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Abstract. We apply the method of reliable solutions to the bending problem for an
elasto-plastic beam, considering the yield function of the von Mises type with uncertain
coefficients. The compatibility method is used to find the moments and shear forces. Then
we solve a maximization problem for these quantities with respect to the uncertain input
data.
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Introduction

Employing the method of reliable solutions (“worst scenario” method) for prob-

lems with uncertain input data (see [2–6]), we consider a bending problem for an
elasto-plastic beam, according to the Reissner-Mindlin model in combination with

Hencky’s model of perfect plasticity. We assume that the yield function is uncertain,
so that its coefficients are given within some intervals.

Passing to the dual variational formulation in terms of bending moments and
shear forces, we obtain an analogue of the Haar-Kármán principle (cf. [8]), i.e., a

modification of the Castigliano principle of minimum complementary energy. Thus
the well-known compatibility method [10] can be employed to reduce the bending

problem to a finite-dimensional one.
We consider the yield function of the von Mises type, i.e., a homogeneous quadratic

function in terms of the components of the stress tensor deviator, with uncertain
coefficients.
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Let the maximal absolute value of the bending moment or of the shear force,

respectively, be the main goal of computations. Then we introduce a maximization
problem with respect to the uncertain coefficients, which are assumed to belong to a
given compact set in �2 . On the basis of methods of Optimal Design, the solvability

of the maximization problem is proved. The theory is illustrated by a simple example
of a beam with the von Mises yield function.

1. Setting of the state problem in terms of bending moments
and shear forces

Let us consider a homogeneous elastic beam of the length l. The Reissner-Mindlin

(or Mindlin-Timoshenko) model leads to the potential energy (see [9, 11])

(1.1) π(β,w) =
1
2

∫ l

0
EI(β′)2 dx+

1
2

∫ l

0
kGA(w′ − β)2 dx− 〈f, w〉,

where E is Young’s modulus, G = E(1 + ν)−1/2, ν is Poisson’s ratio, I the moment

of inertia and A the area of the cross-section, k is the shear correction factor, β is
the rotation angle of the cross-section and w is the deflection. Henceforth the prime

denotes the derivative with respect to x. The last term denotes the work of external
loads:

〈f, w〉 =
p∑

j=1

Pjw(xj) +
∫ l

0
f0(x)w(x) dx,

where Pj are given constants (loads) and f0 ∈ L1(0, l) a given loading, xj ∈ [0, l] are
given points.
The primal problem of an elastic beam is to find

(1.2) min
β∈V1,w∈V2

π(β,w)

where Vi, i = 1, 2, are some subspaces of the Sobolev space H1(Ω), Ω = (0, l),
corresponding to the essential boundary conditions.

Using the saddle-point approach (see e.g. [1]) or the Friedrichs transform (see
e.g. [8]), we pass from the primal problem (1.2) to the dual problem

(1.3) min
λ∈E(f)

ϕ(λ)

for the complementary energy

ϕ(λ) =
1
2

∫ l

0

( 1
EI

λ21 +
1

kGA
λ22

)
dx,
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where

(1.4)

E(f) =
{
λ ∈ [L2(Ω)]2 :

∫ l

0
(λ1β′ + λ2(w′ − β)) dx = 〈f, w〉 ∀ (β,w) ∈ V1 × V2

}
.

The solutions of the problems (1.2) and (1.3) are linked as follows:

λ1 = EIβ
′; λ2 = kGA(w

′ − β),

so that λ1 represents the bending moment and λ2 the shear force.

Now let us consider Hencky’s model of elasto-plasticity, based on the criterion

(1.5) F (σ) � 1

with the yield function

F (σ) = b1(σD
xx)
2 + b2(σD

xz)
2,

where b1, b2 are some positive constants and

σD
xx =

2
3
σxx, σD

xz = σxz

are the only nonzero components of the stress deviator.

������ 1.1. In case of the von Mises yield function we have b1 = b2 = 1/(2K2),

where K is a given constant.

