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RELIABLE SOLUTIONS OF PROBLEMS IN THE DEFORMATION 

THEORY OF PLASTICITY WITH RESPECT TO 

UNCERTAIN MATERIAL FUNCTION 

IVAN HLAVACEK, P r a h a 

(Received March 3, 1996) 

Summary. Maximization problems are formulated for a class of quasistatic problems in 
the deformation theory of plasticity with respect to an uncertainty in the material function. 
Approximate problems are introduced on the basis of cubic Hermite splines and finite 
elements. The solvability of both continuous and approximate problems is proved and 
some convergence analysis presented. 
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INTRODUCTION 

One of the simplest models of elasto-plastic bodies is represented by the deforma­
tion theory of plasticity (see [3], [4], [5]). It is nothing else than an elastic model with 
a nonlinear stress-strain relations. From the mathematical point of view, the model 
is advantageous, being formulated by means of potential and strongly monotonous 
operators. The crucial role is played by a material function, which has to satisfy 
some differential inequalities. 

Sometimes, however, the material function cannot be given uniquely, but only in 
some set of admissible functions. If maximal values of a functional are the main 
goal of all computations (e.g., some mean values of displacements, intensity of shear 
stresses or principal stresses, respectively), we can follow an approach used in Opti­
mal Design and formulate a maximization problem, which expresses the requirement 
to remain "on the safe side". 

In Section 1 of the present paper we recall the deformation theory of plasticity, 
setting a mixed boundary value problem. Conditions guaranteeing the existence and 
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uniqueness of a weak solution are given in Section 2. A continuous dependence of the 

solution on the material function is derived in Section 3 and a general maximization 

problem is formulated in Section 4. Here we present three examples of function-

als, which may be of practical interest. The short Section 5 contains the proof of 

solvability of the maximization problem. 

In Section 6 we introduce approximations of the material function, using cubic 

Hermite splines and Ritz-Galerkin method is applied to define approximate displace­

ment functions. In this way we introduce an approximate maximization problem and 

prove its solvability Section 7 is devoted to a convergence analysis. We can show 

that having a sequence of approximate solutions (with the mesh-sizes of both the ma­

terial function and the displacement function discretization tending to zero), one can 

choose a subsequence, which converges to a solution of the continuous maximization 

problem. 

The results are valid for both three-and two-dimensional problems. The Kacanov 

(secant modules) method (see [3], [5], [6]) is proposed for computation of approximate 

displacement functions. 

1. SETTING OF THE STATE PROBLEM 

Let us recall the basic relations of quasistatic problems in the deformation theory 

of plasticity (see Kacanov [3], Langenbach [4], Necas and Hlavacek [5, 6]). 

We consider a body occupying a bounded domain ft C R3 with a Lipschitz bound­

ary dfi, and assume that 

an = ruurTurM, 
where T u , r T are relatively open in <9ft, Tu ^ 0 and the surface measure of TM 

vanishes. 

Let the material of the body be governed by the following Hencky-Mises stress-

strain relations 

Tij = (k- - / i (7) )<M + 2/i(7)e0*, 

where k is a (constant) bulk modulus, 

tf = 0(u) = eu(\i) = divu, e{j = e ^ u ) = -(dui/dxj + dtij/dxi), 

7 = 7(u) = T(u, u), 

r(u, v) = - | t f(u) tf(v) + 2eij(u)eij(y) 

and a repeated index implies summation over {1,2,3}. 
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The function //: [0, +oo) -> IR belongs to a certain set of admissible functions, 
which will be specified in the following section. 

Let body forces f G [L2(fl)]3, surface loads g G [L2(r r)]3 and a displacement 
function u° G [Hl(n)]3 be given. 

We are looking tor a solution of the following non-linear boundary value problem 

(1.1) -dTij(u)/dxj + fi = 0 in ft, i = l ,2 ,3 , 

u = u° on Tu, 

VjTij(\l) = Qi O n V r , 

where v denotes the unit outward normal to dft. 

The solution of the problem (1.1) leads to the minimization of the functional of 
potential energy (see [5 - chapt. 8]) 

(1.2) *(u) = i f [fctf2(u) + / /x(t) dt] dx - J Uui dx - f 9iUi ds 

over the affine set u° + V, where 

V = {ne [H1(n)]3:u = 0 onT,,}. 

