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Abstract. Optimal shape design problem for a deformable body in contact with a rigid
foundation is studied. The body is made from material obeying a nonlinear Hooke’s law.
We study the existence of an optimal shape as well as its approximation with the finite ele-
ment method. Practical realization with nonlinear programming is discussed. A numerical
example is included.
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1. Introduction

Shape optimization is a branch of optimal control theory, in which the control
variable is related to the shape of a structure. The aim is to find a shape in such

a way that the structure behaves in an appropriate way. Shape optimization of
systems, the behaviour of which is described by variational inequalities, deserves

particular attention, as the resulting problem is non-smooth, in general. The so-called
contact problems of deformable bodies are one of the most important applications

of variational inequalities in mechanics of solids. The present paper analyzes shape
optimization of bodies, materials of which obey a non-linear monotone Hooke’s law,

describing the so-called deformation theory of plasticity. The same approach can be
used also in other problems where the constitutive laws are defined by monotone

relations.

The paper is organized as follows: in Section 2, the non-linear state problem is de-

fined and basic properties of the corresponding total potential energy are mentioned.
An optimal shape design problem (P) is formulated. In Section 3, the existence of at
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least one solution of (P) is proved, provided the objective functional satisfies appro-

priate assumptions. Section 4 deals with the discretization of (P) which is based on
the finite element approach. We prove that under reasonable assumptions the con-
tinuous and the discrete models are close on subsequences. Finally, the last Section

is devoted to computational aspects and numerical results of model examples.

2. Setting of the problem

Let a deformable body be represented by a bounded plane domain Ω ⊂ �
2 , the

Lipschitz boundary of which will be decomposed as follows:

∂Ω = ΓU ∪ ΓP ∪ ΓC .

On each of these parts, different boundary conditions will be prescribed. Throughout
the paper we assume that ΓU �= ∅ is open in ∂Ω. The body will be made from a
material obeying the theory of small elasto-plastic deformations, see [13] or [9]—

Chapter 8. Plane strain situation is assumed troughout the paper. In this case the
non-linear relation between the stress tensor σ = (σij)2i,j=1 and the linearized strain

tensor ε = (εij)2i,j=1 is given by
1

(1) σij = κεllδij + 2µ(γ)
(
εij −

1
3
δijεll

)
,

where κ, µ respectively stand for the bulk and shear modulus and δij is the Kronecker

symbol. The shear modulus µ is assumed to be a function of the invariant γ ≡ γ(εij),
defined by

(2) γ =
1
3

[
(ε11 − ε22)2 + ε211 + ε222 + 6ε

2
12

]
.

We shall assume that the functions κ ≡ κ(x), µ ≡ µ(t, x), x ∈ Ω, t � 0, depend
continuously on their arguments and µ is continuously differentiable with respect
to t:

κ ∈ C(Ω), µ ∈ C(�1+ × Ω),
∂µ

∂t
∈ C(�1+ × Ω).

Moreover, the following assumptions on κ, µ are made:

0 < κ0 � κ(x) � κ1 ∀x ∈ Ω;(3)

0 < µ0 � µ(t, x) � 3
2
κ(x) ∀x ∈ Ω, ∀t > 0;(4)

0 < θ0 � µ(t, x) + 2
∂µ(t, x)

∂t
t � θ1 ∀x ∈ Ω, ∀t > 0,(5)

1 The summation convention is used in the paper.
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where κ0, κ1, µ0, θ0 and θ1 are given positive constants.

Now, we formulate the boundary conditions. Let Ω be unilaterally supported by a
rigid half plane S = {(x1, x2) ∈ �2 | x2 � 0}, which supports Ω along ΓC . Suppose
that ΓC is given by the graph of a non-negative function α : [a, b]→ �

1 (see Figure 1).

ΓC

ΓU Ω

a bS

ΓP

�
�
���

�
�
���

�
�
���

�
�
���

�
�
���

���
���

Fig. 1. Physical situation

On ΓC , the classical contact conditions will be prescribed:

(6)





u2(x1, α(x1)) � −α(x1) ∀x1 ∈ (a, b),

T2(u) ≡ σ2j(u)nj � 0, T2(u2 + α) = 0,

T1(u) ≡ σ1j(u)nj = 0.

For the mathematical justification of (6) see [11]—Section 2.1.2. Here u = (u1, u2)
denotes the displacement field, n = (n1, n2) is the unit outward normal vector along

∂Ω. On the remaining parts ΓU and ΓP , the body Ω is supposed to be fixed and
subjected to surface tractions P = (P1, P2), respectively:

ui = 0, i = 1, 2 on ΓU ,(7)

Ti ≡ σijnj = Pi, i = 1, 2 on ΓP .(8)

The body Ω is also subjected to a body force F = (F1, F2).

By a classical solution of the Signorini problem for Ω, we mean any displacement
field u satisfying boundary conditions (6)–(8) and the system of the equilibrium

equations

(9)
∂σij(u)

∂xj
+ Fi = 0 i = 1, 2 in Ω,
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where (σij(u))2i,j=1 is the stress tensor related to the strain tensor (εij(u))2i,j=1,

εij(u) = 1
2 (∂ui/∂xj + ∂uj/∂xi) through the non-linear relation (1).

In order to give the weak formulation of this problem, we introduce the following
notations

V = {v ∈ (H1(Ω))2 | vi = 0 on ΓU , i = 1, 2},(10)

K = {v ∈ V | v2(x1, α(x1)) � −α(x1), x1 ∈ ]a, b[},(11)

aΩ(u, v) ≡ (σij(u), εij(v))0,Ω ≡
∫

Ω
σij(u)εij(v) dx,(12)

LΩ(v) ≡ (Fi, vi)0,Ω + (Pi, vi)0,ΓP ≡
∫

Ω
Fivi dx+

∫

ΓP

Pivi ds.(13)

A weak solution of the problem is defined as an element u ∈ K satisfying the
variational inequality

(P) aΩ(u, v − u) � LΩ(v − u) ∀v ∈ K.

