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Abstract. The identification problem of a functional coefficient in a parabolic equation is
considered. For this purpose an output least squares method is introduced, and estimates
of the rate of convergence for the Crank-Nicolson time discretization scheme are proved,
the equation being approximated with the finite element Galerkin method with respect to
space variables.
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1. Introduction

In this article we consider the parabolic equation

(1.1)
∂u(t, x)
∂t

−∇ · (b(t, x)∇u(t, x)) = f(t, x) in (0, T ]× Ω,

b
∂u

∂n

∣∣∣∣
∂Ω

= g in (0, T ],

u(0, x) = u0(x) in Ω,

where Ω is a bounded domain in �2 with a smooth boundary ∂Ω, and [0, T ] is a fixed

time interval with T <∞. A direct problem in (1.1) consists in finding the unknown
solution u when we know both functions b and f , but here we are interested in the

inverse problem related to this equation: With some information about the solution
u, recover the parameter b.
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We assume that we have a distributed observation of the solution u and we use

the output least squares method to transform the identification problem of b into a
minimization problem. The aim of this paper is to generalize the analysis for elliptic
identification problems in [5] to the case of the parabolic equation (1.1). For other

works containing estimates of the rate of convergence for parabolic identification
problems we refer to [9], [6] and references therein.

The convergence analysis of inverse problems is based on the techniques used for
the corresponding direct parabolic problems. This kind of calculations can be found,

for example, in the books [10], [4], and in the papers [3], [7] and [11]. In our work
we have adopted these techniques especially in the proofs of Lemmas 3.3 and 3.4.

However, at least we do not know any work where a method like ours is used in order
to obtain estimates for time derivatives in those lemmas.

The paper is organized as follows. In Section 2 we recall some approximation
results and inequalities needed in the analysis. In Section 3 we formulate the iden-

tification problem as an optimal control problem by introducing a cost functional,
which is minimized in the computational procedure. This is followed by estimates

of the rate of convergence, when the equation (1.1) is discretized in time with the
Crank-Nicolson scheme.

2. Notation and preliminaries

The standard notation for Sobolev spaces and associated norms will be used. We
will not include the domain Ω in the spaces and norms, since we assume it always

fixed. We use (·, ·) to denote the L2 inner product on Ω and 〈·, ·〉 on ∂Ω. We regard C
as a generic constant, which may vary in different contexts, but is always independent
of h. By Dt we denote the derivative with respect to the time variable t.

In order to define the finite element spaces let Th, 0 < h < 1, be a family of
triangulations of Ω. If the boundary of Ω is curved, we use triangles with one edge

replaced by a curved segment of the boundary (see [8] for details). We assume that
the family Th is regular and quasi-uniform. For fixed integers 0 � l � r, r � 1, we
define a finite element space as

(2.1) Srh,l =
{
v | v ∈ Cl−1(Ω), v|T ∈ Pr ∀ T ∈ Th

}
,

where Pr is the space of polynomials of degree less than or equal to r and C−1 is
interpreted as L2. By standard results ([2], [1]) we know that for all v ∈ Wm,p(Ω)

there is vh ∈ Srh,l such that

(2.2) ‖v − vh‖k,p � C hm−k‖v‖m,p for 0 � k � l, k � m � r + 1, 1 � p � ∞.
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Also, these spaces satisfy an inverse inequality

(2.3) ‖vh‖1,p � C h−1‖vh‖0,p ∀vh ∈ Srh,l, 1 � p � ∞.

We will make use of Young’s inequality:

Let a, b ∈ �. Then, for α > 0 we have

(2.4) a b � 1
4α

a2 + αb2.

Using (2.4) with α = 1
2 it is easy to prove that for v1, . . . , vm ∈ X we have an

estimate

(2.5) ‖v1 + . . .+ vm‖2X � m (‖v1‖2X + . . .+ ‖vm‖2X).

We denote by H−1 = H−1(Ω) the dual space
(
H1(Ω)

)′
equipped with the natural

norm

(2.6) ‖v‖−1 = sup
ψ∈H1
ψ �=0

|(v, ψ)|
‖ψ‖1

.

A direct consequence of this definition for v ∈ H−1 and ψ ∈ H1 is the inequality

(2.7) |(v, ψ)| � ‖v‖−1‖ψ‖1.

If v is a strongly measurable map of (0, T ) into the Banach space X with a norm

‖ · ‖X , we set

(2.8) ‖v‖2L2((0,T );X) = ‖v‖2L2(X) =
∫ T

0
‖v(s)‖2X ds.

Moreover, if v is continuous from [0, T ] into X , we put

(2.9) ‖v‖C0([0,T ];X) = ‖v‖C0(X) = max
t∈[0,T ]

‖v(t)‖X .
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3. Estimates for Crank-Nicolson scheme

First we fix some notation. Let 1 � n ∈ � be a positive integer and set ∆t = T
n .

We divide the time-axis [0, T ] into the subintervals [tj , tj+1], j = 0, . . . , n− 1, where
tj = j∆t. In the sequel, we use the following notation for functions ψ, ψ̃, which are
defined on [0, T ] or its division:

(3.1) ψj = ψ(tj), ∂tψj =
ψj+1 − ψj
∆t

, ψj+ 12 =
ψj+1 + ψj
2

,

ψj+ 12 = ψ(tj+ 12 ), (ψ ψ̃)j+ 12 = ψj+ 12 ψ̃j+ 12 .

