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Abstract. In this paper new methods for solving elliptic variational inequalities with
weakly coercive operators are considered. The use of the iterative prox-regularization cou-
pled with a successive discretization of the variational inequality by means of a finite element
method ensures well-posedness of the auxiliary problems and strong convergence of their
approximate solutions to a solution of the original problem.
In particular, regularization on the kernel of the differential operator and regularization

with respect to a weak norm of the space are studied. These approaches are illustrated by
two nonlinear problems in elasticity theory.
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1. Introduction

The idea of iterative regularization for solving ill-posed variational problems was

formulated first by Bakushinski/Polyak in [9]. However, in implicit form it has
appeared already in a number of previous publications, including the fundamental

paper [33] of Mosco on the stable approximation of variational inequalities.

A theoretical foundation of iterative regularization by means of the prox-mapping
was given by Rockafellar in [40]. The first concrete algorithms of this type,

destined for solving finite dimensional convex programming problems, are based on
augmented Lagrangian methods (cf. Rockafellar [41], Antipin [4]) and penalty

methods (cf. Kaplan [25]). In the recent past the development in this field has been
extremely intensive. We refer to several papers only: The results by Gueler [18],

1 Supported by the Deutsche Forschungsgemeinschaft

111



Ha [20] and Luque [31] are concerned with the investigation of the properties of the

prox-mapping and the proximal point algorithm, introduced by Martinet in [32];
Ibaraki/Fukushima/Ibaraki have used in [24] prox-regularization with respect
to the primal and dual variables with decomposition of the arising auxiliary prob-

lems; Auslender [7] and Fukushima [16] have considered convex programming
algorithms which couple prox-regularization with special cutting plane procedures;

Spingarn in [43] and [44] has described a prox-technique of the partial inverses of
maximal monotone operators to construct decomposition algorithms for convex pro-

gramming problems. In a number of papers (cf. Alart [1], Alart/Lemaire [2],
Auslender/Crouzeix/Fedit [8], Mouallif/Tossings [34], Tossings [45]) iter-

ative prox-regularization has been performed in different penalty methods.
In the papers referred above there is no discretization of the problems considered,

moreover, the main results are concentrated on finite dimensional problems.
General approaches for constructing stable methods of the discretization of con-

vex variational problems in Hilbert spaces, based on the principle of iterative prox-
regularization, have been developed by Kaplan/Tichatschke in [26], [28] and

Lemaire in [30]. In [30] the conditions for the approximation of the data are for-
mulated in terms of the variational convergence (cf. Attouch [5], Attouch/Wets

[6]). The papers [26] and [28] are mainly oriented towards elliptic variational inequal-
ities, discretized by means of finite element methods, as well as towards semi-infinite

programming problems, approximated via standard approaches. A special penalty
method for solving convex, semi-infinite problems, using an adaptive discretization

coordinated with prox-regularization, was suggested by the authors in [27].
The present paper deals with a modified principle of iterative prox-regularization

described in Kaplan/Tichatschke [28] for solving variational problems

min{J(u) : u ∈ K ⊂ V }

with K a convex, closed subset of a Hilbert space V and J a convex, lower semi-

continuous (lsc) functional on V . This principle can be sketched briefly as follows:
In the i-th step of a chosen standard discretization method a convex problem

min{Ji(u) : u ∈ Ki ⊂ Vi},

is constructed on a finite dimensional subspace Vi of the Hilbert space V . Starting
with a point ui,0, approximate prox-iterations

(1.1) ui,s ≈ argmin{Ji(u) + ‖u− ui,s−1‖2 : u ∈ Ki}

are performed with the data Ji and Ki while

‖ui,s − ui,s−1‖ > δi,
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where δi is a given value. The last iterate on the i-th discretization level is used

as starting point ui+1,0 in order to continue the procedure on the next level (step
(i+ 1)).

It should be remarked that in the usual scheme of iterative regularization the
discretization has to be improved after each prox-iteration, i.e. formally ui,1 is cal-

culated by means of (1.1) and after that one has to put ui+1,0=ui,1, i := i+ 1.

The aim of this modification is quite clear, especially, if Ji is close to J andKi ⊂ K:

We do not increase the exactness of the approximation if the prox-iterations guar-
antee a sufficiently fast decrease of the objective function. This is particularly im-

portant, if there is no possibility to choose a priori a starting point which is close to
the sought solution. Indeed, using the standard way of iterative prox-regularization,

with high probability we may obtain auxiliary problems of large dimension in situ-
ations where the iterates are still far away from the sought solution of the original

problem. It is obvious that in this case an approximation with high accuracy does
not have any reason and only enlarges the numerical expense.

In order to distinguish in the sequel the standard and modified methods of iterative
prox-regularization, we will call them the one-step regularization (OSR-method) and

the multi-step regularization (MSR-method), respectively.

Here the investigation of MSR-methods is mainly concerned with elliptic varia-
tional inequalities with weakly coercive operators. Due to additional assumptions

on the structure of the problems and the behaviour of the discretization methods,
reflecting the peculiarities of elliptic variational inequalities and finite element meth-

ods, we get essentially weaker conditions on the choice of the controlling parameters
of the MSR-method than in Kaplan/Tichatschke [28] (compare Theorem 1 in

[28] with Theorems 3.5 and 4.4 here). These conditions ensure strong convergence
of the iterates to a solution of the original problem. Moreover, in this description it
is not essential what kind of algorithm is used for solving the regularized auxiliary

problems: it is only important how precisely they are solved.

This paper deals also with two new variants of MSR-methods: regularization on
the kernel of the objective functional and the so-called weak regularization (with

respect to a weaker norm of the space V ). These modifications take account of the
structure of the optimal set, which is known a priori for some variational inequalities.

Two examples illustrate our consideration. The first is a contact problem of two
elastic bodies without friction and the second is a static problem of the linear theory

of elasticity with given friction, investigated by Duvaut/Lions in [13] (see also
Panagiotopoulos [38]). Both models, considered in the framework of the plane

theory of elasticity, are quite popular as concerns the investigation of the peculiarities
of elliptic variational inequalities with weakly coercive operators.

113



2. Three variants of MSR-methods

In a Hilbert space Y we consider the following variational problem:

(2.1) min{J(u) : u ∈ K},

with K a convex, closed subset of Y and

(2.2) J(u) =
1
2
a(u, u) + j(u)− 〈f, u〉 .

Assumption 2.1.
(i) a(·, ·) is a continuous, symmetric bilinear form on Y × Y , a(u, u) � 0 on Y ;
(ii) j(·) is a convex, lower semi-continuous (lsc) functional on Y ;

(iii) f ∈ Y ′, where Y ′ is the dual space to Y with 〈·, ·〉 the duality pairing.

We assume that Problem (2.1) is solvable and denote by U� its optimal set.
The investigation of different MSR-methods for Problem (2.1) will be performed

in the framework of a general scheme.
Let H be a Hilbert space such that Y can be continuously embedded into H ; let

Y1 be a closed (concerning ‖ · ‖Y or ‖ · ‖H) subspace of Y and P an orthoprojector
(in the same norm) onto the subspace Y1; b(·, ·) a symmetric bilinear form on Y ×Y .

Assumption 2.2.
(i) a(u, u) � b(u, u) � 0 on Y ;

(ii) for some β > 0 the inequality

(2.3)
1
2
b(u, u) + ‖Pu‖2H � β‖u‖2Y

is fulfilled for all u ∈ Y .

Under Assumptions 2.1(i) and 2.2 the relation

(2.4) |u|2 = 1
2
b(u, u) + ‖Pu‖2H

defines on Y a new norm | · |. The space Y with this norm is denoted by Y, and its
conjugate by Y ′.
The norms ‖ · ‖Y and | · | are equivalent. Indeed, there exist two constants c and

M such that

(2.5) ‖u‖H � c‖u‖Y
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and

(2.6) |b(u, v)| � M‖u‖Y ‖v‖Y , |a(u, v)| � M‖u‖Y ‖v‖Y

and for the orthoprojector P we have

(2.7) ‖Pu‖H � c‖u‖Y .