Using Green’s theorem, together with a suitable choice of test functions in (P), we
recover the conditions (6)–(8), as well as the system (9).
To prove the existence and the uniqueness of the weak solution of (P), one can

use the theory of monotone operators or the tools of convex analysis. Here we use
the latter. To this end, we introduce the total potential energy ΦΩ of the problem:

(14) ΦΩ(v) ≡
1
2

∫

Ω

(
κ ε2ll(v) +

∫ Γ2(v)

0
µ(t) dt

)
dx− LΩ(v),

where Γ2(v) ≡ Ψ(v, v). Here Ψ(u, v) is the bilinear form defined by

Ψ(u, v) = −2
3
εii(u)εjj(v) + 2εij(u)εij(v).

One can easily verify that the total potential energy ΦΩ is Gateaux differentiable in

V and the Gateaux derivative is given by

DΦΩ(u, v) =
∫

Ω

(
κεii(u)εjj(v) + µ(Γ2(u))Ψ(u, v)

)
dx− LΩ(v)

=
∫

Ω

[(
κ− 2
3
µ(Γ2(u))

)
εii(u)εjj(v) + 2µ(Γ2(u))εij(u)εij(v)

]
dx− LΩ(v).

By a variational solution of the problem we mean any function u ∈ K satisfying

(P ′) ΦΩ(u) � ΦΩ(v) ∀v ∈ K.

174



Below, the basic properties of ΦΩ are listed. From them, the existence and the

uniqueness of the solution of (P ′) follows, as well as the equivalence between (P)
and (P ′) (for details, see [9]).

Lemma 1. For every u, v ∈ (H1(Ω))2 we have

DΦΩ(u+ v, v)−DΦΩ(u, v) � c1(εij(v), εij(v))0,Ω(15)

D2ΦΩ(u, v, v) � c1(εij(v), εij(v))0,Ω(16)

where the constant c1 depends on µ0, θ0, only.

From the assumptions on the functions κ, µ and Lemma 1, the lower semiconti-
nuity and the strict convexity of ΦΩ follows. The functional ΦΩ is coercive on V , as

follows from the following Lemma.

Lemma 2. We have

(17) ΦΩ(v) � 1
2
c1(εij(v), εij(v))0,Ω − c2‖v‖0,Ω − c3‖v‖0,ΓP

where c1 is the same as in Lemma 1 and c2, c3 can be estimated from above by

‖F‖0,Ω and ‖P‖0,ΓP , respectively.

�����. We may write

ΦΩ(v) =
∫ 1

0
DΦΩ(tv, v) dt =

∫ 1

0
DΦΩ(tv, tv)

1
t
dt.

The integrand can be estimated from below by inserting u = 0 (zero function) and
v := tv into (15). Then

DΦΩ(tv, tv) � c1t
2(εij(v), εij(v))0,Ω + tDΦΩ(0, v)

= c1t
2(εij(v), εij(v))0,Ω − tLΩ(v).

Using the Schwarz inequality for estimating LΩ(v), we arrive at (17). �

Lemma 3. The functional ΦΩ is continuous and bounded on V :

vn → v in V ⇒ ΦΩ(vn)→ ΦΩ(v), n →∞
|ΦΩ(v)| � c4‖v‖21 + c5‖v‖1 ∀v ∈ V,

where c4 depends on κ1, ‖F‖0,Ω and ‖P‖0,ΓP , only.

������ 1. The fact that the constants c1, c2, c3 and c4 depend on Ω only as

indicated is very important for our subsequent considerations.
Up to now we assumed that the shape of Ω was given. In optimal shape design

problems, the boundary ∂Ω (or at least some part of it) plays the role of the control
variable, by means of which we can change properties of the structure.
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Let O denote a family of admissible domains, in which all possible candidates are

included. For the sake of simplicity of the mathematical analysis, we shall assume
the family O which contains domains with special shape, namely

(18) O = {Ω(α) | α ∈ Uad},

where

Uad = {α ∈ C0,1([a, b]) | 0 � α(x1) � γ0, |α′(x1)| � γ1 in ]a, b[ ,

measΩ(α) = γ2}

and
Ω(α) = {(x1, x2) ∈ �2 | x1 ∈ ]a, b[ , α(x1) < x2 < γ}

(see Figure 2).

ΓC(α)

ΓU Ω(α)

a b

ΓP

Fig. 2. Problem geometry

Here γ0, γ1, γ2 and γ are given positive constants, chosen in such a way that
Uad �= ∅. The contact part ΓC (the goal of the optimization) is given by

ΓC(α) = {(x1, x2) | x2 = α(x1), x1 ∈ ]a, b[}.

In order to emphasize the dependence of the state problem on the design variable

α, we shall write the symbol α as the argument wherever it will be necessary. So
we shall use the following notation: V (α), K(α), aΩ(α), LΩ(α). The definition is the

same as before for a particular choice of Ω, we only indicate that Ω(α) ∈ O is variable
now.

On each Ω(α) ∈ O we shall formulate the state problem (P(α)) (or (P(α)′)). In
order to guarantee the existence and the uniqueness of u(α) solving (P(α)) for all
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α ∈ Uad, we shall suppose that the functions κ, µ satisfy the conditions (3)–(5) for

all x ∈ Ω̂, F ∈ (L2(Ω̂))2 and P ∈ (L2(∂Ω̂))2, where Ω̂ ≡ ]a, b[× ]0, γ[. Observe that
Ω(α) ⊂ Ω̂ ∀α ∈ Uad. Moreover, let there exist δ > 0 such that meas1 ΓU (α) � δ

for any α ∈ Uad. Here the symbol meas1 ω stands for the one-dimensional Lebesgue

measure of ω.