Since

σxx(x, z) = −Ezβ′ = −zλ1/I, z ∈ [−t, t],
σxz(x, z) = kG(w′ − β) = λ2/A,

the condition (1.5), evaluated in the extreme fibers of the cross-section, can be ex-
pressed as follows:

(1.6) F (a, λ) ≡
2∑

i=1

aiλ
2
i (x) � 1 for a.a. x ∈ [0, l],

where a = (a1, a2),

(1.7) a1 =
4
9
(t/I)2b1, a2 = b2/A2

are positive constants.
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Hencky’s model of perfect plasticity implies the following analogue of the Haar-

Kármán principle (see [8—§13.2]) for the actual vector λ(a) = (λ1(a), λ2(a)):

(1.8) λ(a) = arg min
E(f)∩P(a)

ϕ(λ),

where E(f) is defined in (1.4) and

(1.9) P(a) = {λ ∈ [L2(Ω)]2 : F (a, λ(x)) � 1 for a.a. x ∈ [0, l]}.

Assume that the coefficients b1, b2 of the yield function are uncertain, as we can
prescribe them in some intervals only. (The intervals may result from experimental

measurements and an inverse identification problem.)
Therefore, we introduce the set of admissible coefficients

Uad = {a ∈ �2 : a(i)min � ai � a(i)max, i = 1, 2},

where a(i)min, a
(i)
max are given positive constants.

Proposition 1.1. Assume that

(1.10) K(a) = E(f) ∩P(a) �= ∅ ∀ a ∈ Uad.

Then there exists a unique solution λ(a) of the problem (1.8) for any a ∈ Uad.

�����. It is easy to find that the set E(f) is closed and convex inH := [L2(Ω)]2.

By the Lebesgue Theorem, we can verify that the set P(a) is closed in H . Since
the function F (a, ·) is convex for any a ∈ Uad, the setP(a) is convex. Altogether, the
set K(a) is closed, convex and nonempty by assumption for any a ∈ Uad. Moreover,
K(a) is bounded, since

λ ∈ P(a)⇒ ‖λi‖L∞(Ω) � a
−1/2
i , i = 1, 2.

The function ϕ is strictly convex, quadratic, so that it is weakly lower semicon-
tinuous in H . As a consequence, there exists a unique minimizer in (1.8). �

Theorem 1.2. Assume that

(1.11) K(amax) �= ∅, where amax = (a(1)max, a(2)max)

and let

(1.12) an ∈ Uad, an → a (in �2 ), as n→∞.
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Then a unique solution λ(an) of the problem (1.8) exists for all n and

λ(an)→ λ(a) in [L2(Ω)]2.

For the proof we shall need the following definition: we say that

K(a) = lim
n→∞

K(an)

if

(i) for any λ ∈ K(a) there exists a sequence {λn}, λn ∈ K(an), such that λn → λ

in H ;

(ii) if λn ∈ K(an) and λn ⇀ λ (weakly) in H , then λ ∈ K(a).

Lemma 1.3. Let the assumptions (1.11), (1.12) be satisfied. Then

K(a) = lim
n→∞

K(an).

�����. ad (i): Let any λ ∈ K(a) be given. From (1.11) we obtain that a
λ0 ∈ E(f) ∩P(amax) exists. Since

P(amax) ⊂ P(a) ∀a ∈ Uad,

λ0 ∈ K(a) for any a ∈ Uad. Let us denote λ := λ− λ0 and define

tn = max{t ∈ [0, 1] : λ0 + tλ ∈ P(an)}; λn = λ0 + tnλ.

