n,x i. n . . . . v ^ ( f \Dau(x) - Dau(y)\p
 J , \p 

(2A) H . I P = NI W I P + £ / ,x v\nHs};
 dxdy <°°-

| a | = w VR»xR» | x - y | t ; p j 
We will use the following imbeddings and interpolations which hold between Slo

bodeckij and Sobolev spaces: 

2.2. Lemma (imbeddings). Let 1 < p < q < oo. Let 0 ^ s2 < si < oo be 
integer or non-integer. Then VVSl'p((Rn) «-> WS2>q(Un) if 

(2.3) i = I - £ L Z * . 
q p n 

P r o o f . See [19, p. 129]. D 

2.4. Lemma (interpolation in 5). Let u G fV5l 'p((Rn)n, 0 < s2 ^ s ^ si < 00, 5 
non-integer. Then there exists a constant c > 0 such that 

(2-5) Hull.,, < c||u||« ,- | |u | | i -», 

where 
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(2.6) s = as1+(l-a)s2, Q 6 ( 0 , 1 ) . 

P r o o f . See [20, pp. 181-186]. • 

Korn inequality will be used for estimates of the nonlinear term: 

2.7. Lemma (generalized Korn inequality). Let <D G W^q(Rn)n D Wli2(Ufl)n, 

q>\. Then 

(2.8) (J^|e(v?)|dxj ^/f,Mif„ 

where Kq > 0, 2e{j ((D) = § * + |*f. 

P r o o f . See [16, pp. 47-48]. D 

The following classical lemma will be used for the limiting passages in the nonlinear 
term: 

2.9. Lemma. Let QT C (Rn+1 be bounded. Let fN: QT »-> R be integrable for 
every N and let 

(i) lim //v(y) exist and be finite for a.e. y € <5T 
A!-»oo 

(ii) ye > 0 36 > 0 such that 

sup / | / * (y ) | dy < e VH c QT; \H\ < 5. 
Iv JH 

Then 

(2.10) Jim / fN(y)dy= [ lim /jv(y)dy. 
N->00JQT JQT K->OO 

P r o o f . See [5]. D 
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3. W E A K SOLUTION FOR THE BIPOLAR FLUID 

In this part we will deal with the problem (CBN). Our goal is to prove existence, 

uniqueness and regularity of the system 

(3.1) 
OXІ 

(3.2) 
дщ дщ 
дt J дxj 

= ӘҠ 1 дTij 2ßL
 д 

дxi дxj дxj 

(3.3) Uť(x,0) = U O І ( X ) , 

where the nonlinear tensor function r ( ) fulfils the conditions (1.6)-(1.10). 

We denote 

(3.4) H = {<p e L 2 (IR n ) n ; div <p = 0} , 

(3.5) Vp = {<p £ ®'(Un)n; D<p € Lp(Un)n2; div<^ = o} . 

The latter is equipped with the usual seminorm of the Sobolev space W1,p(R.n)n, 
i e - I • W„ = I • |i,p- Hereafter, u e LP(I; Vp) means that Du e Lp(I;Lp(Un)n2) and 

|uU,-(/;v„) = llou||Ll.(/;L>'(R")"2)- W e d e n o t e 

(3.6) U = W2'2(Un)nnVp. 

We will assume the following about the data of our problem: 

(3.7) u0ew2'2(Un)nnH, 
feL2(I;L2(Un)n). 

дu 
дt 

3.8. Definition. The function u £ Lp{I;Vp)nC(I; H)<~) L2(I;W2<2(®n)n) with 

S L2(I; L2(IRn)n) is called a weak solution of the problem (CBN) if 

(3-9) / ~ o 7 ^ d x + / uj^-L(pidx+ / Tij(e(u))eii((/?)dx 
JR" Ol JRn OXj JRn 

f de{j(u) deij((p) f 
+ 2/xi / JK JK d x = / /*<Ddx 

JRn OXk OXk JRn 

is satisfied a.e. in I for every ip € U. 

In order to be able to use the Galerkin method, we need to find a countable dense 

subset of the space U with special properties. In fact, we need the functions of this 
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subset to be smooth, have compact support and zero divergence in [Rn. The existence 
of such a subset is ensured by the following lemma. 

We denote 

%(Un)n = {<pe$(Un)n; div<D = 0} . 

3.10. Lemma. There exists a countable subset of the space @o(Un)n which is 

dense in U. 

P r o o f . As ^ ( R n ) n is dense in W2'2(Un)n and Vp, we have that 2)(Un)n is 
dense in U. The separability of $)(Un)n yields the existence of a countable subset 
of Q)(Un)n which is dense in U. We denote its elements {<^n}^Li- These functions 
have generally a non-zero divergence. 

We denote gn = div(/?n, where evidently gn G &(Un). Let us solve the problem 

(3.11) divipn=gn. 

In [4] it is shown that there exists a solution ipn G $(Un) such that 

( 3 A 2 ) | | ^ n | | 2 , 2 ^ C i | | a n | | i , 2 , 

(3.13) ||V>n||l,p^C2||On||p. 

We denote 

(3.14) w n = (Dn-</>n. 

Now, let v be an arbitrary element of U and e a positive number. Then there 

exists <pn G ^ ( R n ) n such that 

(3.15) \\ipn - V||f7 = \\ifn ~ V||2f2 + \<Pn " v | l , p ^ , 

1 + Ci + c 2 

see (3.12), (3.13). Then (divv = 0) 
| |wn - V||t/ = ||(Dn- V ~lpn\\u 

^ \\Vn - V\\U + Un\\u 

^ +ci||div((/?n - v)| | i | 2 +c2||div((Dn - v) | |p ^ e 

1 + Ci + c2 

and the set {wn}n^=1 is dense in U. • 
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The next two simple lemmas will be used for the apriori estimates. Their proofs 

are direct consequences of the fact that /R n |2(f )|2|£|2A: d£ is an equivalent seminorm 

on VVfc'2(lRn), which can be found e.g. in [16]. Here C(£) is the Fourier transform 

of u. 

3.16. Lemma. Let u G L2(Rn), D^u G L2{Un)n2. Then Du G L2(Rn)n and 

(3.17) \\Du\\2^c3\\u\\2\\D^u\\2. 

3.18. Lemma. Let u G JV2 '2(Rn), n ^ 3. Then u G L°°(Rn), i.e. there exists 

C4 > 0 such that 

(3.19) esssup|ti(x)| < C4||u||2,2-
xGR n 

Now let { w n } ^ = 1 be our countable dense subset from Lemma 3.10 (after elimi
nating zero and linearly depending functions). 