Finally, let I : V (α)×Uad → �
1 be a cost functional and denote J(α) ≡ I(u(α), α),

with u(α) ∈ K(α) being the solution of (P(α)) on Ω(α).

The optimal shape design problem now reads as follows:

(P)

{
Find α∗ ∈ Uad such that

J(α∗) � J(α) ∀α ∈ Uad.

In the next part, the existence of at least one solution of (P) will be analyzed.

3. Existence result for (P)

First of all we present some auxiliary results, which will be needed in what follows.

Lemma 4. The family O, defined by (18), possesses the so called uniform exten-
sion property, i.e. there exists a linear extension mapping

pΩ(α) ∈ L (V (α), (H1(Ω̂))2),

the norm of which can be estimated independently of Ω(α) ∈ O.

For the proof, see [2].

Lemma 5. Let αn→→α (uniformly) in [a, b], where αn, α ∈ Uad and let ϕ ∈ K(α)
be given. Then there exist a sequence {ϕj}, ϕj ∈ (H1(Ω̂))2 and a subsequence
{αnj} ⊂ {αn} such that ϕj

∣∣
Ω(αnj

)
∈ K(αnj ) and

ϕj → ϕ̃ ≡ pΩ(α)ϕ in (H1(Ω̂))2.

�����. See Lemma 7.1, p. 125 in [5]. �

Finally, we shall need the following Lemma:

Lemma 6. Let a sequence {yn}, where yn ∈ H1(Ω̂) be such that

yn ⇀ y (weakly) in H1(Ω̂).
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Let αn→→α in [a, b], where αn, α ∈ Uad. Then

(Π(yn), ξ)αn → (Π(y), ξ)α ∀ξ ∈ C∞(Ω̂),

where

(Π(y), ξ)α ≡
∫ b

a

[y(x1, α(x1)) + α(x1)]
−ξ(x1, α(x1)) dx1

and the symbol [ ]− stands for the negative part of a real number.

�����. See Lemma 1.2, p. 23, in [5]. �

Now we are ready to prove the basic result, showing that the solution of (P(α))

depends continuously on changes of Ω(α) ∈ O.

Lemma 7. Let αn→→α in [a, b], where αn, α ∈ Uad. Let un ≡ u(αn) be the
solution of (P(αn)). Then there exists a subsequence of {un} (denoted by the same
sequence) and an element ũ ∈ (H1(Ω̂))2 such that

pΩnun ⇀ ũ in (H1(Ω̂))2

and u ≡ ũ
∣∣
Ω(α)

solves (P(α)).

�����. The proof will be done in several steps:

(i) The sequence {un} is bounded in the sense that

(19) ‖un‖1,Ωn � c,

where Ωn ≡ Ω(αn) and c > 0 does not depend on α ∈ Uad as we see. Indeed, (17)
and Remark 1 imply that

(20) ΦΩn(un) �
1
2
c1(εij(un), εij(un))0,Ωn − c2‖un‖0,Ωn − c3‖un‖0,Γn

P
,

where c1, c2 and c3 do not depend on α ∈ Uad (the constants c2, c3 can be estimated

from above by ‖F‖0,Ω̂ and ‖P‖0,∂Ω̂) and the symbol Γn
P denotes a part of ∂Ωn where

surface tractions are prescribed. In order to estimate the first term on the right hand

side of (20), we use Korn’s inequality

(21) (εij(v), εij(v))0,Ω(α) � c‖v‖21,Ω(α) ∀v ∈ V (α)

and in particular an important fact that the constant c on the right hand side of
(21) can be chosen independently on Ω(α) ∈ O (for the proof see [7], [6]). Also the
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last term on the right hand side of (20) can be estimated independently of α ∈ Uad

using the trace theorem:

(22) ‖v‖0,Γn
P

� c‖v‖1,Ωn ∀v ∈ V (αn).

This follows easily from the definition of the family O and the proof of the trace
theorem (see [9], p. 73).

From (20), (21) and (22) we see that there exists a constant c > 0, which does not
depend on α ∈ Uad, such that2

ΦΩn(un) � c‖un‖21,Ωn
− c‖un‖1,Ωn .

On the other hand, ΦΩn(un) is bounded from above, since

ΦΩn(un) � ΦΩn(0) and 0 ∈ K(αn) ∀n.

This proves (19).

(ii) The construction of a function ũ:

Let ũn ≡ pΩnun, i.e. ũn is the extension of un from Ωn to Ω̂, introduced in

Lemma 4. Then on the basis of the same lemma

(23) ‖ũn‖1,Ω̂ � c,

where c does not depend on α ∈ Uad, again. Therefore, there exists a subsequence
of {ũn} (denoted by the same sequence) and an element ũ ∈ (H1(Ω̂))2 such that

(24) ũn ⇀ ũ in (H1(Ω̂))2.

(iii) Define u ≡ ũ
∣∣
Ω(α)
. We prove that u solves (P ′(α)). The fact that u ∈ K(α),

especially that the unilateral conditions are satisfied for the second component u2,

follows immediately from Lemma 6. It remains to show that u is a minimizer of
ΦΩ(α) over K(α):

ΦΩ(α)(u) � ΦΩ(α)(v) ∀v ∈ K(α).