Obviously, we have tn → 1 as n→∞,

λn ∈ P(an), λn ∈ E(f) (since λ ∈ E(0)),
λn → λ0 + λ = λ in H.

ad (ii): Let λn ∈ K(an), λn ⇀ λ (weakly) in H . The set E(f) is weakly closed,

being closed and convex. As a consequence, λ ∈ E(f).
To verify that λ ∈ P(a), we choose an arbitrary function ϕ ∈ C∞0 (Ω), ϕ � 0 in Ω

and prove that

(1.13)
∫ l

0
ϕ(1− F (a, λ)) dx � 0.
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In fact, from λn ∈ P(an) we obtain

∫ l

0
ϕ(1 − F (an, λn)) dx � 0,

so that

(1.14)
∫ l

0
ϕdx �

∫ l

0
ϕ
2∑

i=1

an
i (λ

n
i )
2 dx := Jn.

On the other hand, we may write

Jn =
∫ l

0
ϕ

∑

i

[an
i (λ

n
i )
2 − ai(λn

i )
2] dx+

∫ l

0
ϕ

∑

i

ai(λn
i )
2 dx(1.15)

= I1n + I2(λn),

|I1n| �
∑

i

|an
i − ai|

∫ l

0
ϕ(λn

i )
2 dx→ 0(1.16)

since the sequence {λn} is bounded in H and (1.12) holds. The functional I2(λ) is
weakly lower semicontinuous, so that

(1.17) lim
n→∞

inf I2(λn) � I2(λ) =
∫ l

0
ϕ

∑

i

aiλ
2
i dx.

Combining (1.15), (1.16) and (1.17), we arrive at

lim inf Jn � lim I1n + lim inf I2n �
∫ l

0
ϕF (a, λ) dx.

Passing to lim inf on both sides of (1.14), we obtain

∫ l

0
ϕdx �

∫ l

0
ϕF (a, λ) dx,

which is (1.13). It follows from (1.13) that

1 � F (a, λ) a.e. in (0, l),

so that λ ∈ P(a). �

228



����� �� 	
����� 1.2 is a simplified version of that for a more general

Theorem 1.1 in [7]. Let us introduce the bilinear form

[λ, µ] = Dϕ(λ, µ) =
∫ l

0
(e1λ1µ1 + e2λ2µ2) dx, ei = const > 0,

where Dϕ(λ, µ) denotes the Gateaux differential. Then [λ, µ] represents a scalar

product in the spaceH and the problem (1.8) is equivalent to the following variational
inequality for λ(a) ∈ K(a):

(1.18) [λ(a), µ− λ(a)] � 0 ∀ µ ∈ K(a).

By (1.11), (1.12) and Proposition 1.1, the inequality (1.18) has a unique solution

for any a ∈ Uad.
Denoting λn := λ(an), we have λn ∈ K(an) and

(1.19) [λn, λn − µ] � 0 ∀ µ ∈ K(an).

By (1.11), there is a λ0 ∈ K(an) for all n (cf. the proof of Lemma 1.3) and we
have

‖λn‖2 := [λn, λn] � [λn, λ0] � ‖λn‖ ‖λ0‖.

Therefore {λn} is bounded and there exist λ ∈ H and a subsequence {λm} ⊂ {λn}
such that

(1.20) λm ⇀ λ (weakly) in H as m→∞.

We are going to show that λ coincides with the solution λ(a). By Lemma 1.3,
λ ∈ K(a) and there exists a sequence {ωn}, ωn ∈ K(an), such that ωn → λ in H .

Inserting µ := ωn into (1.19), we obtain

lim
n→∞

sup ‖λm‖2 � lim
m→∞

[λm, ωm] = [λ, λ],

using also (1.20). On the other hand,

lim
m→∞

inf ‖λm‖2 � ‖λ‖2,

since the functional ‖λ‖2 is weakly lower semicontinuous. Combining these results,
we arrive at

(1.21) lim
m→∞

‖λm‖2 = ‖λ‖2.

229



Given any µ ∈ K(a), by Lemma 1.3 there exists a sequence {µn}, µn ∈ K(an),

such that µn → µ in H . Inserting the subsequence {µm} into (1.19) and using (1.21),
we may write

[λ, λ] = lim[λm, λm] � lim[λm, µm] = [λ, µ]

so that

[λ, λ− µ] � 0 ∀ µ ∈ K(a).