The minimization problem can be replaced by the following equivalent problem: 

find u G u° + V such that 

1.3) £>*(u,v)= / [*t?(u)tf(v) + /i(7(u))r(u,v)] dx - [ fiVi dx - [ giVidx = 0 
JQ JQ JTT 

( 

for all v G V. 

Here D$(u,v) denotes the Gateaux differential at the point u. 

2. T H E SET OF ADMISSIBLE MATERIAL FUNCTIONS 

To guarantee a unique solvability of the problem (1.3), we assume that the function 
fi G Cl([0, +oo)) and there exist positive constants /z0, K, such that 3k/2 > fi0 ^ K, 

(2.1) / i o < M * ) < 2 * ' d ^ / d ^ 0 ' 

(2.2) K^ fi(t) + 2td/i/dt 

holds for all t ^ 0. 
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Let us introduce the space U = C^([0,1]) and the following sets of admissible 
functions: 

Uad = &e C W ^ a C l ] ) : /io ^ * ( 0 < §*, -Ci < d<p/dt < 0, 

«<v(o + e(i-Od^/d€ 
for all £ G [0,1] and | d2<p/ df2| ^ C2 for a.a. £ G [0,1]}, 

Uad = We CW'^O-l]) : no/2 ^ <p(£) < 2fc,-2Ci < d<p/d£ < 0, 

«/2^v(0+f(l"0d^/d€ 
for all £ G [0,1] and | d2<D/ d£2| ^ C2 for a.a. f G [0,1]}, 

where Ci and C2 are given positive parameters, C^1^1 denotes the set of Lipschitz 
continuous functions with Lipschitz continuous derivatives. 

For any t G [0, +CXD) we define the material function 

/ tll2 \ 
(2-3) ^ ) = KlT^)-

It is easy to verify that the material function fj, satisfies the conditions (2.1), (2.2), 
provided <p G Uad- We have 

o* d ^ ) _ ( i - o 3 d ( D ( o t^2 e 
\L'*> A4. - OCT AC ' S - -, , .1/0 ' l -dt 2$ d<e ' s 1 + *1/2' (i-o2' 

Lemma 2 .1 . The sets Uad and Uad are compact in U. 

P r o o f follows from a repeated use of Arzela-Ascoli Theorem and a classic result 
for the derivatives of a uniformly convergent sequence. • 

R e m a r k 2.L The function tl/2(l + tl/2)~l can be replaced by 2K" 1 arctanf1/2. 

3 . WELL-POSEDNESS OF THE STATE PROBLEM 

Proposition 3.1. There exists a unique solution u(<p) of the state problem (1.3) 

for any <p G Uad and ji defined by the relation (2.3). 

P r o o f . See [5-§8.2]. D 

Proposition 3.2. Let <pn G Uad, <pn -+ <P in C([0,1]), as n -» oo. Then 

(3.1) u(<pn) -> u(<p) i n l H 1 ^ ) ] 3 . 
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P r o o f . Let us follow some ideas of Langenbach [4 - IV. §1.1]. Denote W: 
= [H!(n)]3, W* its dual, [•, •] the dual pairing, || • ||i the norm in W, and || • ||* the 
norm in W*, un = u((pn), u = u((p). Introduce an operator A((p): W —» W* as 
follows: 

[A((p)u,v] = j [(k- ^u(-y(u))y(u)tf(v) + 2ii(1(u))eij(u)eij(v)\ dx, 

where fi(t) = <p(t^2(l + t1'2)-1). 

Then for any <p G Uad the operator A(<p) is uniformly strongly monotone on the 
set u° + V, i.e., 

(3.2) [A(<p)u - A(<p)v, u-v]^ C\\u - v\\j 

holds for any <p G Uad, u,v G u° + V, where the constant C is independent of (p. 

In fact, 

[A(<p)u — A(<p)v, u — v] ^ 2K / eij (u — v)e^ (u — v) dx 
in 

follows from the condition (2.2) (see [5 - §8.2, Lemma 2.1]). Combining this result 
with the Korn's inequality, we obtain (3.2). 