We can split Ωn as follows:

(25) Ωn = Gm ∪ (Ωn \ Ω(α)) ∪ ((Ω(α) \Gm) ∩ Ωn)),

2 In the sequel, the symbol c denotes a generic constant, taking different values at different
places.
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where

Gm ≡ Gm(α) =

{
(x1, x2) ∈ Ω(α) | x1 ∈ ]a, b[ , α(x1) +

1
m

< x2 < γ

}
,

andm is a positive integer which is sufficiently large. Then the total potential energy

ΦΩn can be written as a sum of the contributions, corresponding to the decomposition
(25):

(26) ΦΩn(un) = ΦGm(un) + ΦΩn\Ω(α)(un) + Φ(Ω(α)\Gm)∩Ωn
(un).

We shall analyze each term on the right hand side of (26) separately. Let m be fixed
and n sufficiently large. Then

(27) lim inf
n→∞

ΦGm(un) � ΦGm(u)

because of (24) and the fact that ΦGm is weakly lower semicontinuous in V (Gm).

Furthermore

ΦΩn\Ω(α)(un) =
1
2

∫

Ωn\Ω(α)

(
κε2ll(un) +

∫ Γ2(un)

0
µ(t) dt

)
dx− LΩn\Ω(α)(un)

� − LΩn\Ω(α)(un)

because κ and µ are non-negative. A direct computation shows that

lim
n→∞

LΩn\Ω(α)(un) = 0

and consequently

(28) lim inf
n→∞

ΦΩn\Ω(α)(un) � 0.

Using the same argument, the third term on the right hand side of (26) can be
estimated from below:

Φ(Ω(α)\Gm)∩Ωn
(un) � −L(Ω(α)\Gm)∩Ωn

(un)

and also

(29) |L(Ω(α)\Gm)∩Ωn
(un)| � c(m),

where c(m) is such that lim
m→∞

c(m) = 0. Taking into account (27), (28) and (29) we

see that
lim inf
n→∞

ΦΩn(un) � ΦGm(u)− c(m)
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holds for any m. Letting m →∞ we arrive at

(30) lim inf
n→∞

ΦΩn(un) � ΦΩ(α)(u).

Let v ∈ K(α) be given. Then Lemma 5 implies the existence of vj ∈ (H1(Ω̂))2
such that

vj

∣∣
Ωnj

∈ K(αnj )(31)

vj → pΩ(α)v, j →∞ in (H1(Ω̂))2.(32)

Taking into account the definition of (P(αnj )) and the fact that vj

∣∣
Ωnj

∈ K(αnj ),

we have

(33) ΦΩnj
(unj ) � ΦΩnj

(vj).

Next, we shall show that

(34) ΦΩnj
(vj)→ ΦΩ(α)(v), j →∞.

Indeed: as before

(35) ΦΩnj
(vj) = ΦGm(vj) + ΦΩnj

\Ω(α)(vj) + Φ(Ω(α)\Gm)∩Ωnj
(vj).

Since ΦGm is continuous on V (Gm), we have

(36) lim
j→∞

ΦGm(vj) = ΦGm(v).

For the second term on the right hand side of (35) we have

|ΦΩnj
\Ω(α)(vj)| � c

2∑

l=1

‖vj‖l
1,Ωnj

\Ω(α)(37)

� c

( 2∑

l=1

‖vj − pΩ(α)v‖l
1,Ω̂
+

2∑

l=1

‖pΩ(α)v‖l
1,Ωnj

\Ω(α)

)
→ 0

when j, nj →∞, making use of Lemma 3 and (32).
Finally,

|Φ(Ω(α)\Gm)∩Ωnj
(vj)| � c

2∑

l=1

‖vj‖l
1,Ω(α)\Gm

� c

( 2∑

l=1

‖vj − v‖l
1,Ω(α) +

2∑

l=1

‖v‖l
1,Ω(α)\Gm

)
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and therefore

(38) lim sup
nj→∞

|Φ(Ω(α)\Gm)∩Ωnj
(vj)| � c(m)

where c(m)→ 0 when m →∞. From (35)–(38) we finally obtain (34). The assertion
of lemma now easily follows from (30), (33) and (34). �

������ 2. Now we show that a subsequence {unj} of {un}, where {un} sat-
isfies (24), tends strongly to u on any compact subset Q ⊂ Ω(α):

‖unj − u‖1,Q → 0, nj →∞.

Indeed, let Q ⊂⊂ Ω(α) be given and choose Gm(α) in such a way that Gm(α) ⊇ Q.

Using the Taylor expansion of ΦGm at the point u, we can write for some θ ∈ ]0, 1[:

ΦGm(un) = ΦGm(u) +DΦGm(u, un− u)(39)

+
1
2
D2ΦGm(u+ θ(un− u), un− u, un− u)

� ΦGm(u) +DΦGm(u, un − u) + c‖un − u‖21,Gm
,

making use of Lemma 1 and the fact that Korn’s inequality is uniform with respect
to m and α ∈ Uad. Let m be fixed and n sufficiently large, such that Ωn ⊃ Gm.

Then

ΦΩn(un) = ΦGm(un) + ΦΩn\Gm
(un),

from which

(40) ΦGm(un) = ΦΩn(un)− ΦΩn\Gm
(un) � ΦΩn(un) + LΩn\Gm

(un)

follows. Replacing the left hand side of (39) by (40) we obtain

ΦGm(u) +DΦGm(u, un − u) + c‖un − u‖21,Gm
(41)

� ΦΩn(un) + LΩn\Gm
(un) � ΦΩn(v) + LΩn\Gm

(un) ∀v ∈ K(αn).