Using the inequalities (2.3) and (2.5)–(2.7), we immediately obtain

(2.8) β‖u‖2Y � |u|2 �
(1
2
M + c2

)
‖u‖2Y for u ∈ Y.

2.1. The general scheme of MSR-methods
In order to solve Problem (2.1), a family of auxiliary problems

(2.9)
Ψi,s(u) = Ji(u) + ‖Pu− Pui,s−1‖2H → min

u ∈ Ki

s = 1, . . . , s(i); i = 1, 2, . . .

is constructed with Ki convex, closed subsets of Y and

Ji(u) =
1
2
a(u, u) + ji(u)− 〈f, u〉 ,

where ji : Y → � are convex, Gâteaux-differentiable functionals. The values s(i) are
specified in the course of the following iteration procedure, starting with s(i) = 1 for

each i.
Let a point u1,0 and sequences {δi} and {εi} be given with δi > 0, εi � 0,
lim εi = 0. For a fixed pair (i, s) the point ui,s is defined such that

(2.10) ‖∇Ψi,s(ui,s)−∇Ψi,s(ui,s)‖Y ′ � ε′i

with

(2.11) ε′i � β
(1
2
M + c2

)−1/2
εi

and

(2.12) ui,s = argmin{Ψi,s(u) : u ∈ Ki}.

If ‖Pui,s − Pui,s−1‖H > δi, we agree that s(i) = s+ 1, continue with the pair

(i, s+ 1) and compute ui,s+1, otherwise put s(i) = s (this is the final value of
s(i)), ui+1,0 := ui,s(i) and compute ui+1,1.
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In the sequel we refer to this scheme as Method (2.9)–(2.12).

In (2.9) the functionals Ji are used in order to include in this scheme a smoothing
procedure for the objective functional J , if J is not differentiable.
For the choice Y1 = Y = H we obtain the basic variant of the MSR-method studied

by Kaplan/Tichatschke [28].
If Y1 belongs to the kernel of the bilinear form a(·, ·) in (2.2), we deal with a

regularization on the kernel.
Finally, if the norm of the space H is weaker than the norm of Y , then a weak

regularization is introduced.

2.2. Convergence result for the general scheme
In order to investigate convergence of Method (2.9)–(2.12), we need the following

auxiliary statement.

Lemma 2.3. Suppose that Assumptions 2.1 and 2.2 are fulfilled, that G is a

convex, closed subset of the space Y and that j̄ is a convex, lsc functional on G such

that

(2.13) sup
u∈G

|j̄(u)− j(u)| � σ.

Moreover, let z0 ∈ Y be an arbitrarily chosen point and

z1 = argmin{J(u) + ‖Pu− Pz0‖2H : u ∈ G}

with J(u) = 1
2a(u, u) + j̄(u)− 〈f, u〉. Then, for each u ∈ G the estimates

(2.14) |z1 − u|2 − |z0 − u|2 � −‖Pz1 − Pz0‖2H + J(u)− J(z1) + 2σ

and

(2.15) |z1 − u| � |z0 − u|+ η(u)

hold, where the norm | · | is defined by (2.4) and

η(u) =





0 if J(u) � J(z1)− 2σ

(J(u)− J(z1) + 2σ)1/2 otherwise.
If, moreover, ‖Pz1 − Pz0‖H � δ and δ � η(u), then

(2.16) |z1 − u| � |z0 − u|+ η2(u)− δ2

2|z0 − u| .
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�����. With regard to (2.7) the bilinear form (Pu,Pv)H is bounded on the

space Y × Y . Thus, in view of the choice of z1, the inequality

j̄(u)− j̄(z1) + a(z1, u− z1)−
〈
f, u− z1

〉
+ 2(Pu− Pz1,Pz1 − Pz0)H � 0

is fulfilled for all u ∈ G and, due to (2.13),

j(u)− j(z1) + a(z1, u− z1)−
〈
f, u− z1

〉

+2(Pu− Pz1,Pz1 − Pz0)H + 2σ � 0.(2.17)

Now, using the definition of the norm | · |, we obtain

|z1 − u|2 − |z0 − u|2 = 1
2
b(z1 − u, z1 − u)− 1

2
b(z0 − u, z0 − u)

− ‖Pz1 − Pz0‖2H + 2(Pz1 − Pz0,Pz1 − Pu)H ,

and with regard to (2.17) and Assumption 2.2(i), a straightforward calculation leads
to

|z1 − u|2 − |z0 − u|2 � − 1
2
a(z1, z1) +

1
2
a(u, u) + j(u)− j(z1)

−
〈
f, u− z1

〉
− ‖Pz1 − Pz0‖2H + 2σ

= J(u)− J(z1)− ‖Pz1 − Pz0‖2H + 2σ.

Thus, inequality (2.14) is proved and (2.15), (2.16) follow immediately. �

Let Sr = {u ∈ Y : |u| � r}. We suppose that the values r� and r � r� are fixed
such that

(2.18) U� ∩ Sr�/8 
= ∅, u0,1 ∈ Sr�/4

and introduce the sets

Q = K ∩ Sr, Q′ = U� ∩ Sr� , Qi = Ki ∩ Sr.

Assumption 2.4.
(i) For each i = 1, 2, . . . the estimates

(2.19) sup
u∈Sr

|j(u)− ji(u)| � σi

and

(2.20) �(Qi, Q) � ϕi, �(Q′, Qi) � ϕi
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hold, with {σi} and {ϕi} given non-negative sequences converging to 0 and
�(A, B) = sup

v∈A
inf
u∈B

|v − u| for A ⊂ Y, B ⊂ Y;
(ii) a value ν(r) < ∞ is known such that for each u1, u2 ∈ Sr

(2.21) |j(u1)− j(u2)| � ν(r)|u1 − u2|.

Theorem 2.5. Let r and r� be chosen as above and Assumptions 2.1, 2.2 and 2.4
be valid. Moreover, let the controlling sequences {ϕi}, {σi}, {εi} and {δi} satisfy
the conditions

(2.22)
1
4r

{
2ν(r)ϕi + 2σi −

(
δi −

1
2
εi

)2}
+
1
2
εi < 0

and

(2.23)
∞∑

i=1

{(
2ν(r)ϕi + 2σi

)1/2
+
1
2
εi + 2ϕi

}
<
1
2
r�,

with ν(r) =Mβ−
1
2 r + ‖f‖Y′ + ν(r). Then

(i) Method (2.9)–(2.12) is well-defined, i.e., s(i) < ∞ for all i;
(ii) |ui,s| < r�, |ui,s| < r� for all pairs (i, s);
(iii) {ui,s} converges weakly to an element u� ∈ U�.

If, moreover, the subspace Y1 is finite dimensional, then

(iv) {ui,s} converges to u� in the norm of the space Y .

�����. Applying Lemma 2.3, the statements (i) and (ii) can be established

following the proof of Lemma 2 in Kaplan/Tichatschke [28] (see also the proof
of Lemma 3.2 below, where the same ideas are used). Because of (ii) the equality

ui,s = argmin{Ji(u) + ‖Pu− Pui,s−1‖2H : u ∈ Qi}

holds true. Now, we prove the statements (iii) and (iv).

Due to Assumption 2.2 and (2.8) the functions Ψi,s are strongly convex (with
constant β) on Y . Hence, (2.10) and (2.12) lead to

‖ui,s − ui,s‖Y � 1
2
β−1ε′i

and because of (2.8) and (2.11),

(2.24) |ui,s − ui,s| � 1
2
εi.
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From (2.7) and (2.11) we obtain that

(2.25) ‖Pui,s − Pui,s‖H � 1
2
cβ−1ε′i =

1
2
c
(1
2
M + c2

)−1/2
εi � 1

2
εi.

But (2.22) and (2.23) yield

δi >
1
2
εi.

The last inequality together with (2.25) ensures that for each i and for 1 � s < s(i)

(2.26) ‖Pui,s − Pui,s−1‖H > ‖Pui,s − Pui,s−1‖H − 1
2
εi > δi −

1
2
εi > 0.