Let z(t, x) ∈ C0(H1) be a distributed observation of the state u and ϕ(t, x) ∈
C0(H−1) that of Dtu at each time level t. We assume that the observation error
with these functions is of the form

(3.2) ‖u− z‖1 � ε1,

‖Dtu− ϕ‖−1 � ε2,

for all t ∈ (0, T ). Notice that if we have measurements of u at different time lev-
els, we can get an observation also for Dtu by differentiating in time the obtained

interpolation of observations. Later we will discuss possibilities how to remove the
observation ϕ, but in the following analysis it is more convenient to consider z and

ϕ as separate observations.

The original equation (1.1) in the weak Galerkin form reads as follows: find u :
[0, T ]→ H1 such that

(3.3) (Dtu, v) + (b∇u,∇v) = (f, v) + 〈g, v〉 ∀v ∈ H1,
u = u0 for t = 0.

In the semidiscrete finite element approximation of (3.3) we seek for a function
uh : [0, T ]→ Uh such that

(3.4) (Dtuh, vh) + (b∇uh,∇vh) = (f, vh) + 〈g, vh〉 ∀vh ∈ Uh,
uh = u0,h for t = 0,

where Uh = S
r+1
h,k ⊂ H1 for k � 1, and u0,h is the interpolant of u0 in Uh. In order to

get a totally discrete scheme we must discretize also the time derivative in (3.4). We

introduce the well-known Crank-Nicolson scheme, where the equation is discretized
in a symmetric fashion around the points tj+ 12 . So, let us define a totally discrete
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solution Uj(b) = uh(b)(tj), which corresponds to a given parameter b and can be

computed recursively by

(3.5)

{
(∂tUj , vh) + ((b̄∇U)j+ 12 ,∇vh) = (f j+ 12 , vh) + 〈gj+ 12 , vh〉 ∀vh ∈ Uh,

U0 = u0,h,

for j = 0, . . . , n− 1.
For the computational procedure we introduce a cost functional

(3.6) J(bh) =
n−1∑

j=0

‖∇(Û − z)j+ 12 ‖
2
0 + ‖∂tÛj − ϕj+ 12 ‖

2
−1,

where Û = Uj(b̂h) is the solution of (3.5) calculated with the parameter b̂h. It can be
seen that the cost functional consists of a sum of output least squares fits between the

computed discrete function Û and the given observations. The actual identification
problem with the cost functional J(bh) can be defined as follows:

(3.7) find bh ∈Mh : J(bh) � J(b̃h) ∀ b̃h ∈Mh,

where

Mh =
{
¯̃
bh ∈ Srh,k−1 | ∀0 � j � n− 1: 0 < λ1 � ¯̃bh,j+ 12 � λ2 <∞ a.e. in Ω

}

is the set of admissible parameters with given positive constants λ1, λ2 ∈ �. From the
definition of Mh we see that the discrete parameter b̃h is defined as a finite element
function with respect to the space variables at time levels tj+ 12 , j = 0, . . . , n− 1. In
the sequel, let bh be the minimizer of (3.7) and W = Uj(bh) the solution of (3.5)
with the minimizing parameter.

Concerning the smoothness of the functions we assume that

(3.8) u ∈ C0(Hr+2), Dtu ∈ L2(Hr), Dttu ∈ L2(H1),
Dtttu ∈ L2(H−1), b ∈ C0(W 1,∞ ∩Hr+1)

for r � 1. Moreover, we require that the true parameter b satisfy

(3.9) λ1 + δ < b(x) < λ2 − δ a.e. in Ω ∀t ∈ (0, T )

for some δ > 0. Finally, as in [5] we assume that

(3.10) there exists a constant unit vector �ν and a constant δ > 0

such that ∇u · �ν � δ > 0 ∀x ∈ Ω, ∀t ∈ (0, T ),
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(3.11) u ∈ W r+3(Ω) and Γ1 =

{
x ∈ ∂Ω: ∂u

∂n
> 0

}
∈ Cr+2 ∀t ∈ (0, T ).

Lemma 3.1. Assume (3.10) is fulfilled and u ∈ W 2,∞ for all t ∈ (0, T ). Then
there is at most one coefficient b(t, x) ∈ H1(Ω) satisfying (3.3) ∀t ∈ (0, T ).
�����. As in [5], Lemma 1. �

Let us first prove some estimates for the true solution u of (1.1) and its L2 pro-

jection.

Lemma 3.2. Let uh be the L2 projection of u into Uh. Then the following
estimates for u and uh are valid:

‖u− uh‖k � C hs−k ‖u‖s, 1 � s � r + 2,−1 � k � 1,
‖Dt(u− uh)‖k � C hs−k ‖Dtu‖s, 0 � s � r + 2,−1 � k � 1.

�����. By the definition, u and uh satisfy the relation

(3.12) (u− uh, vh) = 0 ∀vh ∈ Uh.