N 

3.20. Definition. We say that uN(x,t) = £ cf (tjw^x) is the Galerkin ap-
i = i 

proximation of the solution of the problem (CBN) if 

P21) / i S ^ ^ w W w d x 
•l«" v.t? 
+ / r i j (e (u w (x , i ) ) )e i j (w a (x) )dx 

+ 2^ J 3e i j (u j V (x ,<) )9e i J (w"(x) ) d x 

jR« dxk dxk 

- / / < ( x , * X ( x ) = 0 Vwa a = l ,2 , . . . , iV. 
JR" 

Using the Caratheodory theorem (see [7]) we get the existence of the Galerkin 
approximation locally in time. From the apriori estimates in L°°(I; H) we have the 
existence on each time interval (0,T), T < co. 

3.22. R e m a r k . For the Caratheodory theorem we need that the matrix with 
the elements a / a = JRn wl

{wf dx be regular. It is the so-called Gram matrix, and it is 
known that the Gram matrix is regular provided { w a } ^ = 1 are linearly independent. 
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3.23. Lemma. Let u0 G H, f G L2(7; L2((Rn)n). Then the sequence of Galerkin 
approximations satisfies the following uniform estimates: 

(3.24) 

(3.25) 

(3.26) 

, -V|i 
llu I|L°°(/;L2(R")TI) ^ c5, 

ll^uN|lL^(/;L^(Rn)n2) ^C6> 

l|uiV||L2(/;W2'2(R-)") ^ c7-

Proof . Multiplying (3.21) by cN(t) and summing up the equations we get 
(using the fact that fRn uN ~^-uN dx -= 0 for divergence free functions) 

_dl 
dí2 

/ I U ^ p d x + Z TiMvL^ЂЄij^dx 
JR" JRП 

+ 2џ. L ae i j (u A f )ae i j (u w ) 

дxk дxк 

dx = / / i t u^dx. 

Integrating over (0, t) and using the coercivity condition (1.7) and the Korn inequality 
(2.7) we obtain 

(3.27) i | |u"(*) | |2dí + cp / V u ^ d ť + Č ^ f\\D™VLN\\ 
Jo Jo 

I í í f i u ? 
1 JO JRn 

dxdí| + i | |uo| | l . 

Taking the first term on the left hand side we get 

(3.28) | |u w (t) | | l ^ / ' ||f | | a(l + Hu^llI) dt + HuollI, 
JO 

which after employing the Gronwall inequality (see e.g. [7]), proves (3.24). The other 
two estimates we get from (3.27) and Lemma 3.16. • 

3.29. R e m a r k . By means of (1.6) and (1,7) it is possible to show that there 
exist constants c8 and c9 such that Vu G W1'2((Rn)n n W1*^71)71, 

c8||e(u)||£ ^ ||tf(e(u))||i ^ c9(||e(u)||2 + ||e(u)||*). 

3.30. Lemma. Let n ^ 3, f G L2(I;L2((Rn)n). u0 G W2'2(!Rn)n nVp, p > 1. 
Then 

(3.31) 

(3.32) 

u |ІL°°(/;W2'2(R-)-) ^ CЮ, 

дuN\ 

дt L2(/;L2(R")") 
^ Cц. 
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P r o o f . Multiplying (3.21) by dc%^ , summing up from 1 to N and integrating 

over (0,t), t G (0,T] we have 

(3.33) / - - = - dxd<+ / i?(e(uyv(<)))dx- / tf(e(uw(0))) dx 

JUn I dXfc I JRn I OXk I 

The assumptions on u 0 , f and the scalar potential d (non-negativity), the Korn 
inequality and in the case of the last two terms in (3.32) also the Holder and Young 
inequalities yield 

(3-34) 9 ^ T „,n + M l C 2 | | o ( 2 ) U W W | | 2 < c ( u 0 , f ) + / K | 2 | o U W | 2 dxdf. 
i at L2(Qt) jQt 

The convective term on the right hand side of (3.34) can be estimated by means of 

Lemmas 3.17 and 3.23: 

f [ \uN\2\DuN\2dxdt^c4 f'w^WlJD^Wldt 
JO JRn JO 

< c3C4 / ' | |uw | |2,2(e||D(2>u"||2 + A(£)||uw | |2)d*. 
JO 

In the first term we take in HFJ^u^l^ the supremum over (0, t) and transfer it with 
a small coefficient e to the left hand side of (3.34). The other term is finite thanks to 
the apriori estimates in L°°(I;H) and L2(J; IV2'2((Rn)n). The estimates (3.31) and 
(3.32) follow from (3.34) and Lemma 3.16. • 

3.35. R e m a r k . Multiplying (3.9) by £ 2 ( 0 ^ f ^ , where €(t) = 0 on [0, §], 
£(t) = 1 on [6,T] and £(t) G C°°([0,T]) we can get the same estimates as (3.31)-
(3.32) with UQ e H only, but on [5,T] with 6 > 0 arbitrary. 

3.36. Theorem. Let n ^ 3 and let all the assumptions of Lemmas 3.23 and 
3.29 be satisfied. Then there exists a unique weak solution of the problem (CBN) in 
the sense of Definition 3.8. Moreover, u G C*(I\H). 

P r o o f . Existence. Denote by uN/BR the restriction of the Galerkin ap
proximation to the ball in Un with diameter R. First, we take B\ and denote 
M = {<* G M; suppw a C B\), where {w l }g x is our dense countable subset in U. 

179 



As uN/Bx is bounded in both L2(I; JV2'2(Hi)n) and L?(I; W1^(B1)
n) and ^ / H i 

in F2(I; I/2(Hi)n) we can derive by means of Lions-Aubin Lemma (see e.g. [10, The
orem 5.1]) that there exists a subsequence u ^ such that 

uf /H i -> U l strongly in L2(I; W1^(B1)
n) 

with p G (1, oo) for n = 2 and p G (1,6) for n = 3. Now we are able to carry out the 
limiting passage in (3.21) for fixed w a with a G Ai. (In the nonlinear term thanks 
to the above mentioned strong convergence in L2(I;W1^(Bi)n), i.e. D u ^ ' -» Du 

a.e. in Hi x I, and thanks to Lemma 2.9.) 
Now we take B2 and denote again A2 = {a G N; suppw a C B2). Evidently 

A\ C A2 and we can deduce the existence of a subsequence uN (chosen from uN) 

such that 
uN /B2 -> u2 strongly in L2(I; Wl*(B2)

n). 

Evidently u2/Bi — u\. So we can construct a "diagonal" sequence {u_y}_y__ such 
that 

uN/BR -> u/BR strongly in F2(I; Wl*(BR)n) 

for an arbitrary I? > 0. 

Now we use the fact that the system {wa}_____ is dense in U. We can close the 
test functions in U and thanks to the apriori estimates of the solution we get that 
the equality (3.9) is satisfied for every y> G U a.e. in I. 