Let {vj}, vj ∈ (H1(Ω̂))2 be a sequence tending strongly to pΩ(α)u in (H1(Ω̂))2

and such that vj

∣∣
Ωnj

∈ K(αnj ), where {αnj} ⊂ {αn} (see Lemma 5). Replacing v

by vj in the last inequality in (41) considered on Ωnj we obtain:

‖unj − u‖21,Q � ‖unj − u‖21,Gm

� ΦΩnj
(vj) + LΩnj

\Gm
(un)− ΦGm(u)−DΦGm(u, unj − u).

182



Letting nj →∞ we get

lim sup
nj→∞

‖unj − u‖21,Q � ΦΩ(α)(u)− ΦGm(u) + c(m),

where c(m) → 0 as m → ∞. Here (24) and (34) have been used. Finally, letting
m →∞ we arrive at the assertion.
In order to ensure the existence of at least one solution of (P), the lower semi-

continuity of I has to be assumed. Let I satisfy at least one of the following two
assumptions:

(A1) If αn→→α in [a, b], where αn, α ∈ Uad and yn ⇀ y in (H1(Ω̂))2, where yn, y ∈
(H1(Ω̂))2 then

lim inf
n→∞

I
(
yn

∣∣
Ωn

, αn

)
� I
(
y
∣∣
Ω(α)

, α
)
,

or
(A2) If αn→→α in [a, b], where αn, α ∈ Uad and yn → y in (H1loc(Ω(α)))

2, where

yn ∈ V (αn), y ∈ V (α), then

lim inf
n→∞

I(yn, αn) � I(y, α).

The main result of this part is given in the following theorem:

Theorem 1. Let I satisfy (A1) or (A2). Then the problem (P) has at least one

solution.

�����. Denote

(42) q ≡ inf
α∈Uad

I(u(α), α) = lim
n→∞

I(un, αn),

i.e. the sequence {αn}, αn ∈ Uad, is a minimizing sequence and un is the cor-

responding state. As Uad is a compact subset of C([a, b]), we may assume that
αn→→α∗ ∈ Uad in [a, b] and at the same time pΩnun ⇀ ũ in (H1(Ω̂))2, where ũ is

such that u∗ ≡ ũ
∣∣
Ω(α∗)

solves (P(α∗)), as follows from Lemma 7. From this, (42)
and (A1) we conclude that (u∗, α∗) is an optimal pair for (P). If (A2) is satisfied,

then the result of Remark 2 will be used. �

As an example, which will be used in subsequent parts, let us consider

(43) J(α) ≡ I(u(α), α) = ΦΩ(α)(u(α)),

i.e. J is equal to the total potential energy evaluated in the equilibrium state u(α).

Such a choice of I satisfies (A1), as follows from (30), and consequently (P) has at
least one solution.
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������ 3. As mentioned in the introduction, optimal control problems the

state of which is described by a variational inequality, are in general non-smooth.
This is due to the fact that the mapping η: control variable → state of the system is
only locally Lipschitz continuous. In order to overcome this difficulty, a regularization

of the state problem can be used. In our case, we use a penalty approach. Define a
functional jα : V (α)→ �

1 as follows:

jα(v) ≡
1
3

∫ b

a

(
[v2(x1, α(x1)) + α(x1)]

−)3 dx1.

Instead of (P(α)) we define a new state problem as follows:

(P(α)ε)

{
Find uε(α) ∈ V (α) such that

ΦΩ(α)(uε(α)) + 1ε jα(uε(α)) � ΦΩ(α)(v) + 1ε jα(v) ∀v ∈ V (α),

where ε > 0 is the penalty parameter.
Now, we define a new shape optimization problem, in which the state problem

(P(α)) is replaced by (P(α)ε):

(Pε)

{
Find α∗ε ∈ Uad such that

I(uε(α∗ε), α
∗
ε) � I(uε(α), α) ∀α ∈ Uad

with uε(α) being the unique solution of (P(α)ε). Under the same assumptions

formulated before, it is possible to prove the existence of at least one solution α∗ε .
Moreover, when ε → 0+, then (Pε) and (P) are close on subsequences. More pre-

cisely, one can prove the following theorem:

Theorem 2. Let α∗ε ∈ Uad be a solution of (Pε) and let uε(α∗ε) be the solution

of (P(α∗ε)). Then there exists a subsequence of {α∗ε} and {uε(α∗ε)} (still denoted by
the same sequence) and elements α∗ ∈ Uad, ũ ∈ (H1(Ω̂))2 such that

α∗ε →→α∗ in [a, b]

pΩ(α∗ε)uε(α∗ε)⇀ ũ in (H1(Ω̂))2, ε → 0 + .

Moreover, α∗ solves (P) and u∗ ≡ ũ
∣∣
Ω(α∗)

solves (P(α∗)).

Proof for the case of elastic bodies is done in [6].
The main advantage of this approach is the fact that the variational inequality

(P(α)) is now replaced by a system of variational equations (P(α)ε), for which the
mapping η, introduced before, is continuously differentiable. In Section 5 we shall

show that the cost functional J given by (43) is continuously differentiable despite the
fact that the inner mapping η (see Remark 3) is not. In this case the regularization

of (P(α)) is not necessary.
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4. Approximation of (P)

In this section we describe the discretization of (P), which is based mainly on finite
element approximation of the state problem.