A direct calculation using (3.12) shows

(3.13) ‖u− uh‖20 = (u − uh, u− uh) = (u− uh, u− χ) � ‖u− uh‖0‖u− χ‖0,

where χ is an arbitrary element in Uh. Then, (2.2) yields

(3.14) ‖u− uh‖0 � C hs ‖u‖s, 0 � s � r + 2.

Let χ be the interpolant of u in Uh. Using (2.3), (2.2) and (3.14) we deduce

(3.15) ‖u− uh‖1 � ‖u− χ‖1 + C h−1 ‖χ− uh‖0
� C hs−1 ‖u‖s + C h−1 (‖χ− u‖0 + ‖u− uh‖0)
� C hs−1 ‖u‖s, 1 � s � r + 2.

Moreover, by the definition of the H−1 norm it follows from (3.12), (2.2) and (3.14)
that

(3.16) ‖u− uh‖−1 = sup
ψ∈H1

|(u − uh, ψ)|
‖ψ‖1

= sup
ψ∈H1

|(u− uh, ψ − ψh)|
‖ψ‖1

� sup
ψ∈H1

‖u− uh‖0‖ψ − ψh‖0
‖ψ‖1

� C h ‖u− uh‖0
� C hs+1 ‖u‖s, 0 � s � r + 2.
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By differentiating (3.12) with respect to t we find

(3.17)
d
dt
(u− uh, vh) = (Dt(u− uh), vh) = 0 ∀vh ∈ Uh,

which means that the L2 projection commutes with time differentiation. This implies,
as in (3.14) - (3.16), that estimates

(3.18) ‖Dt(u − uh)‖0 � C hs ‖Dtu‖s, 0 � s � r + 2,

‖Dt(u − uh)‖1 � C hs−1 ‖Dtu‖s, 1 � s � r + 2,

‖Dt(u− uh)‖−1 � C hs+1 ‖Dtu‖s, 0 � s � r + 2,

are also valid. This proves the results. �

Lemma 3.3. For u and the discrete solution Uj(b) of (3.5) an estimate

∆t
n−1∑

j=0

(
‖(U − u)j+ 12 ‖

2
1 + ‖∂tUj −Dtuj+ 12 ‖

2
−1

)
� C T (h2(r+1) + (∆t)4)

holds, for ∆t sufficiently small.

�����. From (3.3) and Uh ⊂ H1 it follows that the formula

(3.19) (Dtuj+ 12 , vh) + ((b̄∇u)j+ 12 ,∇vh) = (f j+ 12 , vh) + 〈gj+ 12 , vh〉 ∀vh ∈ Uh

is valid. Hence, a combination of (3.5) and (3.19) leads to

(3.20) (∂tUj −Dtuj+ 12 , vh) + ((b̄∇(U − u))j+ 12 ,∇vh) = 0 ∀vh ∈ Uh.

Let χ be an arbitrary element in Uh. By adding and subtracting some terms to
(3.20) we get

(3.21) (∂t(U − χ)j , vh) + ((b̄∇(U − χ))j+ 12 ,∇vh)
= (∂t(u− χ)j , vh) + ((b̄∇(u − χ))j+ 12 ,∇vh)
+ (Dtuj+ 12 − ∂tuj, vh) + ((b̄∇(u − u))j+ 12 ,∇vh) ∀vh ∈ Uh.

Now we choose vh = (U − χ)j+ 12 . Using the inequalities (2.7) and (2.4) we obtain
from (3.21), when λ1‖(U − χ)j+ 12 ‖

2
0 is added to both sides,

(3.22)
1
2∆t
(‖(U − χ)j+1‖20 − ‖(U − χ)j‖20) + λ1‖(U − χ)j+ 12 ‖

2
1

� C
(
‖∂t(u − χ)j‖2−1 + λ22‖∇(u− χ)j+ 12 ‖

2
0 + ‖Dtuj+ 12 − ∂tuj‖2−1

+λ22‖∇(u− u)j+ 12 ‖
2
0 + λ1‖(U − χ)j+ 12 ‖

2
0

)
+ α‖(U − χ)j+ 12 ‖

2
1.
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Here we have used the formula

(3.23) (∂t(U − χ)j , (U − χ)j+ 12 ) =
1
2∆t
(‖(U − χ)j+1‖20 − ‖(U − χ)j‖20),

and the result (see [4], p. 152)

(3.24) ∆t ‖Dtuj+ 12 − ∂tuj‖2−1 � C(∆t)4
∫ tj+1

tj

‖Dtttu‖2−1 ds,

which implies

(3.25) ∆t
n−1∑

j=0

‖Dtuj+ 12 − ∂tuj‖2−1 � C(∆t)4
∫ tn

0
‖Dtttu‖2−1 ds

� C(∆t)4‖Dtttu‖2L2(H−1).

A direct calculation shows that the inequality

(3.26) ∆t
n−1∑

j=0

‖(u− u)j+ 12 ‖
2
1 � C(∆t)4 ‖Dttu‖2L2(H1)

is valid, too. Moreover, a straightforward calculation gives

(3.27) ∂t(u− χ)j =
1
∆t

∫ tj+1

tj

Dt(u− χ) ds,

whence we get

(3.28) ∆t
n−1∑

j=0

‖∂t(u− χ)j‖2−1 �
∫ tn

0
‖Dt(u − χ)‖2−1 ds � ‖Dt(u− χ)‖2L2(H−1).