As u G F2(I;PV2'2((Rn)n) f1L2(I;H) and §* G L2(I;H), it follows from Theorem 
1.17, Chapter IV in [6] that u G C(I; H). Moreover, we can show that u G C-" (I; H). 
Put 

u(t) = / u(s)ds-f-u(6i). 
Jti 

Prom the Holder inequality and the apriori estimate of the time derivative we con

clude: 

l | u ( 0 - u ( * i ) | | _ ^ | t - t i | f \\u(s)\\2ds 
Jtl 

and therefore u G C^(I;H). 
Uniqueness. Let u, v be two weak solutions of the problem (CBN). Taking w = 

u — v as a test function for both equations for u and v we get # 

(3.37) i - A | | w | | _ + / (Tj i (e(u))-ry(e(v)))e . j (w))dx 
2 at yR« 

+2lllf y ) y ) d x = _ / WjpiWidx, 
jR„ dxk dxk JRn dxj 
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It follows from the condition (1.10) that the second term in (3.37) is non-negative: 

(3.38) faj(e(u)) - r , j(e(v)))e i i(u - v)) 

= ( / " ^ r * i ( e ( v + a ( u ~ v))) da ) e ^ ' ( u ~ v ) 

a 1 d2/d \ 

de-de ^ + ^ " V ^ / 6iJ<<U ~ V^ e / c /^U ~ V ^ 

^ c3 |e(v + £(u - v)) | p - 26^(u - v)e^(u - v) > 0 
with £ G [0,1]. We obtain from (3.37) by means of the Korn inequality that 

(3.39) ~ l | w | | ^ + ^ I w l ^ <| |w| |2 |u | l l 2 . 

The interpolation inequality, Lemmas 3.18, 3.16 and the Young inequality yield 

(3.40) ||wj|i < llwWMloo ^ c||w||2||w||2,2 

< e||w||2(||w||l + |w|?>2 + |w|lt2)-" 

<e|w|li2 + A(e)||w|II-

Integrating (3.39) over (0, t) we get along with (3.40) and the apriori estimate of the 
solution in L°°(I; VV2'2([Rn)n) (w(0) = 0) 

| l |w(t) | | l ^ % jT* l|w(r)||l dr. 

The Gronwall inequality implies 

||w||2 = 0 a.e. in I 

and therefore u = v a.e. in QT- ---

At the end of this part we prove regularity of the weak solution, i.e. that u G 
L2(I ;JV3 '2(Ur)n) . 

Let ek be a unit vector in the direction of Xfc. Then 

(3.41) Ajttt(t) = - ( * + ^ - > ' ) - - ( « . « ) , 
h 

(oAo\ A2,h /.> u(x + hek,t) - 2u{xy t) + u{x - hek,t) 
(3.42) Afc u(t) = — . 

The proofs of the following two lemmas can be found for example in [13]. 
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3.43. Lemma. Let u G W^(Rn). Then \\Ahu\\p ^ c 1 2 | | ^ - | | p . where c12 > 0 
does not depend on h. 

3.44. Lemma. Let \\Ahu\\p ^ c13 Vh > 0. c13 > 0. Then | |-^-| |p <C c13. 

3.45. Theorem. Let all assumptions of Theorem 3.36 be satisfied. Then the 
weak solution of the problem (CBN) u G L2(I; JV3'2((Rn)n). 

P r o o f . We take "(*+**»'), =^Q. a n d u(x-Aefc,t) ( / i > Q a r b i t r a r y b u t fixed) 

as test functions and integrate over (0,T): 

rT . 
+ / / u J - ( x , 0 - " ^ E l - - A ^ u i ( . ) d x d « 

JO JRW vXj 

+ / / r i j (e(u(x ,<)) )e i i (A^u(<)) dxdt 

+ */1^&K-<«>)<-* 
- / / / i (x )A^u i (< )dxd t = 0. 

JO JRn 

We use the substitution x — he^ = x, sum up the equations for k = 1 . . . n and get 

(3.47) \ f ( A ^ i ( T ) A ^ ( T ) ) dx 

^ JR" 

+ / 7 ^ ( e [ u ( x + /xe f c , t ) ] ) - r i j ( e[u(x , t ) ] ) e i j ^ 

Jo Jun h 

< i / (A£UO.A£U 0 . ) dx + / / /<(x, t )A^ f cu.(0dxdt 
-- JLRn I JO JRn I 

+ / / ^ ^-AhUi(t)dxdt\. 
1 JO JR™ h ' 

The first term on the left hand side of (3.47) is evidently non-negative. Similarly 
as in (3.38) we can show that also the second term is non-negative. 

As u e L2(I;VV2'2((Rn)n) and u0 £ VV2'2((Rn)n, the first two terms on the 
right hand side of (3.47) can be estimated by means of the Holder inequality and 
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Lemma 3.43. The estimate of the convective term is a bit more complicated. It 

follows from the Holder inequality and Lemma 3.42 that 

Tf u^ + he^tf-^^-u^t)^^ 
II 
Jo Ju 
/o Jw- h 

A%Ui(t)dxdt 

I | u ( i ) l i 4 1 ( i ( U j ( M ) ^ r ) ) dx) d^using(3-31) 
<c8 f (f |u(i)|2|o(2)u(t)|2dx+ / |ou(t)|4dxV dt 

Jo \JR» JR" J 

^CsrOluWIIooluW^ + luWI2,,)^. 
JO 

The first term is estimated by means of Lemma 3.18 and the apriori estimate in 
L2(I; VV2,2((Rn)n). The other term can be estimated by the following interpolation 
inequalities and imbeddings: 

a) n = 3 
1 3 1 3 

Ml,4 < lull,2lUll,6 < lUll,2lUl2
4,2 

and the boundedness follows from the estimate in L2(I; lV2,2(IRn)n); 
b) n = 2 

l U | l ,4 ^ lu l?,2lU l2 ,2 

(see e.g. [18]) and we use again the same apriori estimate as above. Thanks to 

the Korn inequality we have that f0
TJRri A£(I}(2I(u(£))A£(D(2 '(u(^ ^ cM which 

together with Lemma 3.44 gives ||u||z,2(/.jy3,2(Rn)«) -̂  ci4 . Moreover, the term 

| fQ JRn Tij(e(u(x,t)))eij(A2
k' u(t)) dxdt\ is uniformly bounded for arbitrary h > 0. 

• 

4. W E A K SOLUTION FOR THE MONOPOLAR FLUID 

Hereafter we will study the problem (3.1)-(3.3), assuming fi^ —> 0 + . We denote 
by uN the solution of the problem (CBN) (i.e. with / / ^ ) , by u the solution of the 
problem (CMN) (i.e. with fix = 0). Our system of equations (for the monopolar 
fluid) takes the form 

(4.1) ^ = 0 , 
OXi 

(4.3) Mt(x,0) =u 0 t (x ) , 
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where the tensor function r^(e) satisfies the conditions (1.6)-(1.10). 