Now, let w ∈ U�∩Sr� be chosen arbitrarily. According to (2.20) one can take points

vi ∈ Qi and vi,s ∈ Q such that for each i

|vi − w| � ϕi and |ui,s − vi,s| � ϕi, s = 1, . . . , s(i).

Since the functional J is Lipschitz-continuous on Sr with the constant ν(r), this
leads to

J(vi)− J(w) � ν(r)ϕi, J(vi,s)− J(ui,s) � ν(r)ϕi

and, due to the choice of w, J(w) � J(vi,s) holds. Hence,

(2.27) J(vi)− J(ui,s) � 2ν(r)ϕi.

Now, using Lemma 2.3 with j̄ = ji, σ = σi, G = Qi, u = vi, z0 = ui,s−1, we get

(2.28) |ui,s − vi|2 − |ui,s−1 − vi|2 � −‖Pui,s − Pui,s−1‖2H + J(vi)− J(ui,s) + 2σi,

and, in view of |vi| � r, |ui,s−1| < r and the relations (2.16), (2.22), (2.26) and

(2.27), one can conclude that

|ui,s − vi| < |ui,s−1 − vi|+ 1
4r

{
2ν(r)ϕi + 2σi −

(
δi −

1
2
εi

)2}

for each i and 1 � s < s(i). Due to (2.15) and (2.27),

|ui,s(i) − vi| � |ui,s(i)−1 − vi|+ (2ν(r)ϕi + 2σi)1/2.

With regard to (2.22) and (2.24) the last two inequalities yield for each i and 1 �
s < s(i)

|ui,s − vi| < |ui,s−1 − vi|+ 1
4r

{
2ν(r)ϕi + 2σi −

(
δi −

1
2
εi

)2}
+
1
2
εi,
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hence

(2.29) |ui,s − vi| < |ui,s−1 − vi| for 1 � s < s(i).

Also

|ui,s(i) − vi| � |ui,s(i)−1 − vi|+ (2ν(r)ϕi + 2σi)1/2 +
1
2
εi

= |ui,s(i)−1 − vi|+ τi(2.30)

with τi = (2ν(r)ϕi + 2σi)1/2 + 12εi. Thus, for each i,

|ui+1,0 − vi| � |ui,0 − vi|+ τi

holds and, taking into account the choice of vi,

|ui+1,0 − w| � |ui,0 − w|+ τi + 2ϕi.

However, from (2.23) it follows that
∞∑

i=1
τi < ∞ and

∞∑
i=1

ϕi < ∞. Therefore, Lemma
2.2.2 in Polyak [39] ensures convergence of {|ui,0 − w|} for each w ∈ U� ∩ Sr� .

Now, the inequalities (2.29) and (2.30) lead to

−τi + |ui+1,0 − vi| = −τi + |ui,s(i) − vi| � |ui,s − vi| � |ui,0 − vi|,

hence

−τi − 2ϕi + |ui+1,0 − w| < |ui,s − w| � |ui,0 − w|+ 2ϕi.

Thus, {|ui,s−w|} converges for each w ∈ U� ∩Sr� and it is obvious that {|ui,s−w|}
converges to the same limit. By using inequality (2.28) together with

|ui,s−1 − vi| � |ui,s−1 − w|+ ϕi,

|ui,s − w| � |ui,s − vi|+ ϕi,

we obtain that

|ui,s−1 − w|2 − |ui,s − w|2(2.31)

� J(vi,s)− (J(vi,s)− J(ui,s))− J(w)

+ (J(w) − J(vi))− 2σi − 8rϕi − 2ϕ2i
� J(vi,s)− J(w) − 2ν(r)ϕi − 2σi − 8rϕi − 2ϕ2i .
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Since the limits of {|ui,s−w|} and {|ui,s−w|} coincide and J(vi,s) � J(w), inequality

(2.31) guarantees that

lim
i→∞

sup
1�s�s(i)

[J(vi,s)− J(w)] = 0,

hence

(2.32) lim
i→∞

sup
1�s�s(i)

[J(ui,s)− J(w)] = 0

and

(2.33) lim
i→∞

sup
1�s�s(i)

[J(ui,s)− J(w)] = 0.

Because Q is a closed convex set, any weak cluster point of {vi,s} belongs to Q.
Thus, any weak cluster point of {ui,s} or {ui,s} is contained in Q, too and belongs

to U� in view of (2.32) and (2.33). Now, Opial’s lemma [36] yields that {ui,s} and
{ui,s} converge weakly to some u� ∈ U�, i.e., statement (iii) is true.

But if the subspace Y1 is finite dimensional, then weak convergence of {vi,s} to u�

leads to

(2.34) lim
i→∞

sup
1�s�s(i)

‖Pvi,s − Pu�‖H = 0.

Using

J(vi,s) + ‖Pvi,s − Pu�‖2H − J(u�) =
1
2
a(vi,s − u�, vi,s − u�) + a(u�, vi,s − u�)

−
〈
f, vi,s − u�

〉
+ j(vi,s)− j(u�) + ‖Pvi,s − Pu�‖2H

together with (2.4), one can conclude that

J(vi,s) + ‖Pvi,s − Pu�‖2H − J(u�)− a(u�, vi,s − u�) +
〈
f, vi,s − u�

〉

− (j(vi,s)− j(u�)) � |vi,s − u�|2,

and statement (iv) immediately follows. �

������ 2.6. In fact, instead of (2.23) we have used in the proof of the state-
ments (iii) and (iv) essentially weaker conditions:

(2.35)
∞∑

i=1

ϕ
1/2
i < ∞,

∞∑

i=1

σ
1/2
i < ∞,

∞∑

i=1

εi < ∞ and δi >
1
2
εi.

Hence, if the data r�, {Ki} and {εi} are chosen such that

Ki ⊂ int Sri with ri = r� − 1
2
εi, i = 1, 2, . . . ,

then Theorem 2.5 remains true with (2.35) instead of condition (2.23).
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������ 2.7.

1. We do not assume that the non-regularized auxiliary problems

min{Ji(u) : u ∈ Ki}

are solvable.

2. Theorem 2.5 does not require that lim δi = 0. Putting δi > 2r� we obtain, due
to |ui,s| < r�, that s(i) = 1 for each i, i.e., a usual iterative prox-regularization

method (OSR-method) arises (cf. Kaplan/Tichatschke [26]). In this case
condition (2.22) is superfluous.

3. Convergence of MSR-methods in case of Ki ⊂ K

Throughout this section we assume that H , Y1, P and b(·, ·) are chosen as at the
beginning of Section 2 and that Assumptions 2.1 and 2.2 are valid.

In the sequel, Method (2.9)–(2.12) will be studied for Problem (2.1) provided

the feasible sets Ki of the auxiliary problems (2.9) possess the additional property
Ki ⊂ K.

Let u�� be a fixed element of the optimal set U� of Problem (2.1).

Assumption 3.1.
(i) For each i = 1, 2, . . . the inclusion Ki ⊂ K and the inequality

(3.1) �(u��, Ki) � ϕi

hold, with {ϕi} a given sequence tending to 0;
(ii) for each r > 0 the functional j satisfies the Lipschitz condition with a constant

ν(r) on the sphere Sr(u��) = {u ∈ Y : |u− u��| � r};
(iii) r0 and r� are chosen such that r0 � supϕi and r� � 8r0.

If Assumption 3.1(ii) is fulfilled, then for all u1, u2 ∈ Sr(u��) the inequality

(3.2) |J(u1)− J(u2)| � ν(r)|u1 − u2|

is obvious with

(3.3) ν(r) � Mβ−
1
2 (r + |u��|) + ‖f‖Y′ + ν(r).

From now we suppose that ν(r) is a given non-decreasing function.
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Lemma 3.2. Let Assumption 3.1 be fulfilled and let r� be chosen such that in

addition

(3.4)
∞∑

i=1

(
(ν0ϕi + 2σi)1/2 +

1
2
εi + 2ϕi

)
<

r�

2
.

