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HIGHER ORDER FINITE ELEMENT APPROXIMATION 

OF A QUASILINEAR ELLIPTIC BOUNDARY VALUE PROBLEM 

OF A NON-MONOTONE TYPE 

LlPING LlU, MlCHAL KRIZEK, Praha, PEKKA NEITTAANMAKI, Jyvaskyla, 

(Received May 3, 1996) 

Summary. A nonlinear elliptic partial differential equation with homogeneous Dirichlet 
boundary conditions is examined. The problem describes for instance a stationary heat 
conduction in nonlinear inhomogeneous and anisotropic media. For finite elements of degree 
k ^ 1 we prove the optimal rates of convergence 0(h ) in the H -norm and 0(h + ) in the 
L -norm provided the true solution is sufficiently smooth. Considerations are restricted to 
domains with polyhedral boundaries. Numerical integration is not taken into account. 

Keywords: nonlinear boundary value problem, finite elements, rate of convergence, 
anisotropic heat conduction 

A MS classification: 65N30 

1. INTRODUCTION 

In this paper we deal with a quasilinear elliptic problem whose classical formulation 

reads: 

Find u e C(Tl) such that U\Q eC2(ft) and 

(1.1) — div(A(x,u) gradu) = / in H, 

(1.2) u = 0 ondft, 

where ft C Rd, d £ {1,2,3}, is a bounded domain with a Lipschitz boundary, / £ 

L2(Q), A = (o>ij)fj=1 is a bounded uniformly positive definite matrix, i.e., 

(1.3) maxmaxla^-^ f ) ! -̂  C \/i,j G {1 , . . .,d}, 

(1.4) C0rirri^rirA{x,Ov Vr/€ Rd Vx 6 fi V£ € R, 
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where C0 > 0 and, moreover, we assume that the derivatives da^/d^ and d2a,ij/d£2 

are bounded and continuous o n f t x R. The matrix A need not be symmetric. 

The problem (1.1)—(1.2) for d > 1 cannot be converted, in general, by the well-
known Kirchhoff transformation to a linear problem even if A is independent of x, 
since A is a matrix function. 

The existence of a weak solution u is obtained as a weak limit of Galerkin approx
imations. The uniqueness of the classical and weak solutions is proved in [13] and 
[14], respectively. Several uniqueness and comparison theorems for similar problems 
can be found in [1, 5, 11, 16]. The existence of the weak solution for various kinds 
of boundary conditions (including (1.2)) is studied in [9, 11, 14, 21]. 

In [4], Douglas and Dupont derived an optimal rate of convergence of the finite 
element method for the problem (1.1)—(1.2) in the case that 

(1.5) A(x, u) = \(x, u) J, 

where I is the identity matrix and A is a smooth scalar function. The main aim of 
this paper (see Theorem 4.1) is to generalize the result of [4] to any smooth uniformly 
positive definite matrix A(x,u) satisfying (1.3) and (1.4). This represents a prac
tically interesting case, since the problem (1.1)—(1.2) describes a steady-state heat 
conduction in nonlinear inhomogeneous anisotropic media (e.g., in magnetic cores of 
large transformers, see [17]). The unknown function u represents the temperature, 
A is the matrix of heat conductivities and / is the density of volume heat sources. 
In this case A is symmetric. 

The finite element method for the case (1.5) has been considered by many other 
authors. For instance, in [22], the method of Douglas and Dupont from [4] is gen
eralized to obtain an asymptotic error estimate in the L°°-norm. An optimal rate 
of convergence in the Lp-norm is proved in [19] for a mixed finite element method. 
Similar results were also obtained in the paper [2]. 

Note that an analogue of the well-known Cea's lemma holds for those nonlinear 
elliptic problems whose associated operators are strongly monotone and Lipschitz 
continuous (see [3, 17]). Hence, in this case it is easy to derive the rate of convergence 
0(hk) in the H1-norm for the Lagrange elements of degree k. However, the papers 
[9, 14] contain one-dimensional examples which illustrate that the problem (1.1)-
(1.2) is of a non-monotone and non-potential type. 

Finite element approximations of nonlinear elliptic problems of strongly monotone 
and also pseudomonotone type are profoundly studied in [7, 8, 27]. The authors 
consider the numerical integration as well as the approximation of a curved boundary. 
They obtain a linear rate of convergence in the H1-norm for linear finite elements 
provided the true solution is sufficiently smooth. In [27], the rate of convergence 
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0(h£) is proved for u G H1+er(n). However, the papers [7, 8, 27] do not deal with 

higher order elements and the optimal error estimates in the L2(n)-norm. 