Using the apriori estimates in L°°(I; H) and LP(I; Vp) (only these do not depend 

on /J,?) we can get thanks to the estimate of the time derivative in LP'(I; (X(Q)') 

(X(Cl) = {<pe VV0
4'2(ft) n Wl*(ft) n W^'tfl); div<D = o} , n a bounded open sub

set of lRn) the existence of the measure-valued solution of the problem (CMN) for 

p > ^ - . It means that there exists a couple (u,i/), 

uGLP( I ;V p )nL°°( I ;H ) , 

veL~(QT;M(Un2)) 

2 2 

(M(IRn ) is the space of the Radon measures on lRn ) such that 

(4.4) J (-i^-u^^ 

= / wot^idx 
JR" 

for every ip e Cl(I\ %(Rn)n), <D(T) = 0 and 

(4.5) Du(x,t) = f Xdu(X) a.e. in QT. 
JR»2 

In the case of the pertubated linear model (i.e. r(e) = (u0 + ^i |e |p"2)e for p < 2) 

we get the same result as above for arbitrary p > 1 in both the two- and the three-
dimensional case. This is connected with the fact that we have also an independent 
estimate in L2(J;V2)- For more detailed description see [16] or for the Dirichlet 
problem [2] or [11]. 

In the next part we will try to find new estimates of solution of the problem (CBN) 
which will make the limiting passage in the nonlinear term possible. So we will get 
a weak solution of the problem (CMN). In fact the estimates will guarantee that 
DuN ->» Du in Lp(I;Lp((Rn)n2), i.e. VuN -> Vu a.e. in QT. Then, using Lemma 
2.9, we will get the desired limiting passage. About the data we will assume the 
following: 

(4.6) u 0 € l V 1 ' 2 ( K n ) n n H , 

jL 2 ( I ;L 2 ( IR n ) n ) , p^2 
f G ' \ L p ' ( I ; L p ' ( R n ) n ) , p<2,p' = ^ . 

The weak solution of the problem (CMN) is defined as follows: 
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4.7. Definition. Let u0, f satisfy (4.6), and let p ^ 1 + ^ . Then a function 
u, where 

(4.8) u e Lp(I; Vp) n C(I; H) n L2(I; W1»2(RB)n), 

(4.9) ^ € L 2 ( / ; J f ) , 

is called a weak solution of the problem (CMN) if 

(4.10) / -^<pidx+ / Uj^<pidx+ / Tij(e(u))eij(<p)dx= / fi<Pidx 
Jun at Jun axj Jun Jun 

is satisfied a.e. in I for every <D G Vp n VV1'2(lRn)n. 

4 .11 . Definition. Let u0 , f satisfy (4.6), and let p ^ ^ - . Then a function u, 

where 

(4.12) ue^^nn/jff), 

is called a weak solution of the problem (CMN) if 

(4.13) - / u^dxdt+ [ Uj~-<pidxdt+ f r i j(e(u))efj((D)dxdf 
JQT

 at
 JQT

 ax3 JQT 

= / fiipidxdt+ / u0i<pi(0)dx 
JQT «!Rn 

is satisfied for every <p e C1 (I; %(Un)n) with <p(T) = 0. 

4.14. R e m a r k . The existence of a weak solution means that the Young measure 

v from (4.4) is the Dirac measure a.e. in QT, i.e. v^,t = 6(X — Du(x, t)) for a.e. (x, t) G 

QT-

Let u N be a solution of the problem (CBN), i.e. with fi? > 0. Let /if -> 0+ 
for N —> oo. From Chapter 3 we have the following apriori estimates, which do not 
depend on /LXI: 

(4.15) | | u " | | L ~ ( / ; i 0 < c i , 

(4-16) I I - O ^ I I L P ^ L P C R - ) - - ) ^ ^ -

From Theorem 3.45 we know that uN is bounded in L2(I; W3>2(Rn)n) and there
fore also in L2(I; W 1 ' 0 0 ^ * ) " ) (of course, the estimate tends to oo when ̂  -+ 0+). 
We want to use A u N as a test function in (3.9). However it is not possible to 
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use it directly. Let us assume that the test function w e %(Un)n and w = Av. 
Integrating by parts we get 

(4.17) f _ _ _ _ _ ! _ d x + / A ( > _ _ _ ) i__ d x 
jR» dtdxk dxk jRn dxk \ J dxj ) dxk 

+ / _______) ej.f__.\dx 
JRn dx k

 %J\dxk) 

+2fiN f eij(AuN)eij(Av)dx+ f fiAvidx = 0. 
Jun Ju11 

The fourth term in (4.17) is finite thanks to the regularity of the solution. The 
equality (4.17) is satisfied for arbitrary v E %(Un)n. Thanks to the density property 
(Lemma 3.10) and regularity result (Theorem 3.45) we take a sequence v ^ such that 
vft -> u N in Wz'2(Un)n fl Vp for a.e. t e I, N fixed. For p ^ 2 all the limiting 
passages can be done very easily. For p < 2 we should get similar results, but the 
limiting passage in the nonlinear term is not completely clear to the author. After 
multiplying by (1 + \uN\l2)~x, A ^ 0 and integrating over (0,T) we get 

(4.18) ^ T ( l + | u " | ? i 2 ) - ^ Qf_ | V u " | 2 d x ) dt 

+ | (l + \uN\l2)-x2vN (J^eij(AuN)eij(AuN)dx) dt 

+ / (1 + | u " | ? i 2 ) - A (J fiAuNdx) dt = 0. 

We can calculate: 

(4.19) (l + | u " | ? i 2 ) - * ~ | u " | ? i 2 = 
1 d , V i a í i 2 T í ^ ) ( l + l^lf,2)1-A. A#l 

^ i l o g ( l + | u w | 2 , 2 ) , A = l . 
, N | 2 ^ A _ _ _ l u A t | 2 = j dt2(T=A) 

2dť l 1 , 2 I -illne-n +111̂ 1? 

By means of (1.9) and (1.10) we get from the nonlinear term 

(4 20) f ^ _ _ _ _ _ . _ _ _ _ _ _ d x = f dH(e(uN))delm(uN)deij(uN) 
jR™ dxk dxk jRn deimdeij dxk dxk 

> (c3fRn(l + \e(uN)r*)detf)aet:N), P>2 

*{c3JUn\e(uN)r>d<t:")detf\ P<2-
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4.21. R e m a r k . For the perturbated linear problem we get on the right hand 
side of (4.20) 

^ 0 + W o « ) r , ^ * ^ , > , 

We denote the term on the right hand side of (4.20) by ^ and 

(4.22) (l + | u N | ? , 2 ) - V = ^ -

As the term with p^ is obviously non-negative, we can rewrite (4.18) as follows: 

j j j i ^ d + I^PDfiJ^ + ̂ j f j r d . 