Second, 

(3.3) \\A((pn)v - A(<p)v\\* -^ 0 as n -> oo 

holds for any v G W. 

In fact, we may write 

\[A(<pn)v-A(p)v,w]\ ^C f ||M^ - M||0,OO(|^(^)| | ^ (^ ) | + |e^-(^)| |e^-(^)|) da: 

JQ 

^ C| | / in-/ i | |0 ,oo| |v | | l |k | | l , 

where 

II Ân - M||o,oo = SUp \}ln(t) ~ fl(t)\ = SUp \<pn(x) - <p(x) \ -» 0. 
*€[0,oo) x€[0,l] 

Using (3.2), we have 

(3.4) [A((pn)un ~ A(<p)u, Un ~ u] 

= [A((pn)Un ~ A((pn)u,Un ~ u] + [A(<pn)u - A(<p)u,Un - u] 

> C\\un - u\\2 - \\A((pn)u - A((p)u\U ||un - UHL 

451 



Since 

[A(<pn)un,v] = [A(<p)u,v}= / fiVidx+ / giVids 
Jn JvT 

for all v e V follows from the definition (1.3), the left-hand side of (3.4) vanishes. 
Thus we obtain 

||un - u||i ^ C-l\\A(<pn)u - A(<D)u|| + . 

Using (3.3), we arrive at the strong convergence (3.1). • 

4. SETTING OF A MAXIMIZATION PROBLEM 

Let a functional \£: Uad x W —•> R be given, such that if <pn G Uad,<pn —? <D in U 
and un -> u in W, then 

(4A) lim tf(pn,un) = *(<p,u). 
n—>oo 

We want to solve the following Maximization Problem: find 

(4.2) <p° = arg max^(<p,u(<p)). 
<peuad 

E x a m p l e 4.1. Let Gj, 1 ^ j ^ 1V, be given subsets of T r , with positive surface 
measure. Define 

ipj(u) = (meas Gj)~l I UiVids 
JG, 

and 
*(u) = max:ipj(u). 

i < j ^ - V 

Using the Trace Theorem, it is easy to see that the assumption (4.1) is satisfied. 

E x a m p l e 4.2. Let Gj, 1 ^ j ^ 1V, be given subdomains of Q, meas Gj > 0. 

Let us define 
^j(<p,u) = (measGj)-1 J /i(7(u))(7(u))1/2 dx. 

JG5 

The integrand represents the square root of the intensity of shear stress (i.e., an 
invariant of the stress tensor)—see [5 - §3.3]. We define 

^(<p,u) = max:xpj(<p,u) 

and show that the condition (4.1) is satisfied. Obviously, it suffices to consider a 

single functional ipj(<p,u). 
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First, we prove the following 

Lemma 4 .1 . Ifun-+u in W, then 

( 7 K ) ) 1 ! 2 --> (7(«))1 / 2 mL\G5). 

P r o o f . Using the definition of ^(u) and the inequality 

(4.3) | r ( u , « ) | ^7 1 / 2 (« )7 1 / a (« ) , 

we derive that 

( 7
1 / 2 K ) - 71/2(u))2 = 7(un) + 7(ti) " 2 7

1 / 2 ( t in)7 1 / 2 M 

^ T(un -u,un- u) = 7(wn - u). 

Hence using also the estimate 

(4.4) / j(w)dx^C\\w\\l Vw<EVV, 
JGj 

we obtain 

(4.5) / ( 7
1 / 2 K ) - 71 / 2(^))2 dx < / 7 ( u n - u) dx ^ C\\un - u\\2 -> 0. 

JGj JGj 

Lemma 4.2. IfpE Uad and un -+ u in W, then 

/x(7(wn)) -> M(7(ti)) inL2{G5). 

P r o o f . Let us introduce an auxiliary function 

Jl(s) = <p(s(l + s)-1), s e [0, +oo). 

Then 

H(t) = /J(*1/2), |d/Z/d-s| = (1 + s)~2\dif/dx\ ^ d. 

