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Abstract. In 1995, Wahbin presented a method for superconvergence analysis called
“Interior symmetric method,” and declared that it is universal. In this paper, we carefully
examine two superconvergence techniques used by mathematicians both in China and in
America. We conclude that they are essentially different.
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Křížek and Neittaanmäki [11] have been systematically introducing many super-

convergence techniques. In this paper, we want to stress two different approaches of
treating superconvergence.

Consider a second order boundary value problem whose associated bilinear form
is

a(u, v) =
∫

Ω

( n∑

i,j=1

aijDiDjv + quv

)
dx,

where q � 0 and aij are sufficiently smooth functions, aij satisfy the well-known uni-
form ellipticity condition, Ω is a bounded domain in Rn with a smooth or polyhedral

boundary. We will mostly deal with the two-dimensional case n = 2.
Denote by Sh a finite element space consisting of continuous piecewise polynomial

functions of degree k. Let {Sh}h→0 be a family of finite element spaces satisfying

inf{h‖u− v‖1 + ‖u− v‖0 : v ∈ Sh} = o(hk+1),

where u is the weak solution of the boundary value problem considered, and let

uh ∈ Sh be the Galerkin solution satisfying

a(u− uh, v) = 0 ∀v ∈ Sh.
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1. Conventional methods in America

1.1. Green’s function method. Green’s function Gz associated to a node z is
non-singular when n = 1. Recall that a function Gh

z with values in the space Sh is

said to be a discrete Green’s function if

a(v, Gh
z ) = v(z) ∀v ∈ Sh

(see [28, Chapt. 3.1]). Hence, we have

‖Gz −Gh
z‖1 � Chk, (1)

and thus the error can be estimated (see Douglas and Dupont (1973)) as follows:

|(u − uh)(z)| = |a(u− uh, Gz)| = |a(u− uh, Gz −Gh
z )| � Ch2k‖u‖k+1.

Remarks:

1) It is interesting that we can obtain optimal convergence rates in the node z;

unfortunately, we are not able to find any other superconvergence phenomenon in
this way.

2) For n (� 2) dimensional problems we can only obtain L∞ estimates instead of

(1), since Green’s function Gz is singular.

1.2. The tensor convolution method. In 1974, Douglas, Dupont and Wheeler
used the tensor product space

Sh = Sh(I)⊗ Sh(I),

where Sh(I) is a one dimensional finite element space. The error can be written as

u− uh = u− w + w − uh,

where w = P ⊗ Pu and the mapping P : H10 (I)→ Sh(I) is Galerkin’s projection.

Using the properties of the projection, we find that

‖w − uh‖0 = o(hk+3), k � 3.

Furthermore, by the inverse inequality we have

e(z) = |w(z)− uh(z)| = o(hk+2) and ‖w − uh‖0,∞ = o(hk+2),
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where z is the node of rectangular apex.

Remarks:

1) These estimates hold only for k � 3, i.e., they are not true for k � 2.
2) They cannot be applied to equations with mixed terms.

3) An order of convergence is lost because of using the inverse estimate. In fact,
we have e(z) = o(hk+3).

4) There are also other superconvergence points, not only apexes.

5) The method cannot be applied to Serendipity families, for instance, 8 nodes

element.

1.3. Averaging convolution method. In 1977, Bramble and Schatz, and also
Thomée obtained by constructing a function Kα

h with a small support,

‖Dαu−Kα
h ∗ uh‖0 = o(h2k), k � 1,

where Dαu is the α-th order derivative of the function u and |α| � 1.
Remarks:

1) We can obtain the optimal convergence rate O(h2k) for both u and its deriva-

tives. However, there are no advantages for the first or second order elements.

2) Superconvergence occurs only in the interior of the domain.

2. Conventional methods in China and Europe

Conventional methods in China and Europe are based on the following two esti-
mates. Construct a generalized interpolating function W ∈ Sh such that

(A) |a(u−W, v)| � Chk+τ‖u‖k+1+τ,p‖v‖1,q ∀v ∈ Sh (k � 1),

(B) |a(u−W, v)| � Chk+τ+1‖u‖k+1+τ,p‖v‖h,2,q ∀v ∈ Sh (k � 2),

where ‖v‖h,2,q = (
∑
e
‖v‖q

2,q,e)
1/q, τ ∈ {1, 2} and 1 � q � 2.

There are two approaches for constructing interpolate functions: In 1977, Chen

points out thatW can be chosen as the Lagrange interpolation function and expanded
according to the method presented by Ding, Jiang, Lin and Luo (1977). Then it can

be applied for the first and second order element. At the same time, Zhu points out
that we may choose W as the projection interpolate by the orthogonal expansion

(which is also called “point-line-plane interpolation”). It is proved to be efficient for
k-order elements (k � 2).
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In 1969, Oganesyan and Rukhovetz obtained (A) for linear triangular elements

(k = 1, τ = 1, p = 2).

Zlámal in 1977, Chen and Zhu in 1978 obtained (A) for rectangular elements
(k = 1, 2, τ = 1, p = 2).

In 1978, Chen obtained (A) for linear triangular elements (k = 1, τ = 1, p = 2).