2. W E A K FORMULATION AND FINITE ELEMENT APPROXIMATION 

Throughout the paper we shall employ the standard Sobolev space notation (see 
[3, 20]). The norm in the product Sobolev space (Wk(Q))n, k G {0,1 , . . .} , p G [1, oo], 
n G {1,2 , . . .} , is denoted by || • \\k,p. In particular, if p = 2 then we set Hk(ft) = 

W£(Q) and || • II* = || • IU.2- By Ho(H) we mean the space of functions from H1^) 
whose traces vanish on dfi,. The symbol (•, -)o stands for the usual scalar product in 

L2(n). 
According to the Cauchy-Schwarz and Holder inequalities, we get 

Nlu,3 < IMIoll*2llo ^ NlolMlo,3lMlo,6 w E L6(n). 

From here and the imbedding H1^) «--> L6(ft) for d ^ 3 (see [3, p. 114]) we find 
the inequality which will be used later: 

(2.1) ||t,||0,3 ^ CjHoHi)172 w e ; / 1 ^ ) . 

The weak formulation of problem (1.1)-(1.2) consists in finding u G H0(ft) such 
that 

(2.2) a(w,u,v) = (f,v)0 Vv G H^(Q), 

where 

a(z;w,v) = \ (gv3,dw)TA(x,z) gradvdx, v, w G H1(n), z G L2(fl). 
Jn 

The argument x will be sometimes omitted in what follows. From (1.4), (1.3) and 
Friedrichs' inequality we see that there exist positive constants Co and Ci such that 

a(z',v,v)>CQ\\v\\2 VzGL2(H) VV G H^tl) 

and 

K^tu.^i^CiiHiiWi! VzeL2(n) Vw^eH1^). 

This means that a(-; •, •) is uniformly Ho(ft)-elliptic ar-d continuous. 

Theorem 2.1. The weak solution of (2.2) exists and is unique. 

The p r o o f is given in [14]. • 
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From now on assume that ft C Ud, d G {1,2,3}, has a polyhedral boundary and 
let Th be a standard triangulation of ft into polyhedral elements (see [3]). Let us 
introduce the approximate problem: Find uh G Vh such that 

(2.3) a(uh;uh,vh) = (f,vh)0 VvheVh, 

where 

vh = {vheH*(n)\vh\KePK VKeTh} 

is the finite element space, PK is a finite dimensional space such that PK 2 Pk(K), 

k ^ 1 is an integer and Pk(K) is the space of all polynomials of degree at most k 

defined on K. The space Vh can be generated by the Lagrange elements (or Hermite 
elements for k > 3). 

R e m a r k 2.2. The existence of at least one solution uh of (2.3) can be proved by 
the Brouwer fixed-point theorem (see [14, p. 174]). Some special sufficient conditions 
guaranteeing the uniqueness of uh are given in [12, 14]. Nevertheless, the uniqueness 
of uh, in general, has remained an open problem until now. 

R e m a r k 2.3. In [6], the existence of a discrete solution is proved in the case 
of linear elements, numerical integration and approximation of a piecewise curved 
boundary by a polygonal one. The proof is based on some results of [7, 8, 26]. A 
discrete maximum principle for the problem (1.1)—(1.2) in the case (1.5) is derived 
in [15]. The publications [17, 18, 24] are devoted to numerical calculation of real-life 
technical problems which are described by the equation (1.1). 

R e m a r k 2.4. The convergence of approximate solutions uh to the weak solution 
u of (1.1)-(1.2) in the H1(H)-norm was proved in [14]. However, no attempt to derive 
any rate of convergence was made there. 

Finally, we introduce an auxiliary lemma which will be used in Section 4. 

Lemma 2.5. Let a, (3 and 7 be arbitrary real nonnegative numbers such that 

(2.4) a^Ctf + y/cFy). 

Then there exists a constant C > 0 independent of a, f3, 7 such that 

(2.5) asJC"(/? + 7 ) . 

P r o o f . If a = 0 then (2.5) holds. So let a 7- 0. Then by (2.4) 

a 

D 
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3 . ADJOINT PROBLEM 

In the next section we derive the optimal a priori asymptotic error estimate in 
the H1(l^)-norm and also in the L2(ft)-norm. In the latter case, we will employ the 
Aubin-Nitsche trick. To this end we shall utilize the weak solution </? of the linear 
problem 

L*(p = -div(AT(x,u) grad(D) + (gra,du)TAT(x, u) grad<^ = ( in 0, 

(3A) (D = o on an, 

where u is the unique solution of (2.2), £ G L2(Q), Au = ((dij)u)ij=i ar-d the sub
script u means the differentiation with respect to the last variable, i.e., (aij)u = 
dciij(x,u)/du. In Theorem 3.1, we give a sufficient condition guaranteeing the exis
tence and uniqueness of the weak (generalized) solution of the problem (3.1). 