Then we may write 

(4.6) / [ M 7 M - M(7(«))]2 d* = / [M(71/2(«n)) - pE(71/2(«))]2 dx 
JGj JGj 

^ C?||71/2(u„) - 71/2(u)||g < Cf C|K - «||?, 

using (4.5). D 
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Combining Lemma 4.1 and Lemma 4.2, we obtain 

W 7 k ) ) , 7 1 / 2 K ) ) o -> (u(y(u)),~f1/2(u))0 as n -> oo. 

Since the definition of u, un and the estimate (4.4) yield that 

\(un(^(un)) - u(l(un)),<y1/2(un))0\ 

< C\\un - //||0foo f / l(un) dx) ^ C\\(pn - <£>||0,oo||Un||l, 

we obtain that 

|(M„(7(«n)),71/2(«n))o - (M(7(«)),71/2H)o| 

^ l(«n(7(Mn)) -M7(Wn)),71/2(Wn))o| 

+ l(M(7K),71 /2(«n))o - («(7(«)),71/2(«))o| -> 0, 

as (pn -> </? in C([0,1]) and z/n -> u in IV. 
As a consequence, 

tpj((pn,un) -> ipj(ip,u), 1 < j ^ 1V, as n -> oo 

and the same holds true for \I> = max ^ . 

E x a m p l e 4.3. Let us consider a corresponding two-dimensional plane stress 
problem. Then the coefficient (—2/3) in the formulae for nj, T(u,v) has to be 
replaced by (—1) and (3fc/2) in the condition (2.1) and in the definition of Uad by 

(*)• 

Let the principal stresses be denoted by n, T2, n ^ T2. We define 

^)j((p,u) = (meas Gj ) _ 1 / Ti((D,n)dx, 1 ^ j ^ 1V, 

JG, 
where CT, is a given subdomain of Q, C IR2, meas Gj > 0. Let us introduce 

$((p,u) = max \hA(p,u). 

It is easy to derive that 

/ n(^,u)dx= [ [kd(u) + u(>y(u))((3(u))1/2]dx 
JGj JGJ 
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where 

p(u)=B(u,u), 

B(u,v) = (en(u) - e22(u))(eu(v) - e22(U)) + 4ei2(w)ei2(U). 

For (3 we prove an analogue of (4.3), (4.4) and of Lemma 4.1, using a parallel 
argument. Consequently, the condition (4.1) follows, provided <pn -> <p in U and 
un -> u in VV. 

R e m a r k 4.1. Note that Propositions 3.1 and 3.2 hold true also for the plane 
stress problem. Their proofs are completely analogous. 

R e m a r k 4.2. In the proof of (4.1) for the three examples 4.1-4.3 we have not 
needed the convergence in U = C^1) but only in C([0,1]). 

5. EXISTENCE OF A SOLUTION TO THE MAXIMIZATION PROBLEM 

There exists at least one solution of the Maximization Problem (4.2). Indeed, we 
can define the following functional 

J(<P) = <a(<p,u(<p)), <peuad, 

on the basis of Proposition 3.1. Let {<pn} be a sequence of functions <pn G Uad, such 
that 

lim J((Dn) = sup J((D). n^°° <peuad 

Using Lemma 2.1, we can choose a subsequence {<Dm} such that (Dm —> <p° in U and 

<p° £ Uad- Proposi t ion 3.2 implies that 

u(<Pm) —> u(<p°) in W, as m -> oo. 

By virtue of the assumption (4.1), we may write 

sup J(<p)= lim V(<pTn,u(<p7n)) = y(<p°,u(<p0)), 
H>zuad

 m->°° 

so that <p° is a solution of the problem (4.2). 
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6. APPROXIMATE SOLUTION 

Let us assume that 

(6.1) d <4(3k/2-fi0). 

Let M be an integer such that 

(6.2) M > \C2/CX. 

Denote Aj = [(j - 1)/M,j/M], j = 1,..., M, <p'M = d<pM/ dx and introduce the 
following approximation of the set Uad: 

(6.3) U% = {<pM G C(1)([(U]): <pM\Aj e P3(Aj), j = 1 , . . . ,M; 

»o ^<fiM(j/M) ^3fc/2; 

-C^<p'M(JlM)^-\C2/M; 

<pM(j/M)+j/M(l-j/M)<p'M(j/M) > K; 

\<p'M(j/M±)\^C2, j = 0,l,...,M}. 