Moreover, assume that

(3.5)
1
r�

(
ν0ϕi + 2σi −

(
δi −

1
2
εi

)2)
+ εi < 0, i = 1, 2, . . . ,

where

δi, εi are the controlling parameters in Method (2.9)–(2.12),

ν0 = ν(r0) and

(3.6) σi � sup
u∈Y

|j(u)− ji(u)|.

Then, starting with u1,0 ∈ Sr�/4(u��), in Method (2.9)–(2.12) the internal iteration

cycle is finite, i.e., s(i) < ∞ for each i, and the inclusions

ui,s ∈ int Sr�(u��), ui,s ∈ int Sr�(u��)

are valid for all pairs (i, s).

�����. Consider a fixed pair (i, s) with s � 1. In view of Ki ⊂ K and (2.12)
the relation J(u��) � J(ui,s) holds. Choosing vi ∈ Ki such that |vi − u��| � ϕi,

Assumption 3.1(ii) ensures

J(vi) � J(u��) + ν0ϕi.

Hence

J(vi) � J(ui,s) + ν0ϕi

and, in view of (3.6),

(3.7) Ji(vi) � Ji(ui,s) + ν0ϕi + 2σi.

Using (2.25) and the inequality

δi −
1
2
εi > (ν0ϕi + 2σi)

1/2
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which follows from (3.4) and (3.5), in the case s < s(i) one can conclude that

‖Pui,s − Pui,s−1‖H > ‖Pui,s − Pui,s−1‖H

− ‖Pui,s − Pui,s‖H > (ν0ϕi + 2σi)1/2.

By virtue of inequality (3.7), application of Lemma 2.3 with

G = Ki, j̄ = ji, σ = σi, z0 = ui,s−1 and u = vi

leads to

(3.8) |ui,s − vi| < |ui,s−1 − vi|+
(
2|ui,s−1 − vi|

)−1(
ν0ϕi + 2σi −

(
δi −

1
2
εi

)2)

for 1 � s < s(i). If s = s(i), Lemma 2.3 immediately gives

(3.9) |ui,s(i) − vi| � |ui,s(i)−1 − vi|+ (ν0ϕi + 2σi)
1/2.

Hence, in view of

|ui,s − ui,s| � 1
2
εi,

the inequalities

(3.10) |ui,s−vi| < |ui,s−1−vi|+
(
2|ui,s−1−vi|

)−1(
ν0ϕi+2σi−

(
δi−
1
2
εi

)2)
+
1
2
εi

are true for 1 � s < s(i), and

(3.11) |ui,s(i) − vi| � |ui,s(i)−1 − vi|+ (ν0ϕi + 2σi)1/2 +
1
2
εi

holds, too. Using the assumptions u1,0 ∈ Sr�/4(u��) and r0 � r�

8 , in the case s(1) > 1

we obtain from (3.8), (3.10) and (3.5) the estimate

max {|u1,1 − v1|, |u1,1 − v1|} < |u1,0 − v1|

+
1
2r�

(
ν0ϕ1 + 2σ1 −

(
δ1 −

1
2
ε1

)2)
+
1
2
ε1 < |u1,0 − v1| < r�

2
.

Analogously, for 1 < s < s(1) one can conclude

(3.12) max{|u1,s − v1|, |u1,s − v1|} < |u1,0 − v1| < r�

2

and

(3.13) |u1,s − v1| < |u1,s−1 − v1|+ 1
r�

(
ν0ϕ1 + 2σ1 −

(
δ1 −

1
2
ε1

)2)
+
1
2
ε1.
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Summing up the inequalities (3.13) with s = 1, . . . , s̄ < s(1), we obtain

(3.14) |u1,s̄ − v1| < |u1,0 − v1|+ s̄
[ 1
r�

(
ν0ϕ1 + 2σ1 −

(
δ1 −

1
2
ε1

)2)
+
1
2
ε1

]
,

and because of (3.5),

s̄ < −|u1,0 − v1|
[ 1
r�

(
ν0ϕ1 + 2σ1 −

(
δ1 −

1
2
ε1

)2)
+
1
2
ε1

]−1
.

Thus, s(1) < ∞ is obvious.
Due to (3.9), (3.11), (3.12) and (3.4), we get also the estimate

max {|u1,s(1) − v1|, |u1,s(1) − v1|}

� |u1,0 − v1|+ (ν0ϕ1 + 2σ1)1/2 +
1
2
ε1 < r�,(3.15)

which is true for s(1) = 1, too. In view of |v1 − u��| � ϕ1, for 1 � s � s(1) the
relations (3.4), (3.12) and (3.15) lead to

max {|u1,s − u��|, |u1,s − u��|}

� |u1,0 − u��|+ (ν0ϕ1 + 2σ1)1/2 +
1
2
ε1 + 2ϕ1 < r�.

Now, for the starting point u2,0 on the iteration level i = 2 the inequality

|u2,0 − v2| � |u1,0 − u��|+ (ν0ϕ1 + 2σ1)1/2 +
1
2
ε1 + 2ϕ1 + ϕ2 < r�

is valid. Continuation of this procedure with i = 2, 3, . . . gives step by step the

following estimates a)–e):

a) max {|ui,s − vi|, |ui,s − vi|} < |ui,s−1 − vi|

+
1
2r�

(
ν0ϕi + 2σi −

(
δi −

1
2
εi

)2)
+
1
2
εi for 1 � s < s(i);

b) s(i) < ∞;

c) max {|ui,s − vi|, |ui,s − vi|} � |u1,0 − u��|+
i−1∑

k=1

[
(ν0ϕk + 2σk)

1/2 +
1
2
εk + 2ϕk

]

+ (ν0ϕi + 2σi)
1/2 +

1
2
εi + ϕi for 1 � s � s(i);

d) max {|ui,s − u��|, |ui,s − u��|}

� |u1,0 − u��|+
i∑

k=1

[
(ν0ϕk + 2σk)1/2 +

1
2
εk + 2ϕk

]
< r� for 1 � s � s(i);
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e) max {|ui+1,0 − vi+1|, |ui+1,0 − vi+1|}

� |u1,0 − u��|+
i∑

k=1

[
(ν0ϕk + 2σk)

1/2 +
1
2
εk + 2ϕk

]
+ ϕi+1 < r�.

Hence we can conclude that ui,s ∈ int Sr�(u��) and ui,s ∈ int Sr�(u��) for all (i, s).

�

������ 3.3. Due to the convexity of the sets Ki and the functions Ψi,s, it is

not difficult to show now that the statement of Lemma 3.2 is preserved, if instead of
(3.6) we use

(3.16) σi � sup
u∈Sr(u��)

|j(u)− ji(u)| with r � r� fixed.

Theorem 3.4. Let r � r� and suppose that the following conditions are fulfilled:

the assumptions of Lemma 3.2 (with σi defined by (3.6) or (3.16));

�(Q′, Qi) � ϕi, i = 1, 2, . . . ,

where ϕi � c0ϕi holds with some constant c0, and

Q′ = U� ∩ Sr�(u��), Qi = Ki ∩ Sr(u��);

(3.17)
1
4r

(
ν(r)ϕi + 2σi −

(
δi −

1
2
εi

)2)
+
1
2
εi < 0.

Then the sequence {ui,s}, generated by Method (2.9)–(2.12) with the starting
point u1,0 ∈ Sr�/4(u��), converges weakly to a solution u� of Problem (2.1) and
{J(ui,s)} converges to J(u∗). If, moreover, the subspace Y1 is finite dimensional,

then {ui,s} converges to u� in the norm of the space Y .

�����. In view of ν0 = ν(r0) � ν(r) condition (3.5) is an evident consequence

of (3.17). Let w ∈ U� ∩ Sr�(u��) be arbitrarily chosen and let a point ξi ∈ Qi be
defined such that

(3.18) |ξi − w| � ϕi.