Let a ≡ a0 < a1 < . . . < aD(h) ≡ b be a partition of ]a, b[. The admissible set Uad
will be approximated by piecewise linear functions as follows:

Uh
ad =

{
αh ∈ C([a, b]) | αh

∣∣
[ai−1,ai]

∈ P1, i = 1, . . ., D
}
∩ Uad,

where P1 denotes the set of polynomials in one variable of the degree at most one.
Let us observe that Uh

ad can be easily constructed, because of piecewise linearity of

its elements. As Ω(αh), αh ∈ Uh
ad, is a polygonal domain, one can construct its

triangulation into elements, i.e. the finite element mesh T (h, αh) (now depending

also on αh). As well as the usual requirements on the mutual position of elements,
belonging to T (h, αh), we shall suppose that for h > 0 fixed, triangulations T (h, αh)

are topologically equivalent for all αh ∈ Uh
ad, i.e.:

(T1) T (h, αh) has the same number of nodes and the nodes have the same neighbours
for all αh ∈ Uh

ad.

(T2) The position of nodes in T (h, αh) depends continuously on αh.

The family {T (h, αh)}, h → 0+, αh ∈ Uh
ad is uniformly regular, i.e.

(T3) There exists ϑ0 > 0 such that all interior angles are bounded from below by ϑ0

for all h > 0 and αh ∈ Uh
ad.

Moreover, we shall construct T (h, αh) in such a way that any straight line segment
of αh is a side of one element only. The domain Ω(αh) with a given mesh T (h, αh)

will be denoted as Ωh, in what follows.

We start with the finite element approximation of the state problem. Let αh ∈ Uh
ad

be given and let Vh(αh) be the space of piecewise linear functions over T (h, αh):

Vh(αh) =
{
vh ∈ (C(Ω(αh)))2 | vh

∣∣
Ti
∈ (P1)2 ∀Ti ∈ T (h, αh),

vh = 0 on ΓU (αh)
}
.

By Kh(αh) we denote the closed convex subset of Vh(αh), defined as follows:

Kh(αh) = {vh = (vh1, vh2) ∈ Vh(αh) |
vh2(ai, αh(ai)) � −αh(ai), i ∈ C },

where C is the index set of all contact nodes Ni ≡ (ai, αh(ai)) ∈ ΓC(αh)\ΓU (αh). It
is readily seen that Kh(αh) is an inner approximation of K(αh). The state problem
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now will be approximated by the classical Ritz method:

(P(αh)′h)

{
Find uh ≡ uh(αh) such that

ΦΩh
(uh) � ΦΩh

(vh) ∀vh ∈ Kh(αh).

The approximation of the whole optimal shape design problem now reads as follows:

(Ph)

{
Find α∗h ∈ Uh

ad such that

Ih(uh(α∗h), α
∗
h) � Ih(uh(αh), αh) ∀αh ∈ Uh

ad,

where Ih : Vh(αh)×Uh
ad → �

1 is an approximation of I and uh(αh) solves (P(αh)′h).

In order to prove the existence of at least one solution of (Ph), we need the following
hypothesis on lower semicontinuity of Ih (for h > 0 fixed):

(I1) If αj
h → αh, j → ∞ in [a, b], where αj

h, αh ∈ Uh
ad and yj

h ⇀ yh, j → ∞ in
(H1(Ω̂))2, where yj

h

∣∣
Ω(αj

h)
∈ Vh(α

j
h), yh

∣∣
Ω(αh)

∈ Vh(αh) then

lim inf
j→∞

Ih

(
yj

h

∣∣
Ω(αj

h)
, αj

h

)
� Ih

(
yh

∣∣
Ω(αh)

, αh

)
.

Theorem 3. Let Ih satisfy (I1). Then (Ph) has at least one solution.

�����. First of all, for any αh ∈ Uh
ad fixed there exists a unique solution

uh(αh) ∈ Kh(αh) of (P(αh)′h). By virtue of (T1), dimVh(αh) is the same for any
αh ∈ Uh

ad. Let αj
h → αh as j → ∞. Arguing in the same way as in Lemma 7 it is

possible to show that
‖uh(α

j
h)‖1,Ω(αj

h)
� c,

where c > 0 does not depend on j, h. Denote by pΩ(αj
h)

uh(α
j
h) the extension of

uh(α
j
h) from Ω(α

j
h) to Ω̂. Then also

‖pΩ(αj
h)

uh(α
j
h)‖1,Ω(αj

h)
� c.

Thus there exists a subsequence of {pΩ(αj
h)

uh(α
j
h)} (still denoted by the same se-

quence) and an element ũ ∈ (H1(Ω̂))2 such that

pΩ(αj
h)

uh(α
j
h)⇀ ũ in (H1(Ω̂))2.

At the same time one can assume that T (h, αj
h) → T (h, αh), j → ∞, i.e. the

nodes of T (h, αj
h) converge to the corresponding nodes of T (h, αh) (see (T2)). It is

readily seen that the restriction ũ
∣∣
Ω(αh)

∈ Vh(αh), where Vh(αh) is the space of linear

elements constructed on T (h, αh). The fact that uh ≡ ũ
∣∣
Ω(αh)

solves (P(αh)′h) can

be proved in the same way as in Lemma 7. The rest of proof, namely that (Ph) has
at least one solution, proceeds exactly in the same way as in Theorem 1. �
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Next, we shall study the mutual relation between (Ph) and (P), when h → 0+.
To this end we need an auxiliary result.

Lemma 8. Let αh→→α in [a, b], where αh ∈ Uh
ad, α ∈ Uad. Let ϕ ∈ K(α) be given.

Then there exist a subsequence {αhj} ⊂ {αh} and a sequence {ϕhj}, ϕhj ∈ (H1(Ω̂))2
such that ϕhj

∣∣
Ω(αhj

)
∈ Khj(αhj ) and ϕhj → pΩ(α)ϕ in (H1(Ω̂))2.

�����. See [5] (Lemma 7.3 and the proof of Lemma 7.4). �

On the basis of Lemma 8, the following important result will be proved.