Since the solution λ(a) of (1.18) is unique by Proposition 1.1, λ = λ(a) and the whole

sequence {λn} tends weakly to λ(a) in H .
To verify the strong convergence, we realize that

(1.22) ‖λn‖2 → ‖λ‖2 as n→∞,

as the proof of (1.21) can be repeated for the whole sequence {λn}. Then

‖λn − λ‖2 = ‖λn‖2 − 2[λn, λ] + ‖λ‖2 → 0

follows from (1.22) and the weak convergence. �

2. A maximization problem with respect to uncertain yield function

Let us assume that the main goal of computations is a functional Φ(a, λ(a)). For

instance, the maximal absolute value of the bending moment or of the shear force,
respectively, over the whole interval [0, l] can be sought. Then we formulate the

following Maximization Problem: find

(2.1) a0 = arg
a∈Uad

maxΦ(a, λ(a)).

In this way a “worst scenario” approach is adopted, since we want to be always “on

a safe side”, taking into account the possible error in the determination of the input
data a ∈ Uad.

Theorem 2.1. If K(amax) �= ∅ and if the function a → Φ(a, λ(a)) is continuous
in Uad, then there exists at least one solution of the Maximization Problem (2.1).

�����. Let {an}, an ∈ Uad, be a maximizing sequence, i.e.,

(2.2) lim
n→∞

Φ(an, λ(an)) = max
a∈Uad

Φ(a, λ(a)).
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Since Uad is compact in �2 , there exist a0 ∈ Uad and a subsequence {am} such that
am → a0 as m→∞. By assumption,

(2.3) Φ(am, λ(am))→ Φ(a0, λ(a0)).

Combining (2.2) and (2.3), we obtain

Φ(a0, λ(a0)) = max
a∈Uad

Φ(a, λ(a)),

so that a0 is a solution of the problem (2.1). �

������ 2.1. If λ1 ∈ C([0, l]), we can define

Φ1(λ) = max
1�i�N

|λ1(Xi)|,

where Xi ∈ [0, l] are some points chosen a priori (e.g., the places where the maximum
of |λ1(x)| over [0, l] could be attained).

Let us consider a statically indeterminate beam with a finite number of redundan-
cies. Using the well-known Compatibility Method (see e.g. [10]), we find

(2.4) λ(a) ∈ E(f)⇒ λ1(a) =
J∑

j=1

Cj(a)ϕj + λ1(f).

Here λ1(f) and ϕj denote the bending moment on a reference statically determinate

beam, corresponding to the loading f and to the unit redundance Cj(a) = 1, re-
spectively; Cj(a) are constants to be determined. Assume that the functions {ϕj},
j = 1, . . . , J are linearly independent on [0, l], ϕj ∈ C([0, l]).
If an → a in �2 , an ∈ Uad, we may write

‖λ1(an)− λ1(a)‖2L2(Ω) =
∥∥∥∥

J∑

j=1

αn
j ϕj

∥∥∥∥
2

L2(Ω)

=
J∑

i,j=1

Gijα
n
i α

n
j(2.5)

� g0

J∑

j=1

(αn
j )
2,

where

αn
j := Cj(an)− Cj(a), Gij =

∫ l

0
ϕiϕj dx, g0 = const > 0.
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By Theorem 1.2 (assume that K(amax) �= ∅), the left-hand side of (2.5) tends to zero
as n→∞, so that

(2.6)
J∑

j=1

(αn
j )
2 → 0 and Cj(an)→ Cj(a)

follows. As a consequence of (2.4) and (2.6), the function a �→ |λ1(a)(Xi)| is contin-
uous in Uad for all i � N . Next, we have

lim
n→∞

Φ1(λ(an)) = lim
n→∞

max
i�N

|λ1(an)(Xi)|

= max
i�N

lim
n→∞

|λ1(an)(Xi)| = max
i�N

|λ1(a)(Xi)| = Φ1(λ(a)),

i.e., the function a �→ Φ1(λ(a)) is continuous in Uad. By Theorem 2.1, there exists
at least one solution of the Maximization Problem (2.1) for Φ(a, λ) := Φ1(λ).