Then, due to (3.2) and J(w) � J(ui,s),

J(ξi) � J(ui,s) + ν(r)ϕi

holds and from (3.16) we obtain that

(3.19) Ji(ξi) � Ji(ui,s) + ν(r)ϕi + 2σi.
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Lemma 3.2 ensures ui,s ∈ int Sr�(u��) for all pairs (i, s), consequently,

|ui,s − ξi| � |ui,s − u��|+ |ξi − u��| < 2r.

For a fixed index i, using (3.17) and Lemma 2.3 with

G = Qi, j̄ = ji, σ = σi, u = ξi, z0 = ui,s−1,

we obtain (as at the beginning of the proof of Lemma 3.2)

|ui,s − ξi| < |ui,s−1 − ξi|+ 1
4r

(
ν(r)ϕi + 2σi −

(
δi −

1
2
εi

)2)
if 1 � s < s(i),

and

|ui,s(i) − ξi| � |ui,s(i)−1 − ξi|+ (ν(r)ϕi + 2σi)1/2.

In order to complete the proof we may repeat, starting with formula (2.29), the

corresponding part of the proof of Theorem 2.5. �

������ 3.5. The conditions for the controlling parameters {ϕi}, {σi} and {εi}
in [28] and also in Theorem 2.5 of the present paper are essentially stronger than in

Theorem 3.4. Especially, if the estimates for the value

sup
u∈Sr(u��)

|j(u)− ji(u)|

do not depend on r (cf. below (5.16) for Problem (4.18), (4.19) and j = ji ≡ 0
for Problem (4.5), (4.6)), then it is sufficient to require convergence of the series

Σϕ
1/2
i ,Σσ

1/2
i and Σεi. With such {ϕi}, {σi} and {εi}, the Lipschitz constant ν0 can

be defined and then r� and r � r� must be chosen such that

(3.20) max{2
∞∑

i=1

((ν0ϕi + 2σi)
1/2 +

1
2
εi + 2ϕi), 8r0} < r�.

After that, {δi} has to be determined according to inequality (3.17). In contrast to
condition (2.23), which was used in [28], the left hand side of (3.20) does not depend

on r and r�.
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4. Model problems

We restrict ourselves here to the mathematical description of the variational prob-

lems considered; concerning their mechanical interpretation and the corresponding
boundary value problems we refer to Hlaváček et al. in [22]. In order to describe

scalar products and norms in special spaces of vector functions we use symbols ((·, ·))
and ||| · ||| marked with the corresponding indices.

4.1. Variational formulation of a two-body contact problem
Let Ω′ ⊂ �

2 and Ω′′ ⊂ �
2 be two open bounded domains with Lipschitz-continuous

boundaries, and Ω = Ω′ ∪ Ω′′. In the sequel the superscripts ′ and ′′ correspond to
Ω′ and Ω′′, respectively. We suppose that Ω′ and Ω′′ have a common boundary

Γc = ∂Ω′ ∩ ∂Ω′′. The partitions of the boundaries

∂Ω′ = Γu ∪ Γ′τ ∪ Γc ( mes Γu > 0, mes Γc > 0),

∂Ω′′ = Γ0 ∪ Γ′′τ ∪ Γc

and the functions F ∈ [L2(Ω)]2, P ′ ∈ [L2(Γ′τ )]2, P ′′ ∈ [L2(Γ′′τ )]2 are assumed to be
known.
We denote by ν, ν′ and ν′′ the unit outward normals to Γ0, Γ′τ and Γ

′′
τ respectively,

and for Γc the symbols ν′ and ν′′ mean the unit normals pointed outside of Ω′ and
Ω′′, respectively.

The case of Γ0 = ∅ is permitted.
The given functions aklpm (k, l, p, m = 1, 2) are assumed to be measurable and

bounded on Ω. Moreover, symmetry

(4.1) aklpm = alkpm = apmkl

is supposed as well as the existence of a positive constant c0 such that

(4.2) aklpm(x)σklσpm � c0σklσkl

holds for all symmetric matrices [σkl]k,l=1,2 and almost every x ∈ Ω (ellipticity
property). Here and in the sequel we follow Einstein’s summation convention, i.e.,
the summation is performed over terms with repeating indices.

Denote u′′ν = u′′kνk and define the space

V = {u = (u′, u′′) ∈ [H1(Ω′)]2 × [H1(Ω′′)]2 : u′ = 0 on Γu,(4.3)

u′′ν = 0 on Γ0}
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endowed with the norm

|||u|||1,Ω =
(
|||u′|||21,Ω′ + |||u′′|||21,Ω′′

)1/2
.

In the sequel we shall also use the spaces [Hs(Ω′)]2 × [Hs(Ω′′)]2 with s integer

(including s = 0) and

|||u|||s,Ω =
(
|||u′|||2s,Ω′ + |||u′′|||2s,Ω′′

)1/2
.

Denoting

(4.4) εkl(u) =
1
2

(∂uk

∂xl
+

∂ul

∂xk

)
, k, l = 1, 2, u′ν′ = u′kν′k, u′′ν′′ = u′′kν′′k ,

we will consider the following variational formulation of the two-body contact prob-

lem:
Minimize the functional

(4.5) J(u) =
1
2
a(u, u)− �(u)

on the set

(4.6) K ≡ {u ∈ V : u′ν′ + u′′ν′′ � 0 on Γc},

where

(4.7) a(u, v) =
∫

Ω

aklpmεkl(u)εpm(v) dΩ,

(4.8) �(u) =
∫

Ω

Fkuk dΩ +
∫

Γτ

Pkuk dΓ, Γτ = Γ′τ ∪ Γ′′τ .

The kernel K of the bilinear form (4.7) on the space W = [H1(Ω′)]2 × [H1(Ω′′)]2
consists of elements z = (z′, z′′), where z′ and z′′ are vector functions with compo-
nents

z′1(x) = a′1 − b′x2, z′2(x) = a′2 + b′x1,

z′′1 (x) = a′′1 − b′′x2, z′′2 (x) = a′′2 + b′′x1,

with arbitrary coefficients a′1, a
′
2, b

′ and a′′1 , a
′′
2 , b

′′.

It is easy to see that
�(y) � 0 for all y ∈ K ∩ K
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is a necessary condition for the existence of a solution of Problem (4.5), (4.6).

Theorem 4.1. (see Hlaváček et al. [22]) If the conditions

�(y) � 0 for all y ∈ K ∩ K

and

�(y) < 0 for all y ∈ K ∩ K with inf
x∈Γc

(y′′ν′′(x) + y′ν′(x)) < 0

hold, then Problem (4.5), (4.6) has at least one solution u�. Moreover, the solution

set has the structure

U� = {u� + y : y ∈ V ∩K, u� + y ∈ K, �(y) = 0}

with u� fixed.

If Γ0 = ∅, then dim(V ∩ K) = 3 and, in the case mes Γ0 > 0, dim(V ∩ K) � 1.

4.2. Finite element approximation of two-body contact problems
We describe the application of finite element methods to Problem (4.5), (4.6), fol-

lowing Hlaváček et al. [22]. Let us assume that Ω′ and Ω′′ are bounded polyhedral

domains. Then, triangulations T ′h, T ′′h of Ω
′ and Ω′′ are performed so that

(4.9)
⋃

T∈T ′
h

T = Ω′,
⋃

T∈T ′′
h

T = Ω′′

with h a parameter characterizing the maximal side of the triangles T ′h and T ′′h . With

respect to h → 0 regular systems {T ′h} and {T ′′h } of triangulations are considered,
i.e., the areas of the triangles in T ′h and T ′′h are bounded from below by d0h

2 (d0 > 0)

if h → 0. Moreover, we assume that the following conditions are fulfilled for each
value of h:
(i) the points where the type of the boundary condition changes belong to the set

of nodes of the corresponding triangulations T ′h and T ′′h ;
(ii) for a fixed representation of the contact boundary

(4.10) Γc =
m⋃

j=1

Γc,j

with Γc,j closed straight-line segments, the end points of the segments Γc,j are

common nodes of both the triangulations T ′h and T ′′h . The nodes lying on Γc

must also be common nodes of T ′h and T ′′h .
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The corresponding sequence {Th} with Th = T ′h ∪ T ′′h is a regular system of triangu-

lations of the domain Ω = Ω′ ∪ Ω′′.
The index sets I ′h, I

′′
h , I

u
h , I

(0)
h and Ic,j

h indicate that the nodes πk belong to the sets
Ω′,Ω′′, Γu, Γ0 and Γc,j, respectively. In order to simplify the description, we assume

that Γ0 = ∅ or that Γ0 is a straight line segment. In the latter case ν0 denotes a unit
outward normal to Γ0. By νj we denote the unit normal to Γc,j, pointed outside to

Ω′.
For a fixed pair of the triangulations T ′h and T ′′h a finite element space Vh of vector

functions
vh = (v′h, v′′h) ∈ ([C(Ω′)]2 × [C(Ω′′)2]) ∩ V

is defined with

(4.11) v′h(x) =
∑

k∈I′
h\Iu

h

αkϕk(x), αk ∈ �2 ,

(4.12) v′′h(x) =
∑

k∈I′′
h

βkηk(x), βk ∈ �2 .