First we show how the above problem (3.1) can formally be obtained. Set 

C(u) = — div(A(u) gradw) 

and choose v G HQ(Q) D H2(fi) arbitrarily. Then for any real t ^ 0 we have 

1 1 
-(C(u + tv) — C(u)) = —div(A(u + tv) grad(ix + tv) — A(u) gradix 
z z 

— A(u) grad(frv) + tA(u) gradv) 
,. (A(u + tv) — A(u) ,, x A/ . , \ 

= -div ( — grad(u + tv) + A(u) grad vJ. 

Letting t —> 0, we obtain the Gateaux derivative of C at the point u and in the 
direction v 

Lv = DC(u;v) = — div(A(x,u) gradv + vAu(x,u) gradu). 

Notice that this operator is linear. 

Now choose (p G Ho (ft) n H2(ft) arbitrarily. Then, applying twice the Green 
theorem, we get 

(Lv,<f)o = — div(A(u) gradv + vAu(u) gradu)(Ddx 
Jn 

= / (grad(D)T(A(u) gradL> + vAu(u) gradH)dx 
Jn 

= / v(-div(AT(u) grad(D) + (gradH)TAT(H) grad<£>)d:r 
Jn 

= ( U , L » 0 , 
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i.e., the linear operator L* is adjoint to L. If A(u) is independent of u then, of course, 
Au = 0 and we get the standard adjoint problem like in [3, p. 138]. 

The weak formulation of (3A) reads: Find <D G H0(Ct) such that 

where 

%>,«) = (C,«)o VveH^n), 

b(cp, v) = I [(grad v)TAT grad </? + vcT grad (/?] dx, 
JQ 

A(x) = A(x,u(x)), 

c(x) = Au(x,u(x)) gra,du(x) 

for x G ft and u G Ho(^) is the unique weak solution of (1.1)—(1.2) (compare 
Theorem 2.1). 

Theorem 3.1. Let c G (L°°(ft))d and let (1.3) and (1.4) hold. Then there exists 
precisely one weak solution <D G Ho (ft) of the classical problem (3.1). 

P r o o f . By (1.3) and (1.4), the matrix A is bounded and uniformly positive 
definite. Since c is also bounded, the bilinear form b(-,-) is continuous and the 
theorem directly follows from [11, p. 170]. (The proof of uniqueness of <D is based on 
the weak maximum principle and the existence of (D is a consequence of the Garding 
inequality, the Fredholm alternative and the uniqueness.) • 

R e m a r k 3.2. If the weak solution u of the problem (1.1)-(1.2) belongs to the 
space of Lipschitz continuous functions M^(fl), then the assumption c G (L°°(ft))rf 

of the above Theorem 3.1 is obviously satisfied. 

R e m a r k 3.3. If c G (C1 (ft))d and div c ^ 0 then for any v G Ho (ft) we get, by 
the Green theorem, that 

(vc,gra,dv)0 = — (div(cv),i;)o = — (vdiv c, v)0 - (vc,gradv)0 

and thus 
(vc,gradv)0 = - - ( d i v c,v2)0 ^ 0. 

Hence, the bilinear form is Ho (ft)-elliptic (see also [20, p. 44]), 

Kv,v) ^ / (gradi;)T.4T gradudx ^ ColNI? VU G H0
x(ft) 

by the Friedrichs inequality and thus the well-known Lax-Milgram lemma [3, 17, 20] 
can be applied. 
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In the next Section 4 we shall, moreover, require the regularity 

(3.2) |M|2 < CHCllo, 

where ip G HQ(Q) n H2(Q) is the weak solution of (3.1). 

4. RATE OF CONVERGENCE 

Throughout this section we assume that the family T = {Th}h^o of triangulations 
is regular, i.e., there exists a constant x > 0 such that for any triangulation Th G T 
and any element K e Th there exists a ball BK of radius QK such that BK C K and 

(4.1) x diamK ^ QK-

Theorem 4.1. Let u G Hk+1(il) for k ^ 1 be the weak solution of (1.1)-(1.2) 
and let (3.2) hold. If Uh is a solution of (2.3), then there exist C, ho > 0 such that 
for any h G (0, ho) we have 

(4.2) \\u-uh\\0 + h\\u-uh\\1^Chk+\ 

where C depends on \\u\\k+i. 