By the definition it follows that

(3.29) ‖(u− χ)j+ 12 ‖1 � C(‖(u − χ)j+1‖1 + ‖(u− χ)j‖1),

and a repeated application shows that

(3.30) ∆t
n−1∑

j=0

‖(u− χ)j+ 12 ‖
2
1 � C T ‖u− χ‖2C0(H1).
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Finally, a direct calculation gives

(3.31)
n−1∑

j=0

1
2∆t

(
‖(U − χ)j+1‖20 − ‖(U − χ)j‖20

)

=
1
2∆t

(
‖(U − χ)n‖20 − ‖U0 − χ0‖20

)
.

Then, summing (3.22) for j = 0, . . . , n− 1, choosing α < λ1 and using the results

(3.25)–(3.31) we obtain

(3.32) ‖(U − χ)n‖20 +∆t
n−1∑

j=0

‖(U − χ)j+ 12 ‖
2
1

� C∆t
n−1∑

j=0

(
‖∂t(u− χ)j‖2−1 + ‖∇(u− χ)j+ 12 ‖

2
0 + ‖Dtuj+ 12 − ∂tuj‖2−1

+‖∇(u− u)j+ 12 ‖
2
0 + ‖(U − χ)j+ 12 ‖

2
0

)
+ ‖(U − χ)0‖20

� C T
(
‖Dt(u− χ)‖2L2(H−1) + ‖∇(u− χ)‖2C0(L2)

+ ‖u0,h − u0‖20 + ‖u0 − χ0‖20
)

+ C(∆t)4(‖Dtttu‖2L2(H−1) + ‖Dttu‖2L2(H10 )) + C∆t
n∑

j=0

‖(U − χ)j‖20

� C T h2(r+1)(‖Dtu‖2L2(Hr) + ‖u‖2C0(Hr+2) + ‖u0‖2r+1)

+ C(∆t)4(‖Dtttu‖2L2(H−1) + ‖Dttu‖2L2(H1)) + C∆t
n∑

j=0

‖(U − χ)j‖20

� C T (h2(r+1) + (∆t)4) + +C∆t
n∑

j=0

‖(U − χ)j‖20.

Here we have chosen χ to be the L2 projection of u and used the results from

Lemma 3.2. Using the discrete Gronwall’s inequality ([4], Lemma 4.7) we deduce
from (3.32), for ∆t sufficiently small,

(3.33) ∆t
n−1∑

j=0

‖(U − χ)j+ 12 ‖
2
1 � C T (h2(r+1) + (∆t)4).
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From this we obtain, using again Lemma 3.2, (3.30) and (3.26)

(3.34) ∆t
n−1∑

j=0

‖(U − u)j+ 12 ‖
2
1

� ∆t
n−1∑

j=0

(
‖(U − χ)j+ 12 ‖

2
1 + ‖(χ− u)j+ 12 ‖

2
1 + ‖(u− u)j+ 12 ‖

2
1

)

� C T (h2(r+1) + (∆t)4).

Let ψh ∈ Uh be the L2 projection and χ ∈ Uh the H1 projection of a given ψ ∈ H1.
Then it follows from (2.3) and (2.2) that

(3.35) ‖ψh‖1 � C h−1 ‖ψh − χ‖0 + ‖χ− ψ‖1 + ‖ψ‖1
� C h−1 (‖ψh − ψ‖0 + ‖ψ − χ‖0) + C ‖ψ‖1
� C ‖ψ‖1.

Hence, using the equation (3.21) and the definitions of the H−1 norm and the L2

projection we get for ∂t(U − χ)j ∈ Uh
(3.36)

‖∂t(U − χ)j‖−1 = sup
ψ∈H1

(∂t(U − χ)j , ψ)
‖ψ‖1

= sup
ψ∈H1

(∂t(U − χ)j , ψh)
‖ψ‖1

� sup
ψ∈H1

{
|((b̄∇(U − χ))j+ 12 ,∇ψh) + (∂t(u− χ)j , ψh) + ((b̄∇(u− χ))j+ 12 ,∇ψh)|

‖ψ‖1

+
|(Dtuj+ 12 − ∂tuj , ψh) + ((b̄∇(u − u))j+ 12 ,∇ψh)|

‖ψ‖1

}

� C
(
‖∇(U − χ)j+ 12 ‖0 + ‖∂t(u− χ)j‖−1 + ‖∇(u− χ)j+ 12 ‖0

+ ‖Dtuj+ 12 − ∂tuj‖−1 + ‖∇(u− u)j+ 12 ‖0
)

∀0 � j � n− 1. This together with (3.33), (3.28), (3.30), (3.25) and (3.26) yields

(3.37) ∆t
n−1∑

j=0

‖∂tUj −Dtuj+ 12 ‖
2
−1 � C T (h2(r+1) + (∆t)4),

which proves the result. �

Lemma 3.4. Let θh be the interpolant of b in Bh for all t ∈ [0, T ] and let Ũj =
uh(θh)(tj) be the corresponding discrete solution of (3.5). Then, for h small enough,
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θh ∈Mh, and the following estimate holds for Ũ and u:

∆t
n−1∑

j=0

(
‖∇(Ũ − u)j+ 12 ‖

2
0 + ‖∂tŨj −Dtuj+ 12 ‖

2
−1

)
� C T (h2(r+1) + (∆t)4)

for ∆t sufficiently small.