Here ϕk ∈ C(Ω′) and ηk ∈ C(Ω′′) are affine functions on each element of the corre-

sponding triangulation and

ϕk(πk) = 1, ϕk(πj) = 0 for j 
= k (k ∈ I ′h),

ηk(πk) = 1, ηk(πj) = 0 for j 
= k (k ∈ I ′′h ).

To satisfy u′′ν = 0 on Γ0, the coefficients βk must be chosen such that

(4.13) (ν0, βk)�2 = 0 for k ∈ I
(0)
h .

The set Kh which approximates K on the space

(4.14) Vh = {vh = (v′h, v′′h) : (ν
0, βk)�2 = 0, k ∈ I

(0)
h }

can be expressed by

(4.15) Kh = {vh ∈ Vh : (νj , v′h(πk)− v′′h(πk))�2 � 0, k ∈ Ic,j
h , j = 1, . . . , m}

or

(4.16) Kh = {vh ∈ Vh : (νj , αk − βk)�2 � 0, k ∈ Ic,j
h , j = 1, . . . , m}.
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So, it is not difficult to show that the inclusion Kh ⊂ K is true.

Finally, the approximate problem in the space Vh can be represented by

(4.17) min{J(uh) : uh ∈ Kh},

where J is defined according to (4.5), (4.7), (4.8) and the feasible set Kh is given by

relation (4.15).
If sufficient conditions of solvability of the studied problem (cf. Theorem 4.1)

are valid, then solvability of the approximate problems follows from the inclusion
Kh ⊂ K.

For the case that Γc is not piecewise affine, but is a graph of a convex function,
Hlaváček et al. [22] have used curved triangles Tj along the contact boundary such

that

⋃

T∈T ′
h

T = Ω′,
⋃

T∈T ′′
h

T = Ω′′.

Note that in this case the inclusion Kh ⊂ K is not valid in general.
Applying the above finite element approximation to the two-body contact problem,

convergence of the corresponding minimizing sequence in the norm of the space V

has been established only in the following special case (i) – (ii) (see [22]):

(i) dim(V ∩K) � 1,
(ii) either Korn’s inequality (see Fichera [14], Chapt. 1) is fulfilled on V , or a

subspace V 1 ⊂ V can be chosen easily such that U� ∩ (K ∩ V 1) 
= ∅ and an
analogue of Korn’s inequality holds on V 1.

In the case dim(V ∩ K) = 3 finite element approximations of the dual problem are
commonly applied. However, the description of the feasible set of the dual problem
is rather complicated so that special approximation techniques, based on equilibrium

models of finite elements, have to be applied [22].

4.3. Static problems of linear elasticity with given friction
Let Ω ⊂ �

2 be an open bounded domain with a Lipschitz-continuous boundary

∂Ω. We assume further that a partition

∂Ω = Γτ ∪ Γc

of ∂Ω and vector functions P ∈ [L2(Γτ )]2, S ∈ [L∞(Γc)]2 and F ∈ [L2(Ω)]2 are
given. With measurable functions aklpm (k, l, p, m = 1, 2) satifying (4.1), (4.2), εkl

defined by (4.4) and a positive function µ ∈ C2(Γc), the problem under consideration
is as follows:
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Minimize the functional

(4.18) J(u) =
1
2
a(u, u)− �(u) + j(u)

on the space

(4.19) V = [H1(Ω)]2,

with

(4.20) a(u, v) =
∫

Ω

aklpmεkl(u)εpm(v) dΩ,

(4.21) �(u) =
∫

Ω

Fkuk dΩ +
∫

Γτ

Pkuk dΓ +
∫

Γc

Sνukνk dΓ,

(4.22) j(u) =
∫

Γc

µ|Sν ||ut| dΓ,

ut = u− (ukνk)ν, Sν = Skνk and ν the unit outward normal to ∂Ω.
The kernel K of the bilinear form (4.20) on the space V has the structure

K = {z = (z1, z2) : z1 = a1 − bx2, z2 = a2 + bx1}

with arbitrary coefficients a1, a2 and b. The uniqueness of the solution of this problem

is probably not known, only the following result has been established.

Theorem 4.2. (see Duvaut/Lions [13], Chapt. 3) The condition

|�(y)| � j(y) for y ∈ K

is necessary for the solvability of Problem (4.18), (4.19). A solution exists if

|�(y)| < j(y) for all y ∈ K, y 
= 0.

The following fact is obvious: if u1 and u2 are solutions of Problem (4.18), (4.19),

then u1 − u2 ∈ K.
A finite element approximation of Problem (4.18), (4.19) can be performed in a

standard way, using piecewise linear basic functions and a regular system {Th} of
triangulations. The arising auxiliary problems consist in the unconstrained minimiza-

tion of convex non-smooth functions. In general, unique solvability of these problems
as well as strong convergence of their solutions (if h → 0) are not guaranteed.
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������ 4.3. Taking into account the properties of the bilinear forms (4.7) and

(4.20) and the structure of the solution sets of both model problems, we may expect
the following. If a minimizing sequence has one of the properties
(i) the projections of its elements onto the kernel K are convergent, or
(ii) the sequence converges in the norm of [L2(Ω)]2,

then this sequence converges in the norm of the space V (see (4.3) and (4.19)) to an

element of the optimal set.

5. Application to elliptic variational inequalities

5.1. MSR-methods for two-body contact problems
Identifying Problem (2.1) with the contact problem (4.5), (4.6) and assuming that

the sets Ki are obtained by means of a finite element approximation of K, we can
specify the MSR-methods considered in Section 2 as follows.

We put Y = V , where V is defined by (4.3). Because the objective functional
(4.5) has the form (2.2) with j ≡ 0, it makes sense to take ji ≡ 0 for all i. Recall
that mes Γu > 0 in (4.3).
If Y1 = V , H = V , P = I (identity operator in V ), we obtain the basic variant of

the MSR-method. Taking b(u, v) ≡ 0, one may put ε′i = εi. Obviously, in this case
inequality (2.3) is fulfilled with β = 1.
Regularization on the kernel occurs in the case H = [L2(Ω)]2, Y1 = V1 with

V1 = {u = (u′, u′′) ∈ V : u′ ≡ 0;
u′′1(x) = a1 − bx2, u′′2(x) = a2 + bx1 on Ω′′} ⊂ K(5.1)

and P : V → V1 an orthoprojector onto V1 corresponding to the norm ||| · |||0,Ω.
Obviously, the calculation of Pz is not complicated. We further suppose that

(5.2) b(u, v) = c0

∫

Ω

εkl(u)εkl(v) dΩ

with c0 defined in (4.2).

Finally, the choice of Y1 = {u = (u′, u′′) ∈ V : u′ ≡ 0}, H = [L2(Ω)]2 and

P(u) =
{
0 for x ∈ Ω′

u′′(x) for x ∈ Ω′′

corresponds to the method with weak regularization. Again we choose b(·, ·) as in
(5.2).
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In order to extend the results of convergence from Section 3 to the last two MSR-

methods, we need the following statement.