P r o o f . Since d ^ 3, we havt H2(9) -+ W£(Q) (see [3, p. 114]) and thus |M|i,6 
is finite. According to [3, p. 123], for the solution u G Hfc+1(fi) of (1.1)-(1.2) and 
sufficiently small h we obtain by the regularity of T (see (4.1)) that 

(4.3) \\u - TT/MII + h\\u - Tvhu\\h6 ^ Ch*|MU+ i , 

where irhu G Vh is the V^-interpolant of u. In particular, 

(4.4) lk/M|i,6 ^ \\U - 7Thu\\ly6 + ||u||i,6 ^ C||u||fc+1. 

By the uniform Ho(n)-ellipticity °f a(S'.*)» (2-2), (2.3) and the Holder inequality, 
we arrive at 

C0\\uh - 7Thu\\l ^ a(uh\Uh - 7ThU,Uh - TThu) 

= a(uh\ uh,uh- nhu) - a(uh\ nhu, uh - 7rhu) 

= a(u\ u,Uh — 7Thu) - a(uh\ nhu, uh — nhu) 

^ |a(u;u - 7rhu,uh - 71-̂ )1 + \a(u\nhu,uh - nhu) - a(uh\7rhu,uh - nhu)\ 

^ CIIIU-TT^UIIIIIU/, -7rfcu||i +C2 | |-4(u) -i4(ti fc)||0 |3|| grad7Thu\\ote\Wh -7T/Mli-
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This, (4.4) and (4.3) imply that 

Co I K - Traill <J Cx\\u - irhu\\i + C3\\A(u) - A.K)||0,3 

(4.5) < C(hk\\u\\k^ + \\A(u) - AK)l |o,3) , 

where C3 depends on u. Since the entries â - = aij(x,£) are Lipschitz continuous 
with respect to the last variable £, we get by (2.1) that 

\\A(u) - A(uh)\\0,3 ^ Ci||u - uh\\0,3 ^ C2(\\u - uh\\0\\u - ^ | | i ) 1 / 2 . 

From here, (4.3) and (4.5) it follows that 

\\U - Uh\\i < ||li - 7Thu\\i + \\uh ~ 1Thu\\i < C(/l/c||l/||/c+i + ||lt - li^Ho^Hu - lX/x||i/2)-

Setting 
( = u-uh eL2(Q), 

we see by Lemma 2.5 that 

(4.6) IIClli < o(l^MU+i + IICIIo). 

In order to bound ||C||o = IÎ  — uh\\o, we use a duality argument (see [4, 23]) based 
on the Aubin-Nitsche trick. Let <D G Ho(^) fl H2(Q) be the weak solution of the 
linear adjoint problem (3.1). Then, by the Green theorem, 

||C||g= /C 2 d*= [ «L'<p)dx 
Jn JQ 

= / [(gradC)T-4T(tx) grad(/? + C(gradw)TAT grad(D]dx 
Jf2 

(4.7) = / [(grad(f)TA(u) g r a d u - (grad<D)TA(u) gradtx^ 
Jn 
+ C (gr&du)TAT grad*/?] dx 

= / [(gradip)TA(u) gradu - (grad(D)TA(u/l) gradn^ 
Jn 

+ (grad<p)T(A(ix/l) - A(u)) gradu^ + C(grad<D)TAu grad it] dx. 

For any x £ ft we have, by the mean value theorem, 

A(x,uh) - A(x,u) = / Au(x,u + t(uh - u))(uh-u)dt 
Jo 

= - C / Au(x,u-tQdt = -(Au(x), 
Jo 
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where Au = ((dij)u)fJ=1, and (at-j)u = (a»j)u(u - ^ C ) f° r s o m e #ij = 0^0*0 E [0,1]. 
Hence, for any vh G V̂  we obtain by (4.7), (2.2) and (2.3) that 

IICllo = / [ (g r a d(^ ~ vh))
TA(u) gradu - (grad(<p - vh))