Lemma 9. Let αh→→α in [a, b], where αh ∈ Uh
ad, α ∈ Uad. Let uh ≡ uh(αh) be

the solution of (P(αh)h). Then there exists a subsequence of {uh} (still denoted by
the same sequence) and a function ũ ∈ (H1(Ω̂))2 such that u ≡ ũ

∣∣
Ω(α)

∈ K(α),

pΩh
uh ⇀ ũ in (H1(Ω̂))2

and u ≡ ũ
∣∣
Ω(α)

solves (P(α)).

�����. The proof is parallel to that of Lemma 7, making use of Lemma 8. �

������ 4. In a similar way as in Remark 2 one can show that there is a
subsequence of {uh} (denoted by the same symbol) such that

uh(αh)→ u in H1loc(Ω(α)).

Now, we are able to establish the main result of this section, analyzing the mutual
relation between (Ph) and (P), when h → 0+. To this end we shall suppose that at
least one of the following two conditions is satisfied:

(I2) If αh→→α in [a, b], where αh ∈ Uh
ad, α ∈ Uad and yh ⇀ y in (H1(Ω̂))2, where

yh, y ∈ (H1(Ω̂))2, yh

∣∣
Ωh
∈ Vh(αh), then

lim
h→0+

Ih

(
yh

∣∣
Ωh

, αh

)
= I
(
y
∣∣
Ω(α)

, α
)
.

(I3) If αh→→α in [a, b], where αh ∈ Uh
ad, α ∈ Uad and yh → y in (H1loc(Ω(α)))

2 , where
yh ∈ Vh(αh), y ∈ V (α), then

lim
h→0+

Ih(yh, αh) = I(y, α).

Theorem 4. Let (I2) or (I3) be satisfied. Let α∗h ∈ Uh
ad be a solution of (Ph)

and uh(α∗h) the solution of (P(α
∗
h)h)

′. Then there exist subsequences of {α∗h} and
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of {uh(α∗h)} (denoted by the same symbols) and elements α∗ ∈ Uad, ũ ∈ (H1(Ω̂))2
such that

α∗h→→α∗ in [a, b];

pΩh
uh(α∗h)⇀ ũ in (H1(Ω̂))2, h → 0 + .

Moreoever, α∗ is a solution of (P) and u∗ ≡ ũ
∣∣
Ω(α∗)

solves (P(α∗)).

�����. We may already suppose that

α∗h→→α∗ in [a, b]

and
pΩh

uh(α∗h)⇀ ũ in(H1(Ω̂))2.

The fact that u∗ ≡ ũ
∣∣
Ω(α∗)

solves (P(α∗)) follows from Lemma 9. If (I2) is satisfied

then

(44) lim
h→0+

Ih(uh(α∗h), α
∗
h) = I(u∗, α∗).

If (I3) is satisfied, then (44) holds as well, by virtue of Remark 4.

Let α ∈ Uad be given. Then there exists a sequence {αh}, αh ∈ Uh
ad such that

(see [1])

(45) αh→→α in [a, b].

Let uh(αh) be the solution of (P(αh)) corresponding to the sequence with property

(45). Then also
lim

h→0+
Ih(uh(αh), αh) = I(u(α), α),

by the same argument as before. Also the fact that

I(u∗, α∗) � I(u(α), α) ∀α ∈ Uad

is readily seen, i.e. α∗ is a solution of (P). �
������ 5. In some cases, the conditions (I2) and (I3) are too strong. From

the proof of the previous theorem we see that only solutions uh(αh) (and not general
elements from Vh(αh)) enter our considerations. Therefore, instead of general yh ∈
Vh(αh) we can formulate new conditions (I2’) and (I3’) with uh(αh) replacing yh,

i.e. (I3’) reads as follows:

(I3’) Let αh→→α in [a, b], where αh ∈ Uh
ad, α ∈ Uad and let uh(αh) → u(α) in

H1loc(Ω(α)), where uh(αh), u(α) solves (P(αh)′h), (P(α)
′), respectively. Then

lim
h→0+

Ih(uh(αh), αh) = I(u(α), α).

This will be useful in our next example.
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Let us consider Jh(αh) ≡ Ih(uh(αh), αh) = ΦΩh
(uh(αh)). Then (I3’) is satisfied.

Indeed, the inequality

(46) lim inf
h→0+

ΦΩh
(uh(αh)) � ΦΩ(α)(u(α))

has been already proved. From Lemma 8 it follows that there exists a subsequence

{αhj} ⊂ {αh} and a sequence {ϕhj}, ϕhj ∈ (H1(Ω̂))2, such that ϕhj

∣∣
Ω(αhj

)
⊂

Khj (αhj ) and

ϕhj → pΩ(α)u(α) in (H
1(Ω̂))2.

Using the definition of (P(αhj )
′
hj
), we have

ΦΩhj
(uhj (αhj )) � ΦΩhj

(ϕhj )

and consequently

(47) lim sup
hj→0+

ΦΩhj
(uhj (αhj )) � lim sup

hj→0+
ΦΩhj

(ϕhj ) = ΦΩ(α)(u(α))

as follows from the proof of Lemma 7 (see (34)). From (46) and (47) we see that

lim
hj→0+

Φhj (uhj (αhj )) = ΦΩ(α)(u(α))

and consequently, Theorem 4 holds true for the choice Jh(αh) ≡ ΦΩh
(uh(αh)).

5. Numerical realization

Taking into account the parametrization of Ω(αh), we find that the shape of
ΓC(αh) (and hence also of Ω(αh)) is uniquely determined by the x2-coordinates
of the nodes Ni = (ai, αh(ai)) defined on ΓC(αh). Consequently, the design (or

control) variables are di ≡ αh(ai), i = 0, . . ., D. We define the design vector

d = (d0, d1, . . ., dD).