< + c ( u o ) + / T ( i + | u " . ; i ! ) - > " i ! > 3 
JO 

(4.23) 

,dŕ 

+ / T (l + |uw£2Г л / ЛДufdx 
Jo JRП 

dť 

(for A = 1 the first terms on the left hand side is replaced by \ log(l + \uN\{ 2 ) ) . 

4.24. R e m a r k . Using a similar technique as in Remark 3.34 we would obtain 
the same results for u 0 G H but only on [<S,T], 5 > 0 arbitrary. This remark holds 
for everything which will be proved in this chapter. 

4.25. L e m m a . For u smooth enough we have 

(4.26) \\D^u\\2^cA/
l2 forp>2, 

(4.27) | | 0 ( a ) u | | . , < C 5 | u | : * V - - forl<p<2. 

P r o o f . The inequality (4.26) is a direct consequence of the Korn inequality and 
the definition of J?. The other one follows from the Holder and Korn inequalities: 

H-jWull? < c / | % ^ P d x = c / f ^ ^ | e r A $ | e | ^ d x 
JUn I OXk JR« \oxk 0Xk J 

^cý\ | e | p d x 
) 

„ (2-í0.> 

^ ^ Ч u | 1 ) P

2 • 

D 

4.28. R e m a r k . For the perturbated linear model we get that the inequality 

(4.26) is satisfied for p > 1. 
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The forcing term can be now estimated by means of (4.26) (for p ^ 2) or (4.27) 
(for p < 2). Let us demonstrate this in the latter case. 

From (4.21) and the Young inequality it follows that 

dt (4.29) / (l + | u " | ? i 2 ) -* / / . A u f d x 
JO JR" 

^ [T(l + \uN\l2)-*\\f\\p,\\DWuN\\pdt 
Jo 

^ c5 f s*\*N& a+|uw|1)2)-*nfnP-(i+|uw|li2)-^ 
Jo 

< e / Xdt + c(e) / T ( l + |u w | ? , 2 ) - A | | f | | ^ |u w | ? - p dt . 
Jo Jo 

The first term is transferred to the left hand side of (4.23) with a small coefficient 
while the second term can be estimated by means of the Holder inequality: 

(4.30) jf nf|i2,|u|2-pd^ (jT iifiijdtj " (jf l u x * ) " 

- HfIIL*''(/;LV(R»)»)llU H^(/;Vr) ^ C( f) ' 

We obtain 

dí (4-31) 5 - [ i _ ( i + , u N ( r ) | ? i a ) i - A + | ^ ^ 

T 

< c ( u o , f ) + / (l + |uw | ? i 2)-A |uw | ? i 3dt . 
Jo 

Now it remains to estimate the convective term on the right hand side of (4.31). If 
we get such an estimate with A ^ 1 then we have from the first term on the left hand 
side of (4.31) that u e L°°(I; W^2(Rn)n) and consequently from the other term (if 
p ^ 2) we obtain our desired estimate in L2(I; VV2,2(lRn)n). For A > 1 we have only 
fQ Jjf dt -$ const. 

Hereafter, we will write only u instead of uN. We will deal with the problem for 
n = 3 and at the end we will only give a sketch of the proof for n = 2. 

a. Cauchy problem in 3 space dimensions. 

4.32. Lemma. For u smooth enough we have 

(4.33) \u\lt3p ^ce^i. 
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Proof. 

M«i:,-/4(v(wi))'d.</.M-"^^*.<^. 

the inequality (4.33) follows from the imbedding VV 1 ' 2^ 3 ) 3 «-> L6(R3)3 and the Korn 

inequality. • 

We will solve separately two cases: 

(i) P > 3 
(li) 1 < p < 3 

ad i) p ^ 3 

Put A = 0. Prom Lemmas 3.16 and 4.25 we see that |u|ff2 ^ c | | u | | 2 < / i . The 

interpolation inequality 

(4-34) Ks^HjpMf? 

and the Young inequality yield 

f \u\l3dt^cf Nlp^-S-Vlulg 
Jo Jo 

rp rp 

f J?dt + c(e)f |u|0dí. 
Jo Jo 

5ÍЄ 

The first term is transferred to the left hand side of (4.31), the other is finite because 

-^Y ^ 1 for p > 3. 

ad ii) 1 < p < 3 

Considering the fact that 2 < 3 < 3p and p < 3 < 3p for p G (1,3) we can use the 

following interpolation inequalities: 

- i 

(4-35) lukŝ Hĵ Hf--;, 
м—1 3-y 

(4-36) |u|i,s < | u | 1 ) P | u | 1 ) 3 p . 

Prom (4.33) we get 

(4.37) | u | 3

) 3 ( l + K , 2 ) - * = \u\3^+1~a\l + | u | ? ) 2 ) - A 

^ c 7 ^ « M u | ^ ( i + H ? ) 2 ) - ^ 3 - - ^ - - , 

where Qt = 3^~°> + 3a?=f, Q2 = 3a£ f i . Integrating (4.37) over (0,T) we obtain 

£ |u|3 ,3(l + |u|? ) 2)-* dt < c7 j T X* |u|«» (1 + | u | ? ) 2 ) - A + 3 - - ^ - - + ^ dt. 
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We claim 

(4.39) -A + 3 ( p - 1 ) ( 1 - Q )

+ A o . 1 = 0 . 
op — z 

Using the Holder and Young inequalities under the assumptions Q\6 = 1, $2^' = P 

and j -f- jr = 1 we get 

(4.40) J \u\l3(l + \u\l2)-"dt^c(J Xdt)\JQ K p d t ) " . 

From (4.16) and (4.40) it follows by means of the Young inequality 

(4-41) 2(l^A)(1 + | u ( : r ) l ? ' 2 ) 1 ~ A + 5 4 j ( ^ d < ^ c ( u ° ' f ) -

It remains to find the values of a, A, 6, 6' and verify whether their values are in 

the required intervals. Solving the above mentioned system of equations we find 

(4.42) a = ^ - 5 ) 

(4.43) Л = 2 

6 ( p - l ) ' 

3 - P 
З p - 5 ' 

Hence a G [0,1] <=> p G [§, 3] and A ^ 0 <=> p G (§, 3]. Moreover, A ^ 1 <=i> p ^ 
n 
5 

^-. We can also verify that 6 and 0"' > 1. 

4.44. R e m a r k . In the case of the perturbated linear model we can use the 

interpolation of VV1'3(Rn) between VV1'2(Rn) and VV1'6(Rn) and then, thanks to the 

imbedding of VV2'2(Rn) <-* TV1 , 6(Rn), we can estimate the convective term by means 

of a similar technique as above for A = 2(3 — p), i.e. A ^ 0 Vp > 1. 