Here P3(Aj) is the space of cubic polynomials on the interval Aj and 

<p"u(j/M±) = lim <p"M(x) for x -> j/M ± . 

Functions <PM € U^fd are Hermite cubic splines. It is easy to verify that 

(6.4) U% £ Uad, U™d C Uad, for M great enough. 

In fact, 

(6.5) 1^(0 - <pM(j/M)\ ^ \cx/M + \c2/M
2, 

(6.6) \v'M(0-<P'Mti/M)\<\c2/M 

holds for all £ E [0,1] and the closest nodal point Xj = j/M. 
The condition (6.2) guarantees that the interval in (6.3) has a positive length. 

Lemma 6.1. The set U™d is compact in IR2(M+1). 

P r o o f . Every (fM £ U/% can be identified with the vector of nodal values 
<PM(J/M), ip'M (j/M), j = 0 , 1 , . . . , M. It is readily seen that a bounded and closed 
set A C (R2(M+1) corresponds to UM. As a consequence, the set A is compact in 
R2(M + i ) . Q 
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Let Wh C W be a finite-dimensional subspace (e.g. a finite element space) and 

vh = vnwh. 
We define the Galerkin approximation uh = uh(ip) for <p G Uad as follows: 

u* eu° + Vh, 

(6.7) a(p(uh]uh,vh) = L(vh) Vvh G V*. 

where 

(6.8) a(p(u;w,v) = [(k - -/j(7(u))Jtf(iu)i/(i;) 4- 2u(~f(u))eij(w)eij(v) dx, 

(6.9) L(v) = / fiVi dx+ giVi ds 
JQ JrT 

and 

Lemma 6.2. For any <D G Uad there exists a unique Galerkin approximation 

w/iM-

P r o o f . The condition (6.7) is equivalent with the following minimization prob­
lem 

(6.10) uh = arg mm$(t>) 
veu°+vh 

(cf. (1.2) and (1.3)). The functional 

J(yh) = $(u° + yh) 

is coercive and lower semicontinuous on the space Vh (see the analogous proof of 
Theorem 2.1 in [5 - §8.2]). As a consequence a minimizer u° + wh = uh exists. 

Let uh and uh be two Galerkin approximations. On the basis of (3.2) we obtain 
that 

a¥>(uh;uh,uh -uh) - aip(uh,uh,uh - uh) ^ C\\uh - uh\\\. 

Since the left-hand side vanishes, uh — uh = 0 follows. • 

The Galerkin approximation uh((p) can be calculated by means of the secant mod­
ules (Kacanov) method as follows: 

Let y° G Vh be arbitrary. If yk G Vh is known, let yk+l G Vh be defined by the 
relation 

(6.11) a^(u° + yk;u° + yk+\v) = L(v) VveVh. 
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Then 

(6.12) hh - (u° + yk)\\i - > 0 a s k ^ o o . 

For the proof—see [5 - §11.5]. We can modify the argument there slightly, replac­

ing the Hilbert space H by the affine set u° + Vh C Wh. 

R e m a r k 6.L Note that only now the assumption d<p/dx ^ 0 is employed, for 

the proof of (6.12). 

P r o p o s i t i o n 6 .1 . If {<pn},pn € Uaa> and <pn -> <D in C([0,1]) as n -> oo, then 

Uh(pn) -> Uh(<p) a s n - > o o . 

P r o o f , is analogous to tha t of Proposition 3.2. • 

Let us introduce the following Approximate Maximization Problem: 

(6.13) VMW = a r S max^((DM,w/i(^M)). 
<PM€U% 

L e m m a 6 .3 . Let the functional $ satisfy the condition (4.1). Then the Approx­

imate Maximization Problem (6.13) has at least one solution. 

P r o o f . Let {</?M}> n ~> °°> ^ M ^ ^^d > ^ e a sequence such tha t 

(6.14) lim V(<pM,Uh(<PM)) = sup ^ ( < ^ M , W / I ( ^ M ) ) . 

By Lemma 6.1 the set UM is compact and therefore a subsequence { ^ } C {<PM} 

and </?M £ U£j exist such tha t 

<PM -> <PM in 1R2(M+1) as m -> oo. 