In 1978, Zhu obtained (A) for isoparametric quadratic elements (k = 1, 2, τ = 1,
p = 2).

In 1981, Chen obtained (A) and (B) (k � 3, τ = 2, p = 2) for k-th order rectangu-
lar elements by the orthogonal expansion method. In 1990, Jia in his Master thesis

obtained (A) and (B) (k � 3, τ = 2, 2 � p � ∞) for k-th order rectangular elements
by the orthogonal expansion method.

Zhu (1981–1985) obtained (A) and (B) for 2nd order triangular element (k = 2,
τ = 1, 2 � q � ∞).
Up to now, all superconveregence techniques are based on the above estimates.

2.1. Energy orthogonalization methods—averaging superconvergence
estimates (Chen, Zhu (1978–1981)). Since uh − W ∈ Sh, by estimates (A) and
(B),

‖uh −W‖21 � Ca(uh −W, uh −W )

� Ca(u −W, uh −W )

= o(hk+τ )‖uh −W‖1

and thus we have

‖uh −W‖1 = o(hk+τ ) (k � 1).

Moreover, by means of Nitsche’s technique and estimates (A) and (B), we obtain

‖uh −W‖0 = o(hk+1+τ ) (k � 2).

Remarks:

1) This method can be applied to triangular and rectangular elements; therefore
it is universal without any limitation.

2) Different interpolate functions lead to different results.

3) Before 1981, no superconvergence results were obtained in this way except the
above estimate.
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2.2. Green’s function—energy orthogonalization method. In 1982, Zhu
obtained, by using discrete Green’s function Gh

z and estimates (A) and (B),

(uh −W )(z) = a(uh −W, Gh
z )

= a(u−W, Gh
z )

= o(hk+1+τ )‖Gh
z‖h,2,1

= o(hk+1+τ | lnh|).

Let ∂zU be the derivative of U with respect to z. Then we have for k � 2

∂z(uh −W )(z) = a(u−W, ∂zG
h
z )

= o(hk+1+τ )‖∂zG
h
z‖h,2,1

= o(hk+1+τ )

and for k � 1

∂z(uh −W )(z) = a(u−W, ∂zG
h
z )

= o(hk+τ )‖∂zG
h
z‖1,1

= o(hk+τ | lnh|).

Remarks:

1) This method is used to estimate superconvergence at points which serve for an
error expansion, extrapolation and postprocessing.

2) Since discrete Green’s functions are singular, no optimal convergence rates can
be obtained, because some norms are unbounded as h approaches 0.

2.3. Local superconvergence estimates. Let a locally smooth and “locally
good” partition u be given. Using a local estimate technique, Zhu and Lin (1989)

obtained the local superconvergence result

‖uh − uI‖0,∞,D0 + h‖uh − uI‖1,∞,D0 = o(hk+2)‖u‖k+2,∞,D1 + C‖u− uh‖−s,D

for D0 ⊂⊂ D1 ⊂⊂ Ω, where D0 ⊂⊂ D1 means that D0 ⊂ D1.

Remarks:
1) This method could be used to deal with both the interior and the boundary

estimates. However, the superconvergence rates will be lower if the boundary is not
smooth. But in the special case k = 1, even if the boundary is not smooth, the

superconvergence rates will be almost the same as those for a smooth boundary.
Especially, for a polygonal domain there is no loss of convergence rates.
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2) Numerical experiments show that we can still obtain superconvergence results

in case k = 1 even if u has a singularity. Furthermore, the optimal extrapolation
estimate also holds in this case (k = 1).

2.4. The interpolate postprocessing. Since there are no complete “good deriv-
ative points” for second order triangular elements, Chen, H. S. (1986) (see Zhu and

Lin (1989)) obtained complete “good derivate points” by using the interpolate post-
processing method in his Master thesis. Lin, Zhou, Yan et al. (1986–1994) (see also
Lin and Zhu (1994)) obtained even a more general interpolate postprocessing method

and global superconvergence results. The following is an outline of the construction
of a high order interpolation operator Πh

ΠhW = Πhu,

‖Πhu‖s,q � C‖u‖s,q and

‖u−Πhu‖s,q = o(hk+1+τ−s), s = 0, 1.

Then

‖u−Πhuh‖s,q � ‖u−Πhu‖s,q + ‖ΠhW − uh‖s,q

= o(hk+1+τ−s), q = 2,∞.

2.5. Asymptotic expansion for uh−W . Lin, Lu and Shen (1993) pointed out
that, for linear triangular elements, if the partition is uniform then not only estimates

(A) and (B) hold, but also the following expansion is valid provided the given u is
sufficiently smooth:

a(u− uI , v) = h2(D4u, v) + o(h4)‖v‖0,1,

where D4 is the 4-th order derivative operator

(uh − u)(z) = (uh − uI)(z)

= a(u− uI , Gh
z )

=W (z)h2 +O(h4| lnh|2),

W (z) = (D4u, Gz) is independent of h, and where we have used the estimate

‖Gz −Gh
z‖0,1 = o(h2| lnh|2).