We can identify the set Uh
ad with a closed convex subset of �

D+1

U =
{
d ∈ �D+1 | 0 � di � γ0,(48)

− γ1 � di − di−1
ai − ai−1

� γ1,

D∑

i=1

2γ − di − di−1
ai − ai−1

= 2γ2
}

.
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The discrete state problem (P(αh)′h) is a general nonlinear programming problem.

We prefer to solve it as a sequence of quadratic programming problems

(49) un+1
h = arg min

vh∈Kh

1
2
BΩh
(un

h; vh, vh)− LΩh
(vh),

where

BΩ(u; v, w) ≡
∫

Ω

[(
κ− 2
3
µ(Γ2(u))

)
εii(v)εjj(w) + 2µ(Γ2(u))εij(v)εij(w)

]
dx.

This approach is known as secant-modulus or Kachanov method ([9], [10]).

By the vector q(d) = (q1(d), . . ., qn(d)) we denote the nodal values of the displace-
ment field uh(αh). Let S2 be an index set containing the indices of x2-components

of the displacement field at the nodes of the contact boundary ΓC \ΓU . Furthermore,
the following convention is used: by qji , ji ∈ S2 we refer to the ji-th component of

the displacement vector which is the x2-component of uh(αh) at the node Ni.
The problem (Ph) is equivalent to the nonlinear programming problem

(50)

{
Find d∗ ∈ U such that

J (d∗) � J (d) ∀d ∈ U ,

where J (d) ≡ I (d,q(d)) and I (d,q(d)) denotes the matrix form of the cost
function Ih ≡ ΦΩh

. To be able to use efficient nonlinear programming algorithms

for the numerical solution of (50) we must perform the sensitivity analysis, i.e. to
calculate the gradient of J (d).
Assumptions (T1) and (T2) imply that for fixed q the mapping d �→ I (d,q)

is differentiable. Moreover, its gradient can be easily computed by applying the

isoparametric technique described in [4]. On the other hand, the mapping d �→
q(d) is only directionally differentiable in general, not continuously differentiable as
follows from [12]. Consequently, it might seem that the mapping d �→ J (d) is not
continuously differentiable. However, our particular choice of the cost function leads

to the differentiable case. Indeed, let J ′(d; d̂) denote the directional derivative of
J at d in the direction d̂. Then

J ′(d; d̂) = lim
t→0+

J (d+ td̂)−J (d)
t

(51)

=
(
∇dI (d,q)

)T

d̂+
(
∇qI (d,q)

)T

q′(d),

where

q′(d) ≡ lim
t→0+

q(d+ td̂)− q(d)
t

.
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We shall eliminate the directional derivative of q from (51). Components of the
residual vector

r(d) ≡ ∇qI (d,q(d))
are discrete analogues of the x2-component of the stress vector along the contact

part. Since q depends continuously on d and I is continuously differentiable with
respect to q, then r depends continuously on d, as well. Therefore if rij (d) �= 0 for
some ij ∈ S2, then rij (d + td̂) �= 0 for any t > 0 sufficiently small. This means
that the corresponding node on the contact part remains in contact regardless of the

small perturbations of Ωh(αh):

(52) qij (d+ td̂) = −dj − td̂j .

Consequently,

(53)
∂qij

∂dk
= −δjk, ij ∈ S2, k = 0, . . ., D.

Now (52)–(53) yield

Theorem 5. The mapping d �→ J (d) is once continuously differentiable for all
d ∈ U and

∂J (d)
∂dj

= −rij −
∂I (d,q)

∂dj
, j = 0, . . ., D.

	
����� 6. Let a = 0, b = 4, γ = 1 be the constants defining Ω(α) and let
γ0 = 0.2, γ1 = 1, γ2 = 3.8 be the constants defining the set Uad. We have assumed

the nonlinear Hooke’s law

σij = κεllδij + 2µ̃(e)

(
εij −

1
3
δijεll

)
,

where e =
√

γ (with γ defined in (2)) and

µ̃(e) =





µ1, e � e0

µ1
e0
e

(
log

e

e0
+ 1
)
, e0 < e � e1

µ1
e0
e1

(
log

e1
e0
+ 1
)
, e > e1

where e1 is sufficiently large. We have chosen µ1 = E/(2 + 2ν), κ = E/(3− 6ν) and
e0 = 0.001 with Young’s modulus E = 1.0 and Poisson’s ratio ν = 0.3. The body

force F is assumed zero and the external load is of the form

P =

{
(0, 0.001), x2 = 1, x1 ∈ ]2, 4[
(0, 0), otherwise.
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Fig. 3. Finite element mesh of the optimal structure
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Fig. 4. Contact stress distribution

As our initial guess we have chosen α0h ≡ 0.04. Instead of linear triangular ele-
ments, we have used four-noded isoparametric elements. The initial cost is −7.68×
10−5. After 31 optimization iterations the cost was reduced to −1.49 × 10−4. The
finite element mesh corresponding to the final domain is shown in Figure 3. The

initial and final contact stress distributions are plotted in Figure 4 together with the
initial and final ones corresponding to the linear law µ̃(e) ≡ µ1.

In optimization we have used the sequential quadratic programming subroutine
E04UCF from the NAG library ([8]). The quadratic programming problem (49) has

been solved using block SOR-method with projection. Computations have been done
in double precision using a HP9000/710-workstation. The total CPU-time needed

was approximately 540 seconds.
It was shown by [3] that in the linear case the minimizing total potential energy

should yield “almost” constant contact stress distribution. Similar behaviour can be
observed also in the nonlinear case.
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