As A ^ 1 for p ^ ~ we get the following lemma: 

4.45. Lemma. Let p ^ -g- and let UQ, f satisfy (4.6). Then the sequence of 11 
5 

solutions of the problem (CBN) for u.^ -> 0 + is uniformly bounded in the following 

norms: 

(4.46) | | U N | | L ~ ( / ; W - . - Ҷ R З ) 3 ) ^ C 5 , 

(4.47) | | U І V | | L Ҷ / ; W 2 . 2 ( R З ) 3 ) ^ Cв, 

(4.48) Ц U ^ І І L I Ҷ / Î W ^ З I Ҷ R 3 ) 3 ) < c 7-
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P r o o f . From the inequalities (4.15) and (4.41) we immediately get (4.46). As 
p > 2, the estimate (4.47) is a consequence of (4.46) and (4.26). The last inequality 
follows from (4.46), (4.33) and the following considerations: 

W^q(U3) «-> L3p(U3) <=>q= - ^ y . 

As 2 < q < 3p, we get 

| u N | i , , < | u | ^ | u | g . 

Evidently f ^ ^ 1. Then 

rrt rri rri Q 

(4.49) f \\nN\\lpAt^f | u X W | u | g ^ | u | ^ d t 
Jo Jo Jo 

2„2 

< C | | U N | | ^ 2
/ ; W 1 , 2 ( R 3 ) 3 ) | | - D U N | | L P ( / ; L 3 P ( R 3 ) 9 ) . 

D 

4.50. Lemma. Let u0, f satisfy (4.6) and let u0 G Vp. Let p ^ ^ . Then -~^-
is uniformly bounded in L2(I; L2(IR3)3). 

P r o o f . We revert to the Galerkin approximation of the (CBN) problem and get 

a new estimate of the time derivative, which does not depend on Lti. Using w l(x) 

as test functions, multiplying by Ct
dy and summing up we obtain 

(„,, i £ i \ A / ,(e(„.„dx+2, * I y >»«<«•>,. 
<9* 2 d£ JR3 d£ JR3 a.xfc dxk 

f ,duf. f ndu?du? 
= / ^ ^ T d x " / u j 7 T ^ ^ r d x -JR3 dt JR3

 j ctej dt 

As u0 G VV1,2((R3)3 n H we can construct such a sequence of initial conditions that 
^jv | |£)(2)u^|| remains bounded. Integrating over (0,T) and using the Holder and 
Young inequalities we obtain 

1 CT II d u n i i2 C f 

<4-52) o b i T d * + / ^(e(u n (T)))dx^c(u 0 , f ) - f - / |un |2 |L>un |2dxd*. 
2 J0 II dt 112 JR3 JQT 

Using (4.46), (4.47) and Lemma 3.16 we obtain an indepedent estimate of the con-
vective term 

(4.53) / | u n | 2 | L > u n | 2 d x d ^ c / ||un||2
52|.Dun|2

)2dt 
JQT JO 

^ ClluTl||L2(/;iy2.2(IR3)3) l l U n | |L~(/ ; iyL2( R 3)3) , 

which, taking 17(e) ^ 0 into account, gives the desired estimate. • 
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4.54. Theorem. Let u0, f satisfy (4.6) and let u0 G Vp. Letp ^ -^. Then there 
exists a unique weak solution of the problem (CMN) in the sense of Definition 4.7. 
Moreover, the solution is regular, i.e. u G L°°(I; KV1,2(IR3)3) n L2(I; VV2'2((R3)3) n 

P r o o f . Existence. The same method as in Lemma 3.10 gives that there exists 
a countable subset of %(U3)3 which is dense in KVlj2((R3)3 n Vp. Similarly as in 
Theorem 3.36 we get a "diagonal" subsequence such that for arbitrary R positive 
DuN' -> Du in L2(I;L2(BR)9), i.e. DuN' -> DuN a.e. in I x BR. Using Lemma 
2.9 we get 

(4.55) / -r-^Wiipdxdt + / Uj-^-Wiipdxdt + / Tij(e(u))eij(w)ipdxdt 
JQT

 dt
 JQT

 dxJ JQT 

fiW^dxdt Vi/> G C°°(I),Vw G %(U3)3. -L QT 

Similarly as in Theorem 3.36 we will prove that (4.55) is satisfied for all w G 
1^1,2,^3)3 n Vp a n d a e i n (QTy 

Let w be an arbitrary function from W 1 ' 2 ^ 3 ) 3 n Vp, w n G ^ 0 ( -^ 3 ) 3 , w n -» w 
(i.e. w n + w in VV1'2((R3)3 and Vw n -> Vw in LP(U3)9). Then, thanks to the 
estimates from Lemmas 4.45 and 4.50 we get that (4.55) is satisfied for all w G 
w1>2(M3)3nvp. 

To complete the existence part of the proof we must verify that u G C(I; II). This 
can be done in the same way as in Theorem 3.36. We get again that u 6 C - ( / ; f f ) . 

Uniqueness. It will be proved similarly as for the (CBN) problem. Let u, v be 
two different solutions, w = u — v . Using w as a test function in (4.10) we obtain 

(4-56) ^ l l w l l l + f3(Tij(e(u)) - rij(e(v)))eij(w)dx = J wj-^-Widx. 

In the same way as in the uniqueness part of Theorem 3.36 we can prove 

f f f1 d2dOL 

/ (rij(e(u))-Tij(e(v)))eij('w)dx^ / / e»j(w)efc<(w) d a d x 
JR3 JR3 J0 oeijOeki 

with tfa = d(e[v + a(u - v)]). 
However, (1.10), the Korn inequality and the fact that p > 2 imply 

c|w|?2 . (4.57) / (r{j(e(u)) - r i j(e(v)))e i j(w)dx > 
JR3 

Integrating (4.56) over (0,£), using (4.57) and w(0) = 0 we obtain 

(4.58) | | |w( t ) | | i + c j f |w|2,2dt = £ | |w| | j |u | l l 2dt. 
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1 1 

Prom the interpolation inequality ||w||4 -̂  ||w||-f ||w||£, the imbedding Wl>2(U3) 

<-+ L6(U3) and the apriori estimate of u in L°°(I; VV1'2(R3)3) we get 

(4.59) \\w(t)\\l<c f ^ T ^ d r . 
Jo 

Then the Gronwall inequality gives ||w(£)||2 = 0 a.e. in I, i.e. u = v a.e. in QT- • 

4.60. R e m a r k . When u0 $. Vp, we do not have the information about the 

time derivative from Lemma 4.50. Nevertheless we can get the estimate of the time 

derivative in L2(I; (VV2'2((Rn)n n Vp)') which implies (see [5 pp. 147-149]) that u 

belongs to C(I; H). So we get the existence (and uniqueness) of the weak solution of 

the problem (CMN). However we have to assume (4.13) instead of (4.10) with test 

functions <p 6 L2(I; Vp n Wx>2(Un)n) with §£ G L2(I; L2(Un)n). 