Then we obtain
[(4uh/2 − uh)/3− u](z) = o(h4| lnh|2),
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which is the so-called extrapolating formula. Similarly, we get

∂z[(4u
h/2 − uh)/3− u](z) = o(h4−δ),

where δ > 0 is a small constant.

For interpolate processing, expansion, extrapolating, preprocessing and post-
processing we refer to Lin and Zhu (1994) and Lin and Yan (1996).

2.6. Counter-example presented by B. Li. To check the superconvergence of
higher order triangular elements, Li, B. (1990) found a counter-example for the 3rd

order triangular element. He chose the function u(x1, x2) = 1
2 (1−x21)(1−x22) on the

unit square and proved that

‖uh − uI‖0 � Ch4 and ‖uh − uI‖1 � Ch3,

where uI is the Lagrange interpolation function of u. This shows that there exist
many points z such that

|(uh − u)(z)| = |(uh − uI)(z)| � Ch4,

but none of them are superconvergence points. However, this does not mean that

the superconvergence is not reachable for higher order triangular elements by con-
ventional methods used by Chinese mathematicians. The reasonable explanation is

that the choice W = uI is not suitable.

3. Interior symmetric method—challenged by Wahlbin (1995)

Let z be in the interior of a domain, d � Ch, and let Bd be the neighbourhood of
z with d as its radius. Wahlbin (1995) obtained a sharp interior estimate

|e(z)| � Chk+1|u|k+1,∞,Bd
+ o(hk+1+τ d−s−2/q),

where 0 � s � k − 1, 2 � q < ∞.

Let the partition in Bd be symmetric with respect to the point z. Then by special
techniques we get

|e(z)| � Chk+1d|u|k+2,∞,Bd
+ o(hk+1+τd−s−2/q).

Let d = hσ be such that

k + 1 + σ = k + 1 + τ − (x+ 2/q)σ.
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This gives the superconvergence result

e(z) = o(hk+1+σ),

where σ = τ/(s+ 2/q + 1), k is even. Similarly, we have

∇e(z) = o(hk+σ′
), σ′ = τ/(s+ 2 + 2/q),

where k is odd, and ∇ is the averaging gradient operator.
Wahlbin pointed out that this method is a “universal principle.”

Remarks:

1) No matter what k is, triangular elements possess some superconvergence and
superconvergence points are located on six fixed points in every triangle (provided

the partition is uniform)

2) Superconvergence rate σ is very small, for instance 1/3 � σ � 1/2, for second
order elements. No order of superconvergence rate can be obtained.

3) Superconvergence on the boundary cannot be obtained by this interior estimate

method. However, we can obtain both global and local superconvergence estimates
(see Zhu and Lin (1989)).

4) According to Chinese methods, we can always obtain superconvergence rate of

order two for k-th order rectangular elements (k � 3) only if the partition is uniform.
On the contrary, we cannot obtain the same results by Wahlbin’s method.

5) This method cannot be used for postprocessing, for example, interpolate
processing and extrapolation processing.

6) Combining Chinese methods with the interior symmetric method we can obtain
deeper superconvergence results for the 2nd order triangular element. For instance,

we can get the following result:

∇(uh − uI)(z) = o(h3+σ)

(z is a symmetric point)—see [9]. This method cannot be obtained by means of
Wahlbin’s method.

We conclude that the so-called “interior symmetric method” is not a “general
principle.” Moreover, it cannot be applied to piecewise quasi-uniform triangulations

whereas Chinese methods can.
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4. Review of superconvergence of higher order triangular elements

Zhu and Lin (1989) pointed out that for higher order triangular elements the
optimal error estimate is

h‖u− uh‖1 + ‖u− uh‖0 = o(hk+1)

and this estimate cannot be improved. However, we notice that

∫

Ω
(u − uh)(x) dx = o(h2k) k � 2.

For higher order elements (k � 3), the latter estimate is much better than the
previous one. This only shows that the positive part and negative part of the error u−
uh have been mutually eliminated. Since the error u−uh is continuous on the domain

Ω, it must have many zero points, from which we believe that superconvergence
exists for higher order triangular elements. This can be seen partly in Wahlbin’s

work. In [25–29], we proved that the u and the tangential derivative of each side of
the triangular element have the superconvergence

(u− uh)(z) = o(hk+2| lnh|),

where z is the k-th order Lobatto point on each element side, k = 2, and

∂z(u− uh)(z) = o(hk+1),

where z is the k-th order Gauss point on each side, k = 1, 2.

Anyway, we believe that these results hold also for k � 3 (see Figures 1 and 2).
Running through the Lagrange triangular element with k = 1, 2, . . . but consider-

ing only strictly natural superconvergence for ∂xu, we find

k = 1 � midpoint of the side parallel to the x-axis

k = 2 � 2nd order Gauss points

k = 3 � 3rd order Gauss points

. . . . . . . . . . . . . . . . . . .

Figure 1
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Considering only strictly natural superconvergence for u, we find

k = 1 � no superconvergence

k = 2 � 2nd order Lobatto points

k = 3 � 3rd order Lobatto points

. . . . . . . . . . . . . . . . . . .

Figure 2
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