Proposition 6.1 yields tha t Uhfofy) ~~> uh(<PM)- Using (4.1), we obtain 

(6.15) * ( < P M , U / I ( < P M ) ) -> V(<PM,uh(<PM)) as m -> oo. 

From (6.14) and (6.15), we deduce 

^(<PM,Uh(<PM))= SUp tf(<PAf,U/i(<PM)), 

so tha t (DM = ^ M ( ^ ) i s a s o m t i o n of the problem (6.13). • 
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7. SOME CONVERGENCE ANALYSIS 

We will study the behaviour of the solutions (p°M(h) and approximations 
Uh((p°M(h)), when M tends to infinity and h (the mesh-size of finite element dis­
cretization) tends to zero. To this end, we shall need the following. 

Lemma 7.1. For any <p G Uad there exists a sequence {<PM}, M = M0, M0 + 1 , . . . 

such that (PM € U™d and <PM -+ <p in U = C^QO, 1]), as M -> oo. 

P r o o f . Denote (cf. the definition of U™d) 

b(M) = \c2/M. 

For v G (0,1) define 

(pu(s) = <£°((1 ~~ v)s)i where 

<p°(s) = (p(s + 1/2) and s G J„ = [-(1 - i/)_1 , (1 - i/)"1]. 

Then we have for 5 G / = [ - | , ^] 

3 
A*o ̂  <Pv(s) ^ -k , - C i ^ d(pu(s)/às ^ 0, 

since 

(7.1) * ^ _ ) = ^ ( i _ I / ) , H ^ - ^ l l o . o c / ^ C ^ A 

I K - V ' | | 0 , o c , / < ( C l + i C 2 ) ^ 

Let us apply the regularization 

/

oo 
u;(£ - s)(pu(s)ds 

-oo 

where H = const > 0, 

w{z,H) = h»i^> ifw<"' 
1 0 if \z\ ^ H 

and 

«o 
ľя 

- ^ Я " 1 / ш(z,H)dz. 
J-н 
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Thus we obtain 

(7.2) RH<P»eC°°(l), JL*O < ~ j f M * K |fc, 

(7.3) - C i ^ (RH(pv)\s) ^ 0 for all s e I. 

Let us denote 

~1 = \W - <Pi/||l,oo,/, ~2 = \\RH<PV ~ <r^||l,oo,/, 

e(v,H) = El + ~2. 

Introduce a function 

77(s) = (1 - A).Rff^(5) + 50A - fc(* + 1) + 46A/C1 

where 5 0 = - ( ^ + Mo), A = - ( - k - /x0), 
1 / 3 , \ . 1 / 3 , 

A = \(M, v, H) = e/ A + 46/Ci • 

Next we show that if M is great enough and v, H small enough, 0 < A < 1 and 77 
satisfies the following conditions for all s € I: 

(7.4) Mo ^ V(s) < I * 

(7.5) - C i < ri'(s) < -b(M) 

(7.6) ri(s) + (^-s2)rf(s)^K. 

In fact, using (7.2), (7.3) we may write 

m i n ^ s ) ^ (1 - A)/x0 + SoA - b + 46A/C1 = /x0 + £ + 8bA/Ci - 6 > //o, 
se/ 

since b(8A/Ci - 1) > 0 (by virtue of (6.1)); 

max77(5) ^ (1 - A)^k + S0A + 46-^- ^ h - AA + 46A/C1 = \k - e ^ h; 
s6/ 2 Ci 2 2 2 

>/(s) = (l-A)(B„^)'-&, 

so that 

- 6 ^ t/(a) > (1 - A)(-Ci) - b = - C i + ACi - 6 

= - C i +36 + e C i / A ^ - C i . 
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Since 

RH<P* + ( \ ~ s2) {RH<P.Y ~ (<P + (\ ' s2)<pf) | 

< \RH<PU -<p\ + ^\RH<P'V - <p'\ ^ \\RH<PU - </>||l,o 

< \\RH<Pu - </>i/||l,oo,/ + \\<Pu ~ <p||l,oo,/ = e ( ^ -ff), 

we conclude that 

IW„ + (4 - *2) J W „ ^ * - efo # ) • 

Then we may write 

77 + (\ - s2)V' = (1- \)RH<Pu + S0A - ft(| + s) + 46A/C1 

+ ( i - 5 2 ) [ ( l - A ) ( I ? / / ^ y - & ] 