Now we will deal with the case p < ^-, separately for p ^ 2 and p < 2. 

ad a) p ^ 2 

We can dispose only with 

CT 3-
(4.61) / (l + | u | ? 2 ) - 2 3 p * , / d t < const. 

do 

4.62. Lemma. Let (4.61), (4.15) and (4.16) hold. Then J^ \\D^u\\2/ ^ c7 

th f3 = |H=| for p > 2, p = \ forp = 2. 

P r o o f . For some ft < 1 (which will be specified later) we have 

(4.62) Í \\DWn\\¥ d< < c4 í jl>(l + | u | 2 , 2 ) - 2 ^ ( l + |u|2
 3 ) 2 ě - V át 

JO Jo 

šc(£jTát) ( ^ ( l + Hull-HD^u)!!)3^^)1 , 

where Lemma 3.16 was used. As we know that u is bounded in L°°(I;H) we can 
put 

3 - P /? 
2/3 = 2 

Зp-51-ß 

and get /? = f^zf • Now we use the Young inequality and transfer the term 

e J0 ||-D(2)u||2/3d£ with e sufficiently small to the left hand side. For p = 2 we can 

use directly the estimate in L2(I;V2) and get 2§5|y~0 = 1> ie- P = | - D 
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Let us note that (3 G (0, | ) for p G (2, -^) . 

Thanks to the apriori estimates we have 

rp 

(4.64) / | |u 
Jo 

т 
2(3 < Гa 
2,2 ^ C 8 -

0 

Using the imbedding PV2'2(IR3) <-> PV i+^IR 3 ) which holds for s = - ^ (i.e. s G 

(if ,1] for p G [2,-g-) ) we see that £ | |u | | 2 £ s p ^ c9. We choose g G (l ,p) . Let 

a G (0,5) (which will be specified later). The interpolation inequality (2.4) implies 

(4.65) l |u| |i+tT ,p<c||u| |l;- | |«| |f+ , i I , 

and therefore 

(4-66) j T ||u||?+<r,p < c j T | | u | | £ - - ^lullg,,,, 

where \ 4- ^- = 1. Both terms on the right hand side are bounded when 

(4.67) g ( l - - j ) j = P> 

</-<*' = 2/3. 

(/rj llullpd* < °° because of the imbedding VV1'P(IR3) <--> L ^ ( ( R 3 ) and the interpo

lation between L2(1R3) and L^( IR 3 ) . ) 

Solving the system (4.67) we get 

(4.68) «=S-{p-f/-V ' q P~2(3 

We can also verify that $, 5' > 1. So we have 

4.69. Theorem. Let u0, f satisfy (4.6) and let p G [2, ^-) . Then there exists 

a weak solution u of the problem (CMN) in the sense of Definition 4.11. Moreover, 

u G Lq(I; VV1+CT'P(IR3)), where <? G (l,p) and a satisfy (4.68). 

P r o o f . Let u ^ be our bounded sequence in Lq{I\ IV1+cr'p(IR3)3). Because of 
the estimate of the time derivative mentioned at the beginning of this chapter we 
get from the Lions-Aubin Lemma that uN -> u in L9(I; VV1 '9^)3) , where fi is an 
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arbitrary bounded open subset of R3. We use again the technique of the "diagonal" 

subsequence. From Theorem 2.9 we get for (p e Cl(I; %(U3)3), <p(T) = 0 

(4.70) - / Ui-^dxdt+ Uj^(pidxdt+ / ^(etuJJeyOp) dxd* 
JQT

 d t
 JQT

 dxo JQT 

= / fnpidxdt+ / uoi<Pi(0)dx. 
JQT Jun 

D 

4.71. R e m a r k . We can try to close the test functions in Cl(I; VpnTV1»2(R3)3). 

(We know that %(U3)3 is dense in Vp n IV 1 ' 2 (R 3 ) 3 .) We would have to assume that 

\T\ ^ c | e | p _ 1 in order to control the nonlinear term. 

ad b) p < 2 

Now let p < 2. We can make use only of (4.61) and the apriori estimates (4.15) 

and (4.16). Using (4.27) (Lemma 4.25) we see that 

(4.72) / | u | 2 , p K - 2 ( l - f | u | 2 , 2 ) - 2 ^ d ^ const. 
Jo 

fT 

/o 

For some /? < 1 we calculate 

(4.73) / \\DЄ>u\\lßdt 
J0 

< [ (HІ>IГP

2(1 + \"\ҺГ2Щß Ийa_p)(i + Hh)2ß^ dt 

( / 3 ) / T | u | 2 , p K - 2 ( l + | u | 2 , 2 ) - 2 ^ d í 
Jo 

+є(ß) / ű P ( i + H 2 , 2 ) 2 ^^dí. 
Jo 

rT 

/o 

Using the interpolation inequality 

5 P - 6 3 ( 2 - ľ ) 
2V (4-74) | u | l l 3 ^ | u | , £ |n|1 %_ 

1 ' 3 - , 

and the imbedding VV1'P(R3) <-> L ^ ( R 3 ) we see that the second term in (4.73) is 
bounded by 

(4-75) /TM?>l&d.+ / V l i ! / ^ 
do do 
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with Q, = (2-p + 2%fX6)) A and g 2 = e ^ ^ i ^ . T h e second term 
in (4.75) is finite if 0 ^ f. The first term can be estimated by means of the Young 
inequality 

(4.76) £ |u |ft |u|& dt^e [T \u\ff dt + c(e) £ |u|ft*. 
JO Jo Jo 

The first integral is transferred to the left hand side of (4.73) and the other is 

5 + 8' finite when the following holds (\ + j? = 1): 

(4.77) Q2S' = 2/3 

Qi S = p. 

Solving (4.77) we get 

(4.78) 
p(5p - 9) 

P 2 ( -p 2 + 8p - 9) 

and therefore /3 £ (0, | ) for p £ ( | , 2). We get tha t p must be greater t han | instead 
of | , which was the bound from the estimate of the convective term. The case p = | 
must be excluded . Evidently, the condition (3 < § is satisfied as well as <5, 6' > 1 . 
Prom (4.16) and the above proved estimate we see tha t 

(4.79) ГïïDuft 
J0 

T 

p < ClO 
0 

with p satisfying (4.78). 
Let us choose a £ (0,1) . More precisely, a must satisfy (4.83) as will be seen later. 

Thanks to the interpolation inequality (2.5) we get ||Du||<-.)P -$ c||Z)u||J>p | |i.)u||p~cr. 
Let q > 1. Then 

(4.80) [T \\Du\\ltP ^ c f \\Dn\\^\\Dn\\p
1-^ dt 

Jo Jo 

< ( £ \\Du\\°f dt) T ( £ \\Du\\^-"^ dt) '. 