Theorem 5.1. In the case of the method with regularization on the kernel and
the method with weak regularization the spaces Y , Y1, H and the projector P fulfil
Assumption 2.2(ii).

�����. We use the inequality

(5.3)
∫

Ω′

εkl(u)εkl(u) dΩ � c1|||u|||21,Ω′ (c1 > 0),

which reflects the equivalence between the seminorm

[u] =

[ ∫

Ω′

εkl(u)εkl(u) dΩ

]1/2

and the norm |||u|||21,Ω′ in the space {u ∈ [H1(Ω′)]2 : u|Γu = 0} if mes Γu > 0

(cf. Ciarlet [12], Sect. 1.2).

In the case the method with weak regularization is considered, the second Korn
inequality (see Fichera [14], Chapt. 1)

(5.4)
∫

Ω′′

εkl(u)εkl(u) dΩ +
∫

Ω′′

ukuk dΩ � c2|||u|||21,Ω′′ (c2 > 0)

and (5.3) immediately enable us to establish the validity of condition (2.3) with

β = min[c1, c2] min
[1
2
c0, 1

]
.

Indeed, we get

|u|2 = 1
2
b(u, u) + ‖Pu‖2H =

1
2
c0

∫

Ω

εkl(u)εkl(u) dΩ +
∫

Ω′′

ukuk dΩ

� 1
2
c0c1|||u|||21,Ω′ +min

{1
2
c0, 1

}
c2|||u|||21,Ω′′ � β|||u|||21,Ω.

Now we turn to the method with regularization on the kernel. Let Θ1 be the

orthoprojector, mapping from [L2(Ω′′)]2 onto the linear set of functions

K′′ = {z : z1(x) = a1 − bx2, z2(x) = a2 + bx1 on Ω′′}
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with a1, a2, b arbitrary real numbers, and put Θ = I −Θ1 with the identity operator
I on [L2(Ω′′)]2. For each element u ∈ [H1(Ω′′)]2 we get

(5.5)
∫

Ω′′

εkl(u)εkl(u) dΩ =
∫

Ω′′

εkl(Θu)εkl(Θu) dΩ.

Let us show that for some c3 > 0 and each u ∈ [H1(Ω′′)]2 the inequality

(5.6)
∫

Ω′′

εkl(u)εkl(u) dΩ � c3|||Θu|||21,Ω′′

is satisfied. If this is wrong, then, due to (5.5), there exists a sequence {uj} ∈
[H1(Ω′′)]2 such that with vj = Θuj the relations

(5.7) |||vj |||1,Ω′′ = 1,

(5.8) lim
j→∞

∫

Ω′′

εkl(vj)εkl(vj) dΩ = 0

and

lim
j→∞

∫

Ω′′

εkl(uj)εkl(uj) dΩ = 0

are true.
Without loss of generality, we assume here that the sequence {vj} converges weakly

to an element v in [H1(Ω′′)]2. Then, with regard to the compact embedding of
[H1(Ω′′)]2 into [L2(Ω′′)]2, {vj} converges to v in the norm of the space [L2(Ω′′)]2.

On account of inequality (5.4) the estimate

|||vj+p − vj |||21,Ω′′ � c−12

[ ∫

Ω′′

εkl(vj+p − vj)εkl(vj+p − vj) dΩ(5.9)

+ |||vj+p − vj |||20,Ω′′

]

is fulfilled for all indices j and p. But, due to (5.8) and the strong convergence of
{vj} in [L2(Ω′′)]2, inequality (5.9) implies that

lim
i→∞

|||vi − v|||1,Ω′′ = 0.

Hence, according to (5.7), we get

(5.10) |||v|||21,Ω′′ = 1,
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and the relation ∫

Ω′′

εkl(v)εkl(v) dΩ = 0,

following from (5.8), means that v ∈ K′′ (cf. Nečas/Hlaváček [35]).
But lim |||vj − v|||0,Ω′′ = 0 and

((vj , z))0,Ω′′ = 0 for all z ∈ K′′,

therefore we obtain
((v, z))0,Ω′′ = 0 for all z ∈ K′′.

Hence v = 0, and this contradicts (5.10).
The definition of the projectors P (observe regularization on the kernel) and Θ1

implies
Pu

∣∣
Ω′′ = Θ1u

′′, Pu
∣∣
Ω′ = 0,

and with regard to (5.6), for each u ∈ [H1(Ω′′)]2 the inequality

1
4
c0

∫

Ω′′

εkl(u)εkl(u) dΩ + |||Pu|||20,Ω′′

� 1
4
c0c3|||Θu|||20,Ω′′ + |||Θ1u|||20,Ω′′

� min
{1
4
c0c3, 1

}
|||u|||20,Ω′′

holds true. Therefore

1
2
c0

∫

Ω′′

εkl(u)εkl(u) dΩ + |||Pu|||20,Ω′′

� 1
4
c0

∫

Ω′′

εkl(u)εkl(u) dΩ +min
{1
4
c0c3, 1

}
|||u|||20,Ω′′

and, in view of (5.4), we finally obtain (with c4 = c2min
{
1
4c0,

1
4 c0c3, 1

}
)

1
2
c0

∫

Ω′′

εkl(u)εkl(u) dΩ + |||Pu|||20,Ω′′ � c4|||u|||21,Ω′′ .

Now, from the last inequality and (5.3) relation (2.3) with

β = min
{1
2
c0c1, c4

}
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follows immediately.

By virtue of Theorem 5.1, in the case of Problem (4.5), (4.6) Assumptions 2.1
and 2.2 hold true for all variants of MSR-methods considered. Therefore, in order
to guarantee convergence of these methods, the crucial point is the choice of the

sequence {ϕi}. Recall that, in the general case, {ϕi} must satisfy conditions (2.20),
(2.22) and (2.23). However, if Ki ⊂ K for each i, then {ϕi} has to be chosen
according to (3.1), (3.4), (3.5) and (ii), (iii) in Theorem 3.4.
Now we show for the basic variant of the MSR-method how the sequence {ϕi}

can be chosen in the case Ki ⊂ K. The corresponding analysis of the other two
MSR-methods can be carried out analogously.

Because we take b(u, v) ≡ 0, the norms | · | and ||| · |||1,Ω coincide, hence Y =
V . We assume that a solution u of the two-body contact problem belongs to the

space [H2(Ω′)]2 × [H2(Ω′′)]2. Then, according to the structure of the solution set
(cf. Theorem 4.1), each other solution

=
u is also contained in this space, moreover,

(5.11) |||u− =u|||1,Ω = |||u− =u|||2,Ω.

Therefore, for any r1 the set U� ∩ Sr1(u
��) is also bounded in the space [H2(Ω′)]2 ×

[H2(Ω′′)]2 and
|||u|||2,Ω � |||u��|||2,Ω + r1

for each function u ∈ U� ∩ Sr1(u
��). Thus, by virtue of Theorem 3.2.1 in Ciarlet

[12], the linear interpolant uI,h of each function u ∈ U�∩Sr1(u
��) on the triangulation

Th yields

(5.12) |||u − uI,h|||1,Ω � c(|||u��|||2,Ω + r1)h,

with c independent of u and r1.

But for h = hi, due to (4.6), (4.15) and the construction of Th, one can conclude
that uI,hi ∈ Ki ≡ Khi . This enables us immediately to define {ϕi} and {ϕi}
according to Theorem 3.4.
Indeed, if hi is chosen such that

suphi � r1(c(c5 + r1))−1

with r1 fixed and c5 � |||u��|||2,Ω, then the sequence

(5.13) ϕi = c(c5 + r1)hi, i = 1, 2, . . .

satisfies the inequality ϕi � r1. Thus we may identify the radius r0 with r1 (see
Assumption 3.1(iii)), and Σh

1/2
i < ∞ ensures that Σϕ

1/2
i < ∞.
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Now, determine r� according to (3.4) and r� > 8r0 and choose

(5.14) ϕi = c(c5 + r�)hi, i = 1, 2, . . .