�����. By (2.2) and the regularity of b the following estimates hold for b and

θh:

(3.38) ‖b− θh‖0 � C hr+1 ‖b‖r+1,
‖b− θh‖∞ � C h ‖b‖1,∞,

which gives, for h small enough,

(3.39) λ1 � θh � λ2 a.e. in Ω

∀t ∈ (0, T ), so θ̄h ∈Mh for h small enough. Ũ satisfies the equation

(3.40) (∂tŨj , vh) + ((θ̄h∇Ũ)j+ 12 ,∇vh) = (f j+ 12 , vh) + 〈gj+ 12 , vh〉 ∀vh ∈ Uh.

Hence, a combination of (3.5) and (3.40) gives

(3.41) (∂t(Ũ − U)j , vh) + ((θ̄h∇(Ũ − U))j+ 12 ,∇vh)
= (((b̄ − θ̄h)∇U)j+ 12 ,∇vh)
= (((b̄ − θ̄h)∇(U − u))j+ 12 ,∇vh) + (((b̄ − θ̄h)∇u)j+ 12 ,∇vh) ∀vh ∈ Uh.

As before we take vh = (Ũ − U)j+ 12 . Then (3.41) implies, as in (3.22), by virtue of
the fact uj+ 12 ∈ H

r+2 ⊂W 1,∞ for r � 1 that

(3.42)
1
2∆t
(‖(Ũ − U)j+1‖20 − ‖(Ũ − U)j‖20) + λ1‖∇(Ũ − U)j+ 12 ‖

2
0

� C
(
‖∇(U − u)j+ 12 ‖

2
0 + ‖(b̄− θ̄h)j+ 12 ‖

2
0

)
+ α‖∇(Ũ − U)j+ 12 ‖

2
0.

Thus, we choose again α < λ1 and sum (3.42) from 0 to n− 1:

(3.43) ‖(Ũ − U)n‖20 +∆t
n−1∑

j=0

‖∇(Ũ − U)j+ 12 ‖
2
0

� C∆t
n−1∑

j=0

(‖∇(U − u)j+ 12 ‖
2
0 + ‖(b̄− θ̄h)j+ 12 ‖

2
0)

� C T (h2(r+1) + (∆t)4 + ‖b− θh‖2C0(L2))
� C T (h2(r+1) + (∆t)4),
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having used the results from (3.38) and Lemma 3.3. So, again as in Lemma 3.3, it

follows from (3.43) with the triangle inequality, for ∆t small enough,

(3.44) ∆t
n−1∑

j=0

‖∇(Ũ − u)j+ 12 ‖
2
0 � C T (h2(r+1) + (∆t)4).

The estimate in H−1 follows exactly as in (3.36)–(3.37) combined with (3.41).
This completes the proof. �

Lemma 3.5. The following estimate for b, u and bh, W = Û(bh) is valid, for ∆t
and h small enough:

∆t
n−1∑

j=0

(
‖∇(W − u)j+ 12 ‖

2
0 + ‖∂tWj −Dtuj+ 12 ‖

2
−1

)
� C T (h2(r+1)+(∆t)4+ε21+ε

2
2).

�����. Because bh is the minimizer of the cost functional (3.6), we have, for h
small enough, ∆t J(bh) � ∆t J(θh). This means

(3.45) ∆t
n−1∑

j=0

(
‖∇(W − z)j+ 12 ‖

2
0 + ‖∂tWj − ϕj+ 12 ‖

2
−1

)

� ∆t
n−1∑

j=0

(
‖∇(Ũ − z)j+ 12 ‖

2
0 + ‖∂tŨj − ϕj+ 12 ‖

2
0

)

= I1 + I2.

For I1 we have, using Lemma 3.4 and (3.2),

(3.46) I1 � ∆t
n−1∑

j=0

2 (‖∇(Ũ − u)j+ 12 ‖
2
0 + ‖∇(u− z)j+ 12 ‖

2
0

� C T (h2(r+1) + (∆t)4 + ε21).

For I2 we get, using again Lemma 3.4 and (3.2),

(3.47) I2 � ∆t
n−1∑

j=0

2 (‖∂tŨj −Dtuj+ 12 ‖
2
−1 + ‖(Dtu− ϕ)j+ 12 ‖

2
−1

� C T (h2(r+1) + (∆t)4 + ε22).