������ 2.2. If λ2 is piecewise continuous, we can define

Φ2(λ) = max
1�i�N

max{|λ2(xi+)|; |λ2(xi−)|},

where xi are the points where the pointwise loads or reaction forces act; (xi+) and

(xi−) denote the limits for x→ xi+ and x→ xi−, respectively.

Considering the same beam as in Example 1, we use the Compatibility Method to

obtain

λ2(a) =
K∑

k=1

Ck(a)ψk + λ2(f),

where λ2(f) and ψk denote the shear force on a reference beam for the load f and the

unit redundance force Ck(a) = 1, respectively. Assuming that {ψk}K
k=1 are linearly

independent on [0, l] and piecewise continuous, we may argue like in Example 1 to

verify the continuity of Ck(a), k = 1, . . . ,K in Uad. As a consequence, the continuity
of λ2(a)(xi±) and Φ2(λ(a)) in Uad follows. By Theorem 2.1, the Maximization
Problem (2.1) with Φ ≡ Φ2 has at least one solution.
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3. A numerical example for the von Mises yield function

Let us consider a cantilever beam completed with a simple support on the free
end under a unit pointwise load at the center. Taking the cantilever for the reference

configuration and setting Ω = (0, 2), we find

λ1(f) = (x − 1)+, λ2(f) = −H(x− 1)

where H(·) denotes the Heaviside function. If C denotes the reaction force at x = 0
(the single redundancy), then

(3.1) λ ∈ E(f)⇒ λ1 = −Cx+ (x− 1)+, λ2 = C −H(x− 1).

������ 3.1. Recalling Examples 2.1 and 2.2, we realize that J = 1, ϕ1(x) =

−x, K = 1, ψ1(x) = 1. Here X1 = 1 and X2 = 2, N = 2 should be chosen in the
definition of Φi, i = 1, 2.

Next, we find that

(3.2) λ ∈ P(a)⇔ 1 � a1(−Cx+(x−1)+)2+a2(C−H(x−1))2 for a.a. x ∈ [0, 2].

This condition is equivalent to the following one:

(3.3) max{(a1 + a2)C2; a1max[C2; 4(C − 1
2 )
2] + a2(C − 1)2} � 1.

To simplify the analysis, we will assume henceforth that

(3.4) a1 = a2κ, κ = const > 0.

This assumption corresponds to the von Mises yield function, i.e., to b1 = b2 in the

formulae (1.5) (cf. Remark 1.1) and (1.7). For a rectangular cross-section of the
height 2t we obtain κ = (2/t)2.

Let us set

(3.5) κ = 100

and a := a2, Uad = [amin, amax] in what follows. Then the condition (3.3) reduces to
the inequality

(3.6) max{101C2; 100max[C2; 4(C − 1
2 )
2] + (C − 1)2} � 1/a.
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Obviously, the resulting λ1(a) should be positive at the point x = 2. Therefore, we

restrict ourselves to the interval C < 1/2.

By a thorough analysis, we find that (3.6) and C < 1/2 hold iff C ∈ K (a), where

K (a) = [c(a),G (a)] for a0 � a � a,

K (a) = ∅ for a < a,

where a0 = 0.0396604, a = 0.086538,

c(a) = 201/401− (4.01/a− 1)1/2/40.1,
G (a) = 1/101 + (1.01/a− 1)1/2/10.1 for a0 � a � a = 0.085682,

G (a) = 1/3 for a < a � a.