Solving the system ( \ + jr = 1) 

(4.81) aqS' = 20 

(1 - e)qS = p 
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we obtain 

23p 
(4.82) q= PP 

ap + 2/3(1 -oУ 

where a must satisfy 

(4.83) ff<ÍP-l)(5p-9) 
p(з - p) 

Therefore we have 

4.84. Theorem. Let p > | , Jet u0, f satisfy (4.6). Then there exists a weak 

solution of the problem (CMN) in the sense of Definition 4.11. 

P r o o f . It is analogous to the proof of Theorem 4.69. • 

4.85. R e m a r k . It is possible to close the test function in Cl(I;Vp) but only 

for p ^ 3 + Y 3 9 This bound follows from the estimate of the convective term. 

When we assume the perturbated linear model, i.e. with r(e) = (i/0 + ^ i | e | p _ 2 ) e 

for p < 2, we can get the existence of a weak solution for all p > 1. As we have the 

estimate of the convective term for p > 1 we can get by means of a similar technique 

as above that J0 | |Du||2^, -̂  c with /? = y r ^ a r-d therefore we have 

4.86. Theorem. Let p > 1, let u0, f satisfy (4.6) and r(e) = (i/0 + i/ i | e | p - 2 )e . 

Then there exists at ieast one weak solution of the problem (CMN) in the sense of 

Definition 4.11. 

b. Sketch of the proof in 2 space dimensions. 

First we will estimate the convective term in (4.31). As for p ^ 3 the proof is 

completely analogous to the three-dimensional case, we will deal separately with two 

cases: 

(i) 2 ^ p < 3 

(ii) p < 2 

ad i) 2 < p < 3 

4.87. Lemma. Let p € [2,3). Then for u smooth enough we have 

(4-88) K , 3 < c | u | f ) 2 ( ^ i + | | u | | l ( / i ) , 

(4-89) |u|?,3 < c | < p (J*-? + H u l l ^ ^ 2 ^ ) . 
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P r o o f . VV3'2(IR2) <-> L3(IR2), which together the interpolation inequality 
2 I 

||Vu|| i 2 ^ c||u| | | ||u||i 2 and Lemma 3.16 gives the first inequality. 

The other one follows from the imbedding W2^,P(U2) <-> L3(IR2), the interpola-
, £ 

3--v (Ì = 
4--v 

A = = 3-- P , 

tion inequality | | V u | | 2 3 ^ p <: c||Vu||^ ||Vu||23
p , the imbedding IV1'2((R2) *-•> Wv*, 

(4.26) and Lemma 3.16. " D 

Now we can apply Lemma 4.87 to the convective term and we get, similarly as in 
the three-dimensional case, the following system of equations ( \ -f- jr = 1): 

(4.90) -A + a + A a + ( 1-2
a ) ( 3-p )=o 

a + (l-a)(3-p)f 

2 <5 = 1 

p(l — a ^ ' = p. 

Solving the system (4.90) we obtain 

(4.91) 

(4.92) 

i.e. a € (0, | ] and A -̂  1 for p £ [2,3). We can also verify that o~, 8' > 1. 

ad ii) 1 < p < 2 

4.93. Lemma. Let p G [f, 2). Then we have for u smooth enough 

(4.94) |u|?i3 ̂  c\n\f^\u\f^J^, 

(4.95) K , 3 < c K i P £ / ^ . 

Proo f . As VV1'P(IR2) M- Z^-r(OS2) and (4.21) hold, the first inequality is a 

consequence of the interpolation inequality |u|f 3 ^ | u | i ( 2 _ 1 ) | u | *(VJ^ • 
X ' 2 - P 

The other one follows from by same argument and the interpolation inequality 
5p-G 2 ( 3 - p ) 

,F i ' 2 - ; > 
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Now we will apply the previous lemma to the convective term and get the following 

- + ---system of equations ( i + -*r = 1): 

QS = 1 

(-£#•-)'->• 
Solving the above mentioned system we get 

2 ( p - l ) ( 3 - p ) 
(4.97) 

(4.98) 

5p — 6 
3 - p 

P - 1 7 

i.e. a e ( | , 1] for p € [§, 2), A > 1 for p < 2. We can also verify that <5, 5' > 1. 

4.99. R e m a r k . For the perturbated linear model we can make use of (4.88) 
and 4.95. This enables us to estimate the convective term with A = 2 '3~p ' for p > 1. 

Now we revert to the case when p ^ 2 , i.e. A ^ l . Similarly as in three space 
dimensions we get 

4 .100. Lemma. Let uN be solutions of the problem (CBN) with jjiN > 0. 

pN —> 0+. Let p ^ 2. Then uN are unifromly bounded in the following norms: 

(4-101) ||UN||L~(/;W-.2(R2)2) ^ Cn, 

(4.102) ||U7V||L2(/;V1/2,2(R2)2) ^Cl2, 

(4.103) ||uN||L,>(/;wi.j>(R2)2) -$ci3. 

4 .104. Theorem. Let u0.f satisfy (4.6) and u0 G Vp. Let p ^ 2. Then there 
exists a unique weak solution of the problem (CMN) in the sense of Definition 4.7. 
Moreover, the solution is regular, i.e. u G L°°(I; IV1'2(IR2)2) n L2(I; VV2'2((R2)2). 

P r o o f . The proof is analogous to the proof of Theorem 4.54 and Lemma 4.50. 
Only in the uniqueness part we use ||u||4 -̂  2* ||u||f |u|f 2 (see [17]). D 
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Now let us solve the case when p < 2, i.e. p £ [§, 2). We can make use only of 

(4.105) / (l + | u | f 2 ) - ^ c / d ^ const 
Jo 

together with (4.15) and (4.17). From (4.105) and (4.27) we get 

(4.106) / M l > l i ~ 2 ( l + | < a ) - K * dt ^ const . 
Jo 

For ft < 1 (which will be specified later) we get from the interpolation inequality 

Mi,2 < M i ^ M x l L ^ t h e imbedding W ^ R 2 ) *-> L^(R2) analogously to 

the three-dimensional case 

(4.107) / \\D^u\\2/dt^c14 

Jo 

with 

(4.108) / ?= P ( 2 P " 3 ) 

( P - 1 ) ( 6 - P ) 

The case p = | must be excluded again. 

4.109. Theorem. Let u0. f satisfy (4.6), p > §. Then there exists a weak 
solution of the problem (CMN) in the sense of Definition 4.11. 

P r o o f . It is completely analogous to the proof of Theorems 4.84 and 4.69 

including the part between (4.79) and (4.83). D 

4.HO. R e m a r k . It is possible to close the test functions in Cl(I\ Vv) for p ^ 
1 - y ^ . This bound follows again from the estimate of the convective term. 

For the perturbated linear problem we can get thanks to the estimate of the 
convective term similarly as above the following theorem: 

4.111. Theorem. Let u0, f satisfy (4.6). Then there exists at least one weak 

solution of the problem (CMN) in the sense of Definition 4.11. 
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