Hence, from (3.45)–(3.47) we conclude

(3.48) ∆t
n−1∑

j=0

(
‖∇(W − z)j+ 12 ‖

2
0 + ‖∂tWj − ϕj+ 12 ‖

2
−1

)

� C T (h2(r+1) + (∆t)4 + ε21 + ε
2
2).
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By the triangle inequality and the above results we then get

(3.49) ∆t
n−1∑

j=0

‖∇(W − u)j+ 12 ‖
2
0

� ∆t
n−1∑

j=0

2
(
‖∇(W − z)j+ 12 ‖

2
0 + ‖∇(z − u)j+ 12 ‖

2
0

)

� C T (h2(r+1) + (∆t)4 + ε21 + ε
2
2)

and

(3.50) ∆t
n−1∑

j=0

‖∂tWj −Dtuj+ 12 ‖
2
−1

� ∆t
n−1∑

j=0

2
(
‖∂tWj − ϕj+ 12 ‖

2
−1 + ‖(ϕ−Dtu)j+ 12 ‖

2
−1

)

� C T (h2(r+1) + (∆t)4 + ε21 + ε
2
2).

This completes the proof. �

Now we are ready to present our main theorem:

Theorem 3.1. Let bh be the minimizing parameter of the cost functional (3.6)
and let assumptions (3.10) and (3.11) be valid. Then, for ∆t and h sufficiently small,

the estimate

(
∆t

n−1∑

j=0

‖(b̄− b̄h)j+ 12 ‖
2
0

) 1
2

� C T h−1
(
hr+1 + (∆t)2 + ε1 + ε2

)

holds for b and bh.

�����. From (3.5) we know that the equation

(3.51)
(
((θ̄h − b̄h)∇Ũ)j+ 12 ,∇vh

)

=
(
∂t(W − Ũ)j , vh

)
+

(
(b̄h∇(W − Ũ))j+ 12 ,∇vh

)

is valid for all 0 � j � n− 1. By adding and subtracting some terms we then get

(3.52)
(
((θ̄h − b̄h)∇u)j+ 12 ,∇v

)
=

(
((θ̄h − b̄h)∇u)j+ 12 ,∇(v − vh)

)

+
(
((θ̄h − b̄h)∇(u − Ũ))j+ 12 ,∇vh

)
+

(
∂t(W − Ũ)j , vh

)

+
(
(b̄h∇(W − Ũ))j+ 12 ,∇vh

)
.
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We now choose v = � exp−2k�x·�ν [(θ̄h − b̄h)j+ 12 ]. For the details of this choice and the

subsequent results we refer to [5]. Then we can show, using assumptions (3.10) and
(3.11), that

(3.53)
(
((θ̄h − b̄h)∇u)j+ 12 ,∇v

)
� τ‖(θ̄h − b̄h)j+ 12 ‖

2
0 for τ > 0,

‖v − vh‖1 � Ch‖(θ̄h − b̄h)j+ 12 ‖0,
‖v‖1 � Ch−1‖(θ̄h − b̄h)j+ 12 ‖0,
‖vh‖1 � ‖vh − v‖1 + ‖v‖1 � Ch−1‖(θ̄h − b̄h)j+ 12 ‖0.

Applying this choice to (3.52) and using (3.53), (2.7) and (2.4) we obtain

(3.54) τ ‖(θ̄h − b̄h)j+ 12 ‖
2
0

� Ch‖(θ̄h − b̄h)j+ 12 ‖
2
0 + Ch

−1
(
‖∇(u− Ũ)j+ 12 ‖0

+‖∂t(W − Ũ)j‖−1 + ‖∇(W − Ũ)j+ 12 ‖0
)
‖(θ̄h − b̄h)j+ 12 ‖0

� (Ch+ α)‖(θ̄h − b̄h)j+ 12 ‖
2
0 + Ch

−2
(
‖∇(u− Ũ)j+ 12 ‖

2
0

‖∂t(W − Ũ)j‖2−1 + ‖∇(W − Ũ)j+ 12 ‖
2
0

)
.

Hence, for h and α small enough,

(3.55) ‖(b̄− b̄h)j+ 12 ‖
2
0

� ‖(b̄− θ̄h)j+ 12 ‖
2
0 + Ch

−2
(
‖∇(u− Ũ)j+ 12 ‖

2
0

+‖∂t(W − Ũ)j‖2−1 + ‖∇(W − Ũ)j+ 12 ‖
2
0

)
∀0 � j � n− 1.

Thus, by summing (3.55) from j = 0, . . . , n− 1 and multiplying with ∆t we have

(3.56) ∆t
n−1∑

j=0

‖(b̄− b̄h)j+ 12 ‖
2
0

� C∆t
n−1∑

j=0

(
‖(b̄− θ̄h)j+ 12 ‖

2
0

+ h−2(‖∇(u− Ũ)j+ 12 ‖
2
0 + ‖∂t(W − Ũ)j‖2−1 + ‖∇(W − Ũ)j+ 12 ‖

2
0)

)

� C T ‖b− θh‖2C0(L2) + Ch−2∆t
n−1∑

j=0

(
‖∇(u− Ũ)j+ 12 ‖

2
0 + ‖∇(W − u)j+ 12 ‖

2
0

+ ‖∂tWj −Dtuj+ 12 ‖
2
−1 + ‖Dtuj+ 12 − ∂tŨj‖2−1

)
.

This combined with (3.38) and the results in Lemmas 3.4 and 3.5 yields the result.
�
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������ 3.1. The estimate in Theorem 3.1 is of the same form as the estimates

obtained for the Crank-Nicolson scheme in direct parabolic problems, for example,
in [3] and [4].