TA(uh) gradu/i 
JQ 

+ C(grad(D)TAu grad(C - u) + C(grad(D)TAu grad it] drr 

= / (grad((/? - ^ ) ) T ( A ( u ) - A(uh)) gradudz 
JQ 

(4.8) + / (grad(<p - vh))
TA(uh) grad(u - uh) dx 

t«^ /WU.-^* 
Jft ./ft 

Using similar arguments as before, the differentiability of A and the substitution 
z = st, we find for any a: € .1 that 

j4u(a;,i0 - Au(x) = / [Au(a;,i/) - Au(x,u + (̂w^ - ix))]d* 
Jo 

= / ( / .^^(Xjix + s^ii/t-ii))*CdsJd< 

= - C / ( / A u u ( x , i i - C ^ ) d z j d i 

= -C / ( / - 4 u u ( x , u - C ^ d n d z 

= -C / (1 - ^)-4uu(x,w - Cz)dz = -C-Auu(x). 
Jo 

Hence, since the derivatives of â - up to order two are bounded and since 

IICIIO.3 < CIICHl 

and H2(Q.) *-> W£(Q) for n ^ 3, we have by (4.8) and the Holder inequality that 

IICllo = / C(grad((/? - ^ ) ) T Z U gradudx 
JQ 

+ / (grad((/p - vh))
TA(uh) grad(u - uh) dx 

JQ 

(4.9) + / C (grad (f)TAu gradC dx - / C2 (grad(D)TAuu gradudx 
Jft Jra 

< CHCII0.3II grad((D - UOIIoll gradii||0,6 + C\\<p - ^||i | |Clli 

-r-C||Cllo,3||grad<^||0,6||gradCllo + C||Cll§,3II S^adcp||0,61| grad-u||0,6 

^ c w d i ^ - ^ H x + iicililMWIICIIi 
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for any vh G Vh. Now choose vh G Vh such that 

(4.10) ||<D - vh\\! + h\\ip - vh\\he ^ Ch\\<p\\2. 

Then, by (4.9), we obtain 

IICII§<C'(fc + | |cili) | |CllilMI., 

where C depends on ||u||2. Therefore, the inequality (3.2) implies that 

HCllo ^ C(h\\Ch + HCII?). 

Utilizing (4.6), we get 

I I C I I o < c ( ^ + 1 + l i | | C l l o + ft2fc + ||CII^), 

where C depends on ||u||fc+i. Using (4.6) once again, we find that 

HCllo + /.HClli < C{hk+l + fc||C||o + h2k + HCllg). 

Consequently, for k ^ 1 and sufficiently small h we have 

(4.H) IICIIo + ltllClli^o'(life+1 + IICIÎ ). 

This inequality proves the theorem provided we can show that HCIIo —>• 0 as /i —> 0 
(see also [14]). 

From (4.3), (4.5) and the boundedness of A, we see that 

\\U - Uh\\i ^ \\U - 7Thu\\i + \\lThU - Uh\\X ^ C/lfc||u||fc+i + COLX ^ C. 

Hence, 

IK | | i ^ C. 

As a consequence of the Eberlein-Schmulyan theorem (see [25, Chap. V]) there exist 
an element LO G # 1 (H) and a subsequence of {uh}, denoted again by {uh}, such that 
uh - - LO in # 1(f t ) . By the Rellich theorem (see [20, p. 17]), uh -> LO in L2(Q). We 
wish to demonstrate that LO = u. To do that let t; G Co°(Q). Then ^ u G 14 and 
we have \\v — irhv\\\ -> 0 as h -> 0. Therefore, by the relations (2.2), (2.3) and the 
Lipschitz continuity of a^-, we get 

\a(uj;LO,v) - ( / ,v)0 | ^ \a(w,LO - uh,v)\ + l a ^ u / ^ v ) - a ^ j u ^ , ! ; ) ! 

+ \a(uh;uh,v- irhv)\ + K / j ^ v - v)0 | 

< \a(LO\LO - uh,v)\ + C{y)\\w - u/Jlollu/Jli 

+ CilKHilk - irhv\\i + C2||v - 7Tfci;||i -> 0 
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as h —> 0 due to the convergence of Uh to u and 7ThV to v. By the density Co°(ft) = 

Ho(^) w e g e t that 

a(w;w,i/) = (/,t;)o Vu G ^ ( f t ) . 

Hence a; is the weak solution of (1.1)—(1.2). Prom the uniqueness of the weak solution 

of (1.1)—(1.2) it follows that u = u (see Theorem 2.1). It is easy to see that the 

whole original sequence {uh} converges to u. Hence, ||£||o -i> 0 as h -> 0 and for h 

sufficiently small we obtain 

c'HCHS < 5IICII0. 

From (4.11) the inequality (4.2) follows. D 

R e m a r k 4.2. Asymptotic Z/°°(fi)-error estimates for quasilinear elliptic bound

ary value problems are established in [10, 22]. 
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