Inserting the formulae (3.1) into (1.8), the problem (1.8) can be reduced to the
following one: find

(3.7) C(a) = arg min
C∈K (a)

S(C),

where

S(C) = (8e1/3 + 2e2)C
2 − (5e1/3 + 2e2)C,(3.8)

e1 = (EI)−1, e2 = (kGA)−1 (cf. (1.3)).

Let

Ce =
5
3e1 + 2e2
16
3 e1 + 4e2

denote the minimizer of S over the whole interval (−∞,∞). This parameter corre-
sponds to the pure elastic Reissner-Mindlin (Mindlin-Timoshenko) model.

������ 3.1. Note that always Ce < 1/2. If the Poisson’s ratio is 0.25 and the

shear correction factor k = 5/6 (cf. [11]), we obtain

e1/e2 = κ/4 = 25, Ce = 0.31796.

Using the classical Bernoulli model of beam bending, we have e2 ≡ 0 and Ce =
0.3125, independent of Poisson’s ratio.
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Henceforth we assume that

a0 � amin < amax � a,

which implies K(amax) �= ∅ (cf. (1.11)).
We shall distinguish the following three cases:

(i) Ce = 1/3.
Then C(a) = Ce = 1/3, independent of a ∈ Uad, since 1/3 ∈ K (a) for all

a ∈ Uad.
(ii) Ce > 1/3.

Then denoting ag = G−1(Ce), we find that: if amin � ag � amax,

C(a) = Ce for a ∈ [amin, ag]

C(a) = max{G (a); 1/3} for a ∈]ag, amax];

if ag < amin, C(a) = max{G (a), 1/3}; if amax < ag, C(a) = Ce.
(iii) Ce < 1/3.

Denoting ae = c−1(Ce), we find: if amin � ae � amax

C(a) = Ce for a ∈ [amin, ae]

C(a) = c(a) for a ∈]ae, amax];

if ae < amin, C(a) = c(a); if amax < ae, C(a) = Ce.

Let us consider the criterion of Example 2.1, i.e.,

Φ1(λ(a)) = max
1�i�2

|λ1(a)(Xi)|, X1 = 1, X2 = 2.

Since

0 < c(a0) � C(a) < 1/2,

we have

Φ1(λ(a)) = max{C(a); 1− 2C(a)}

and we may write

max
a∈Uad

Φ1(λ(a)) = max
{
max
Uad

C(a); 1− 2min
Uad

C(a)
}
.

The case (i) with Ce = 1/3 being uninteresting, we arrive at the following result:

235



(ii) Ce > 1/3

max
a∈Uad

Φ1(λ(a)) =

〈
Ce if amin � ag,

max{G (amin); 1/3} if ag < amin;

(iii) Ce < 1/3

max
a∈Uad

Φ1(λ(a)) =

〈
1− 2Ce if amin � ae,

1− 2c(amin) if ae < amin.

In both cases (ii) and (iii) the “greatest” maximal elasto-plastic bending moment
for ag < amin or ae < amin is less than the elastic one. If Ce > 1/3, the maximal

moment is under the pointwise load, whereas if Ce < 1/3, it is at the clamped end
of the beam.

For Example 2.2, we obtain the following result:
(ii) Ce > 1/3

max
a∈Uad

Φ2(λ(a)) =

〈
1−max{G (amax); 1/3} if ag � amax,

1− Ce if ag > amax;

(iii) Ce < 1/3

max
a∈Uad

Φ2(λ(a)) =

〈
1− Ce if amin � ae,

1− c(amin) if ae < amin.

Here the “greatest” maximal elasto-plastic shear force is less than the elastic one iff
Ce < 1/3, whereas the opposite holds if Ce > 1/3.

������. The case Ce � 1/3, however, is not realistic. Indeed, it occurs if and
only if

(∗) e1
e2
=

k

2(1 + ν)
A

I
� 6.

Considering the real beams with ratio 1/t > 10, the condition (∗) can be satisfied
only for cross-sections of the I-form with either too thin web or too small shear

correction factor k.
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