As in [5] we can prove a better estimate in the one-dimensional case, if we have a
condition

(3.57) u′ � δ > 0 a. e. in Ω ∀t ∈ (0, T ),

where ′ means the differentiation with respect to x.

Theorem 3.2. If u′ satisfies (3.57), the estimate

(
∆t

n−1∑

j=0

‖(b̄− b̄h)j+ 12 ‖
2
0

) 1
2

� C T
(
hr+1 + (∆t)2 + ε1 + ε2

)

is, for ∆t and h small enough, valid in 1d for b and bh.

�����. From (3.51) we obtain the equation

(3.58)
(
((θ̄h − b̄h)u′)j+ 12 , v

′
h

)

=
(
((θ̄h − b̄h) (u− Ũ)′)j+ 12 , v

′
h

)
+

(
∂t(W − Ũ)j , vh

)

+
(
(b̄h (W − Ũ)′)j+ 12 , v

′
h

)
.

In 1d the domain Ω reduces to an interval I = (a, b). Let vh be the solution of the
differential equation

(3.59)

{
v′h = (θ̄h − b̄h)j+ 12 in I,

vh(a) = 0.

Then, as in [5], by the definition v′h ∈ Bh = Srh,k−1, and therefore vh ∈ Sr+1h,k = Uh.

Moreover, because vh(a) = 0, we get from the Poincaré inequality ‖vh‖0 � C‖v′h‖0 �
‖(θ̄h− b̄h)j+ 12 ‖0, which means ‖vh‖1 � C‖(θ̄h− b̄h)j+ 12 ‖0. Applying this vh to (3.58)
and using (3.57) and (2.7) we get

(3.60) δ‖(θ̄h − b̄h)j+ 12 ‖
2
0

� C
(
‖(u− Ũ)′j+ 12

‖0 + ‖∂t(W − Ũ)j‖−1 + ‖(W − Ũ)′j+ 12
‖0

)
‖vh‖1

� C
(
‖(u− Ũ)′j+ 12

‖0 + ‖∂t(W − Ũ)j‖−1 + ‖(W − Ũ)′j+ 12
‖0

)

‖(θ̄h − b̄h)j+ 12 ‖0 ∀0 � j � n− 1.

Again, multiplying (3.60) with ∆t, summing from 0 to n − 1, applying the triangle
inequality and using the results from Lemmas 3.4 and 3.5 we obtain the result. �
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Next we consider one possibility of removing the observation ϕ for Dtu. Because

this could be done in many ways by using some interpolation strategy of the observa-
tion z in time direction, we have so far assumed the existence of ϕ with an observation
error ε2. So, assume that we have only an observation z of u with observation errors

(3.61) ‖u− z‖1 � ε1,

‖u− z‖−1 � ε2,

for all t ∈ [0, T ]. Let us define a cost functional by

(3.62) J(bh) =
n−1∑

j=0

‖∇(Û − z)j+ 12 ‖
2
0 + (∆t)

2‖∂t(Û − z)j‖2−1,

where (∆t)2 in front of the second term is for balancing the two terms in the cost

functional with respect to the observation errors in (3.61).

Theorem 3.3. Let bh be the minimizing parameter of the cost functional (3.62)
and let assumptions (3.10) and (3.11) be valid. Then, for ∆t and h sufficiently small,
the estimate

(
∆t

n−1∑

j=0

‖(b̄− b̄h)j+ 12 ‖
2
0

) 1
2

� C T (h∆t)−1
(
hr+1 + (∆t)2 + ε1 + ε2

)
,

holds for b and bh.

The one-dimensional error estimate corresponding to Theorem 3.2 reads as follows:

Theorem 3.4. If u′ satisfies (3.57), the estimate

(
∆t

n−1∑

j=0

‖(b̄− b̄h)j+ 12 ‖
2
0

) 1
2

� C T (∆t)−1
(
hr+1 + (∆t)2 + ε1 + ε2

)

is, for ∆t and h small enough, valid in 1d for b and the minimizer bh of (3.62).

Because the proof of Theorem 3.4 follows from the proof of Theorem 3.3 as in
Theorem 3.2, we will only prove Theorem 3.3.

����� (of Theorem 3.3). As in Lemma 3.5 we have

(3.63) ∆t
n−1∑

j=0

(
‖∇(W − z)j+ 12 ‖

2
0 + (∆t)

2‖∂t(W − z)j‖2−1
)

� ∆t
n−1∑

j=0

(
‖∇(Ũ − z)j+ 12 ‖

2
0 + (∆t)

2‖∂t(Ũ − z)j‖20
)

= I1 + (∆t)2I2.
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By using the previous results and (3.61) we have

(3.64) I1 � ∆t
n−1∑

j=0

3 (‖∇(Ũ − u)j+ 12 ‖
2
0 + ‖∇(u− u)j+ 12 ‖

2
0 + ‖∇(u− z)j+ 12 ‖

2
0

� CT
(
h2(r+1) + (∆t)4 + ‖u− z‖2C0(H10 )

)

� C T (h2(r+1) + (∆t)4 + ε21).