Then, using (5.12) with r1 = r�, h = hi, we obtain

(5.15) |||u − uI,hi|||1,Ω � ϕi

and, because of uI,hi ∈ Ki, the estimate �(u, Ki) � ϕi is valid for each u ∈ U� ∩
Sr�(u��) = Q′. �

������ 5.2. Let the sequences {hi}, {εi} be chosen such that Σh
1/2
i < ∞ and

Σεi < ∞ and let {δi} be defined by (3.17) with

r = r� + r̄ and r̄ � supϕi.

Then, resuming the analysis above, �(u, Ki) � ϕi leads to �(Q′, Qi) � ϕi. Finally,
Theorem 3.4 guarantees that {ui,s}, calculated by means of the regularization on the
kernel, converges in the norm of the space V to a solution of the two-body contact

problem.

Relation (5.11) is the point of this analysis. The consideration may be extended

to other elliptic variational inequalities provided their solution sets possess a similar
property.

However, it should be remarked that the verification of the condition

u� ∈ [H2(Ω′)]2 × [H2(Ω′′)]2 for some u� ∈ U�

is complicated.

5.2. Weak regularization for a model problem with given friction
In order to apply the results of Sections 2 and 3 to Problem (4.18), (4.19) we have

to consider Problem (2.1) in the space Y = V ≡ [H1(Ω)]2. For the approximation
of the non-smooth functional (4.22) it is convenient to use convex functionals

ji(u) =
∫

Γc

µ|Sν |
√

u2t + κi dΓ

with {κi} a positive sequence converging to 0. Obviously, for all u ∈ V the estimate

(5.16) |j(u)− ji(u)| �
√

κi

∫

Γc

µ|Sν | dΓ

is true.
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In the sequel our consideration is concentrated on the method with weak regu-

larization. Therefore, in Method (2.9)–(2.12) we put Y = V , H = [L2(Ω)]2, and
P : V → H is the embedding operator. Since the model problem is unconstrained,
i.e., K = V , the auxiliary problems (2.9) have the form

(5.17) min{Ji(u) + |||u− ui,s−1|||20,Ω : u ∈ Vi}

with Ji(u) = 1
2a(u, u)− �(u)+ ji(u). The data a and � are given according to (4.20),

(4.21), and Vi = Vhi is a linear span of piecewise linear basis functions correspond-
ing to the triangulation Thi . Here the domain Ω is not supposed to be polygonal.

Choosing

b(u, v) = c0

∫

Ω

εkl(u)εkl(v) dΩ,

where c0 satisfies condition (4.2) with the data akplm from (4.20), Assumption 2.2(ii)
immediately follows from the second Korn inequality.

Hence, the norm | · |Ω introduced according to (2.3),

|u|2Ω =
1
2
b(u, u) + |||u|||20,Ω,

and the norm ||| · |||1,Ω are equivalent. Therefore, in the sequel we consider Problem
(4.18), (4.19) in the space V , where V is the vector space V endowed with the norm

| · |Ω.
If a solution u of Problem (4.18), (4.19) belongs to [H2(Ω)]2, then, due to the

structure of U�,
=
u ∈ [H2(Ω)]2 holds for any =u ∈ U� and

|||u− =u|||1,Ω = |||u− =u|||2,Ω.

Thus, for fixed u�� ∈ U� and each u ∈ U� ∩ Sr1(u
��) the inequality

|||u|||2,Ω � |||u��|||2,Ω + c6r1

is satisfied with c6 independent of r1 and Sr1(u
��) a sphere in V . For an interpolant

vI,h of any function v ∈ [H2(Ω)]2 the estimate

|||v − vI,h|||1,Ω � c|||v|||2,Ωh

is usually true in a non-polygonal domain Ω, too (see Scarpini/Vivaldi [42]). In

view of the equivalence between ||| · |||1,Ω and | · |Ω this leads to

(5.18) |v − vI,h|Ω � c̄|||v|||2,Ωh
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with c̄ independent of v, hence

|u�� − u��
I,hi

|Ω � c̄|||u��|||2,Ωhi.

Let

M � sup
u�=0

a(u, u)
|u|2Ω

and let M1 be the Lipschitz constant of the functional

−�(·) + j(·) on V .

Then, for arbitrary r1 > 0,

ν(r1) =M(|u��|Ω + r1) +M1

is the Lipschitz constant of the functional (4.18) on Sr1(u
��). Choosing c7 �

c̄|||u��|||2,Ω and r0 = c7h1, we put

(5.19) ϕi = c7hi, i = 1, 2, . . .

and
ν0 =M

(
|u��|Ω + r0

)
+M1.

Analogously, let c8 � c̄(|||u��|||2,Ω + c6r
�) (r� will be specified by (5.21) below) and

(5.20) ϕi = c8hi, i = 1, 2, . . .

Using the results obtained in Section 3 (cf. Lemma 3.2 and Theorem 3.4) for Problem
(4.18), (4.19), we get the following statement.

Theorem 5.3. Assume that for the triangulation parameter the relation hi �
hi+1 is valid for all i and that the control parameters ϕi, σi, εi satisfy the conditions

Σϕ
1/2
i < ∞, Σσ

1/2
i < ∞, Σεi < ∞.

Moreover, let r� and r be chosen so that

r� > max
{
8r0, 2

∞∑

i=1

[
(ν0ϕi + 2σi)

1/2 +
1
2
εi + 2ϕi

]}
,(5.21)

r � r� + c̄
(
|||u��|||2,Ω + c6r

�
)
h1

and let the parameters {δi} fulfil the inequalities
1
4r

[
ν(r)ϕi + 2σi −

(
δi −

1
2
εi

)2]
+
1
2
εi < 0, i = 1, 2, . . .

Then, starting with u1,0 ∈ Sr�/4(u��), the method with weak regularization (where

the auxiliary problems have the form (5.17)) converges to a solution of Problem
(4.18), (4.19) in the norm of [H1(Ω)]2.
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Using (5.19), (5.20) together with

σi =
√

κi

∫

Γc

µ|Sν | dΓ,

one can reformulate this statement in terms of the original controlling parameters

hi, κi, εi and δi.

6. Concluding remarks

An implementation of the methods described requires to translate the non-

constructive criterion (2.10) into a practicable stopping rule for the computation
of ui,s. This transformation depends essentially on the properties of the original

problem and on the algorithm solving the auxiliary problems. For our model prob-
lems no difficulties occur: in the first case we deal with quadratic programming

problems, for which finite numerical algorithms exist, and in the second case, we
have to solve approximately unconstrained minimization problems with strongly

convex, differentiable functions.

The choice of the discretization parameter according to Theorems 2.5 and 3.4

does not contradict the usual application of finite element methods in the case of
well-posed elliptic variational inequalities or linear problems.

The use of two parameters r and r� in the statements on convergence of the MSR-

methods seems to be superfluous, because r = r� is possible and less restrictive for
the choice of the controlling parameters. Nevertheless, we have to pay attention to

r > r�, taking into account the technique for estimating the values �(Q′, Qi). Upper
bounds for �(u, Qi) with u ∈ U� are obtained usually by estimating the distance

between u and its interpolant uI,hi . But the norm of uI,hi in the space Y may be
larger than the norm of u. Thus, we cannot guarantee that the interpolant of an

arbitrary function u ∈ U�∩Sr� belongs to Sr� . The choice of a suitable combination
of r� and r ensures that uI,hi ∈ Qi for u ∈ U� ∩ Sr� under the condition that
uI,hi ∈ Ki.

Concerning the case Ki 
⊂ K the question on estimating �(Ki, K) was considered

by Kaplan/Tichatschke [26] for the problem of a persistent fluid stream in a
domain bounded by a half-permeable membrane.

The present paper is dedicated first of all to the theoretical analysis of iterative
prox-regularization methods for solving variational inequalities with weakly coer-

cive operators. Efficiency of the numerical treatment depends substantially on the
adapted choice of the controlling parameters in the framework of the statements of
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convergence. In the special case of OSR-methods numerical experiments were tested

by Kustova [29] for a number of two-body contact problems.

Acknowledgement. We thank the referees for valuable comments and sugges-
tions.
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