£ (1 - \)(RH<Pu + (\- s2)RH<p'u) + 50A + 46A/C1 - 6 

^ (1 - \)(K - e) + (MO + A)A + 4bA/Ci - b 

= K — e + \e + A(LJo — ft) + e + 86A/C1 — 6 ^ « + \e ^ «, 

using (6.1) and no ^ ft- Altogether, the function 77 satisfies the conditions (7.4)-(7.6). 
Let IM^7 denote the Hermite cubic interpolate of 77 with the nodes Xj = j/M, 

j = 0 , 1 , . . . , M. Then we have 

4 

(7.7) ||<D-IMT7||l,oo,/ ^ \\<p-<pu\\ + yu-RH<Pv\\ + \\RH<Pv-r)\\ + \\T)-lMTl\\ = ^ # i 
i = l 

where all the norms are in the space C^(I). From (7.1) we obtain 

(7.8) 15i^i(3Ci + C2)i/. 

It is well-known that (see e.g. [7]) 

(7.9) £ 2 < C o l K - I W i / | | 2 , 2 , / - + 0 a s H - , 0 + . 

It is readily seen that 

I-/3 = JA(50 - RнЧ>u) + 4òД/d - б( ì + s) I ^ 

(7.10) < С(A + 6) = C(Ei +EҺ + b(M)) 
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where C, C are independent of v, H, M. 
Finally, we have 

(7.H) E4 ^ CoWv - iMVhxi < CM-^UIJ 

where |^4,2,/ stands for the seminorm of fourth derivatives and 

(7.12) M4,2,/^| |(I?//^) ( 4 ) | |0,2,/ 

follows from the definition of rj. 

Combining (7.7) till (7.12), we can prove that 

\W - IM^||i,oo,/ -> 0 as M -> oo. 

(Indeed, we can choose I/Q such that 

Ex <e/(16C), 

and Ho such that E2 < e/(16C), where e > 0 is arbitrary. We choose M3 such that 

Cb(M) < e/S for M > M3 

and M4 such that 

CM-2||(I7H()^o)(4)llo,2,/ < el A for M > M4. 

Then 
4 

]jP Ei < e for M > max{M3, M4} 

follows from (7.10)-(7.12), as e/(16C) ^ e/4 can be supposed without any loss of 
generality.) 

It remains to prove that 

(7.13) \\(lM7l)n\koo,i^C2. 

In fact, we can derive this bound for M ^ 3O(H)(2.v - jy2)~1C2~
1, where g(H) is 

some function, such that g(H) —> +00 as H —•> 0+. 
It is easy to derive that 

| | (W ' | | 0 ,oo , / ^ \\V"\\0,00,I +3M-1|| '/"l|0,oo,7. 
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On the other hand, 

||r?"||o,oo,/ < ||(iW,)"Ho,oo,/ ^ C2(l - v? 

follows from the definitions of 77 and ipu. Moreover, we have 

" ^ 3 (II) / <Pu 
J-H 

W"\ ^ \(RHVU)'"\ ^ (KOH)~1C3(H) / <p„(t) dt ^ SkC3(H)/K0 = g(H), 
J-H 

where limg(H) = +00 as H -> 0+, since the kernel u(z,H) has continuous third 

derivatives. Thus we obtain 

\(IMrj)"(s5±)\ ^ C2(l - v)2 + ZM-lg(H) 

and if M satisfies the inequality 

3M~^(H ) ^ C2(l - (1 - v)2) = C2(2v - v2), 

then (7.13) holds true. D 

Lemma 7.2. Assume that: 

(i) the set V D [C°°(Ti)]3 is dense in V and 

(ii) for any v G V n [C°°(f})]3 there exists a sequence {vh}, h —> 0+, such that 

Vh £ Vh and Vh -> v in W as h —> 0+. 

Then 

Uh(^) -> u(ip) in W as h —> 0+ 

hoids for any </? G Uad, where Uh(ty) is the Galerkin approximation and u(<p) is the 
solution of the problem (1.3). 