Similarly, for I2 we get

(3.65) (∆t)2I2 � ∆t
n−1∑

j=0

3 (∆t)2
(
‖∂tŨj −Dtuj+ 12 ‖

2
−1

+ ‖Dtuj+ 12 − ∂tuj‖2−1 + ‖∂t(u − z)j‖2−1
)

� C T (∆t)2
(
h2(r+1) + (∆t)4

)
+ C

(
‖(u− z)j‖2−1 + ‖(u− z)j+1‖2−1

)

� C T (∆t)2
(
h2(r+1) + (∆t)4

)
+ C‖u− z‖2C0(H−1)

� C T (∆t)2
(
h2(r+1) + (∆t)4

)
+ ε22.

Hence, we conclude

(3.66) ∆t
n−1∑

j=0

‖∇(W − u)j+ 12 ‖
2
0 � ∆t

n−1∑

j=0

3
(
‖∇(W − z)j+ 12 ‖

2
0 + ‖∇(z − u)j+ 12 ‖

2
0

+‖∇(u− u)j+ 12 ‖
2
0

)

� C T (h2(r+1) + (∆t)4 + ε21 + ε
2
2),

and

(3.67) ∆t
n−1∑

j=0

‖∂tWj −Dtuj+ 12 ‖
2
−1 � ∆t

n−1∑

j=0

3
(
‖∂t(W − z)j‖2−1 + ‖∂t(z − u)j‖2−1

+‖∂tuj −Dtuj+ 12 ‖
2
−1

)

� C T (∆t)−2
(
h2(r+1) + (∆t)4 + ε21 + ε

2
2

)
.

The rest of the proof proceeds as in Theorem 3.1. �

������ 3.2. It is clear from the previous analysis that if Dtttz ∈ L2(H−1) and
the observation error between the time derivatives of u and z is ‖Dt(u − z)‖−1 �
ε2 ∀t ∈ (0, T ), a minimization of the cost functional

(3.68) J(bh) =
n−1∑

j=0

‖∇(Û − z)j+ 12 ‖
2
0 + ‖∂t(Û − z)j‖2−1

will give the same estimates as in Theorems 3.1 and 3.2.
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������ 3.3. In fact, from the calculations we notice that for the validity of

our results it would be enough to assume that z is an observation of u in H10 with
an observation error ‖∇(u− z)‖0 � ε1 ∀t ∈ [0, T ].
������ 3.4. The relation for k in the discrete spaces Bh = Srh,k−1 and Uh =

Sr+1h,k was only needed for the one-dimensional estimates. Thus, nothing in the general

case prevents the use of the same k in both spaces Bh and Uh.

������ 3.5. If z is the L2 projection or the interpolant of u in Uh, both
observation errors ε1 and ε2 can be removed from all error estimates. This follows

from Lemma 3.2 and the standard interpolation theory. Moreover, the choice ∂tzj
in the cost functional (3.62) is the simplest one to approximate the time derivative.

Other interpolation strategies in time direction can be used in order to obtain higher
order approximations for Dtu.

������ 3.6. Throughout this section we could replace f j+ 12 with fj+ 12 if
Dttf ∈ L2(H−1), and gj+ 12 with gj+ 12 if Dttg ∈ L2(L2(∂Ω)).
������ 3.7. In (3.2) and (3.61) we have assumed that the observation z is

given in H1. However, if z ∈ C0(Hr+2) is an L2 observation of u with an observation
error ‖u − z‖0 � ε̃1, we can show, by using the inverse inequality (2.3) and the

approximation result (2.2) that ‖u−z‖1 � C (hr+1+h−1 ε̃1). Hence, in this case the
term ε1 should be replaced with h−1 ε̃1 in all error estimates. Then we can observe

that our estimates in this case are exactly of the same order (and coincide if Dtu = 0)
as those in [5] for elliptic problems.

Lemma 3.6. Calculation of the dual norm. In our cost functionals we need
to compute the H−1 norm of a given function g (with the methods proposed this

computation is done separately at each time level). This can be done as follows: let

ϕ be the weak Galerkin solution of

(3.69)





−∆ϕ+ ϕ = g in Ω,
∂ϕ

∂n

∣∣∣∣
∂Ω

= 0.

Then ‖g‖−1 is equal to ‖ϕ‖1.
�����. The equation (3.69) in the weak Galerkin form reads

(3.70) (∇ϕ,∇v) + (ϕ, v) = (g, v) ∀v ∈ H1.

By choosing v = ϕ in (3.70) and using the inequalities (2.7) and (2.4) with α = 1
2

we obtain

(3.71) ‖ϕ‖21 = (∇ϕ,∇ϕ) + (ϕ,ϕ) = (g, ϕ) � 1
2
‖g‖2−1 +

1
2
‖ϕ‖21,
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which shows that

(3.72) ‖ϕ‖1 � ‖g‖−1.

By the definition of the H−1 norm we get, using again the equation (3.70),

(3.73) ‖g‖−1 = sup
ψ∈H1

|(g, ψ)|
‖ψ‖1

= sup
ψ∈H1

|(∇ϕ,∇ψ) + (ϕ, ψ)|
‖ψ‖1

� ‖ϕ‖1,

which combined with (3.72) proves the result. �
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