P r o o f , follows from the general theorem on the convergence of Ritz-Galerkin 
approximations [1 - Chapter 4, Theorem 0.6]. We employ the inequalities 

D2$(u;v,w) <J C||U | | i |H|i Vu,v,w G W, 

D2$(u,v,v) ^ K f eij^eij^dx ^ C0\\v\\2 Vu G W,v G V, 
Jo. 

(see [5 - §8.2, Lemma 2.1]). D 

R e m a r k 7.L Both assumptions (i) and (ii) are easy to satisfy. We can use 
standard finite element spaces. 
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Proposition 7.1. Let the assumptions of Lemma 7.2 be satisfied. Let {<PM}, 

M -> oo, be a sequence of<pM G U^} such that <PM ->• <P in U, as M -> oo. 

Then there is a subsequence {<PMn } &nd a function 

A: (0, +oo) -> (0, +oo) such that lim X(h) = +oo as h -> 0 + and 

Uh(<PMn) -> u(<p) in W as h -> 0 + and Mn ^ X(h). 

P r o o f . Consider a fixed subspace Wh* By (6.4) and Lemma 2.1, <p G Uad 
follows. Lemma 6.2 and Proposition 6.1 imply that 

Uh(<PM) ->• Uh(<p) in W as M -> oo. 

Using Lemma 7.2, we obtain 

Uh(<p) ->• ̂ (</>) in JV as /i -> 0 + . 

As a consequence, we have 

\\Uh(<PM) - U(<p)\\i ^ \\uh(<PM) ~ Uh(<p)\\l + I K M - U(<p)\\i -+ 0 

as h -> 0+ and M -> +oo, M ^ A(/i) for some function A, which grows to infinity 
as h -> 0+. D 

Theorem 7.1. Let {<p°M(h)}, h -> 0+, M ^ A(/i), be a sequence of solutions 

of the Approximate Maximization Problems (6.13), (where X is the function from 

Proposition 1.1). Let the assumptions of Lemma 7.2 be satisfied. 

Then there exists a subsequence {<P°Mn(
hn)} &nd <p° G Uad such that 

(7A4) <PMn(
hn)^<P° inU> 

(7.15) UhA<P°Mn(
hn))-> u(<p°) inW, 

(7.16) n<PliShn),Uhn(<p0
MShn))) "> 9(<P°M<P°)) 

as Mn -> +oo, hn -> 0+, where <p° is a solution of the Maximization Problem (4.2). 

P r o o f . Let <p G Uad be arbitrary. Using Lemma 7.1 we find a sequence {<PM} 
such that <PM € U™d,<pM -> <P in U as M -> oo. 

By definition, we have 

(7.17) ^ ( A W » ^ ( A M ) ) > *(<PM,uh(<pM)) 
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for all couples (h,M) under consideration. Let us apply (6.4), Lemma 2.1 and 
Proposition 7.1 to both sides of (7.17). On the left-hand side we can choose a 
subsequence W°Mn(hn)} such that 

uhMShn))->u(ip°) inVV. 

Moreover, we can prove that ip° E Uad, using (6.5) and (6.6). 

By virtue of (4.1) we have 

*(<PMAhn),Uhn(<p°Mn(hn))) -> <&(>P0M<p0)). 

On the right-hand side of (7.17) we obtain that 

uhn(<PMn) -+ u(<p) mW, 

^(VMn,Uhn(<pMn)) "» Vfaufo)). 

Thus we are led to (7.14), (7.15), (7.16) and to the inequality 

9(<p°M<P°))>*(<PM<P)), 

so that <p° is a solution of the problem (4.2). • 

R e m a r k 7.1. In practice, (7.16) is the most important result. Indeed, the max­
imizing data <D° are usually not needed, whereas the "safest" value of the functional 
^ is required. 

R e m a r k 7.2. In two-dimensional problems, we have to modify the conditions 
(6.1) and the proof of Lemma 7.1 replacing everywhere (3k/2) by (k). In the defini­
tion (6.8), the coefficient (—2/3) has to be replaced by (—1). The assumptions (i), 
(ii) of Lemma 7.2 are prescribed for V D [C°°(ft)]2. 
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