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ON THE EXISTENCE OF STRONGLY REGULAR FAMILIES

OF TRIANGULATIONS FOR DOMAINS
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Abstract. In this note we present an algorithm for a construction of strongly regular
families of triangulations for planar domains with a piecewise curved boundary. Some
additional properties of the resulting triangulations are considered.
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1. Introduction

There are two basic ways how to treat planar domains with a piecewise smooth
boundary when solving partial differential equations by the finite element method.
One way is to use isoparametric elements, see [2], or ideal curved triangular elements

introduced by Zlámal in [12]. The second way is to approximate the curved boundary
by a polygonal one. The strip between those boundaries can be neglected or decom-

posed into special biangular (triangular) finite elements, see [6]. Anyhow, we have
to deal with the problem how to approximate the domain under consideration by a

sequence of polygons and how to establish their triangulations having “reasonable”
properties.

The aim of this paper is to give a constructive proof of existence of a strongly

regular family of triangulations of domains with a piecewise smooth boundary. For

1 The author was supported by the COMAS Graduate School at the University of
Jyväskylä, Finland.

2 The author was supported by Grant no. 201/98/1452 of the Grant Agency of the Czech
Republic.
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polygonal domains the existence of such a family can be easily obtained from a

given triangulation by a bisection process, in which each triangle is divided into four
congruent triangles by midlines. Another approach, which uses medians of triangles,
is presented in [1] and [11]. We could also use Delaunay triangulations [4], even

though we meet some technical problems near the boundary.

Let us point out that for a strongly regular family of triangulations the well-known

inverse inequalities hold (see [2]), e.g.,

‖vh‖1 � C

h
‖vh‖0 ∀vh ∈ Vh,

where Vh are finite element subspaces of the Sobolev space H1(Ω), the symbol C

stands for a constant independent of h, and ‖ · ‖k is the standard Sobolev norm.

Inverse inequalities play an important role in proving convergence of the finite ele-
ment method for various problems. But the existence of a strongly regular family for

domains with a piecewise smooth boundary is “silently” assumed. To the authors’
knowledge there has been no detailed proof until now. In [9], a strongly regular

family of triangulations is constructed for a circle. Then, using a C2-diffeomorphic
mapping, a strongly regular family for any simply connected bounded domain with

a smooth boundary is obtained. Another proof for the same class of domains is
presented in [5].

We will obtain this result for the domains with piecewise curved boundaries (which
is the most important case in practice) using a different technique. We divide the

domain in question into a finite number of “quasi-triangles” with at most one curved
side and then construct strongly regular families of triangulations of each quasi-

triangle. Moreover, our algorithm generates piecewise quasi-uniform triangulations,
which produce various superconvergence phenomena (see, e.g., [8]) when the finite

element method is applied. Note that in [3], several algorithms for generating trian-
gulations are presented, but nothing is mentioned there concerning the properties of

a family of triangulations when the discretization parameter h tends to zero.
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2. Basic definitions

Throughout this paper we consider triangulations Th which are sets of closed
triangles having the standard properties (cf. [2]), i.e., any two triangles from Th have

a common edge or a common vertex or are disjoint. As usual, the parameter h

characterizes the maximum length of all edges of all triangles in Th.

Definition 2.1. Let Z be a bounded closed domain in �2 , let F = {Th}h→0 be

a set of triangulations and let
Zh =

⋃

K∈Th

K.

The set F is said to be a family of triangulations of Z if for any z ∈ Z there exists a
sequence {zh}, zh ∈ Zh such that zh → z as h → 0 and for any convergent sequence
{zh}, zh ∈ Zh, there exists z ∈ Z such that zh → z as h → 0.

According to Definition 2.1, F is a family of triangulations of Z if the associated
polygons Zh “converge” to Z. A similar definition has been introduced by Mosco

in [10].

Definition 2.2. A family F of triangulations of a bounded closed domain Z ⊂
�
2 is said to be strongly regular if there exist positive constants �1, �2, α0, h0 such
that for all h ∈ (0, h0), all triangulations Th ∈ F and all triangles K ∈ Th we have

�1h � lK � �2h,(2.1)

0 < α0 � αK ,(2.2)

where lK is the length of any edge of K and αK is any angle of K.

It is easy to see that this definition is equivalent to the inscribed ball condition
(cf. [7]). Let us point out that the strongly regular family is sometimes also called

quasi-uniform (cf. [2, p. 135]).
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Definition 2.3. Let λ > 0, f ∈ C1[0, λ], f(0) > 0, k0 = f(λ)/λ and let there

exist constants k1, k2 such that

(2.3) k0 > k1 � k2

and

(2.4) k0λ+ k1(x− λ) � f(x) � k0λ+ k2(x− λ), x ∈ [0, λ],

i.e., the graph of f lies between two straight lines passing through the point (λ, f(λ))
(see Figure 1). Then the set

K = {(x, y) ∈ �2 | 0 � x � λ, k0x � y � f(x)}

is called a quasi-triangle.

������ 2.4. A quasi-triangle K is thus a curved triangle with vertices A0 =

(0, 0), A1 = (λ, f(λ)), A2 = (0, f(0)) and at most one curved side A1A2 (see Fig-
ure 1). Suppose, moreover, that f ∈ C2[0, λ]. If

(2.5) f ′′ � 0 in [0, λ]

then we may set k1 = (f(λ)− f(0))/λ and k2 = f
′
(λ), and if

(2.6) f ′′ � 0 in [0, λ] and f ′(λ) < k0,

then we may set k1 = f
′
(λ) and k2 = (f(λ) − f(0))/λ to satisfy (2.3) and (2.4).

3. Main theorems

Let h = λ/n for a natural number n.

Theorem 3.1. For any quasi-triangle there exists a strongly regular family of
triangulations.

�����. We form polygonal approximations of K and their triangulations in

the following manner: first, we divide the segment A0A1 by points A00 ≡ A0,
A11, . . . , Ann ≡ A1 into n segments of the same length (see Figure 2 with n = 4).

Let Arn = (rh, f(rh)) for r = 0, . . . , n, and let us divide the segments ArrArn by
the points

(3.1) Arq =
(
rh, k0rh +

f(rh)− k0rh

n− r
(q − r)

)
, 0 � r � q < n,
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into n − r congruent smaller segments. The points Ar−1,q and Arq, also Ar−1,q−1
and Arq, are joined by straight line segments for 1 � r � q � n. As a result we get
a triangulation of Kh consisting of the triangles Ar−1,qArqAr,q+1 for 1 � r � q < n

and the triangles Ar−1,q−1Ar−1,qArq for 1 � r � q � n (see Figure 2). Uniform

convergence of linear interpolants of f to f guarantees (see [2, p. 124]) that the
proposed set of triangulations forms a family for h → 0 as defined in Definition 2.1.
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Now, we show that this family possesses properties (2.1) and (2.2). First consider
the vertical segment ArqAr,q+1 for 0 � r < n. Its length is given by

|ArqAr,q+1| =
f(rh)− k0rh

n− r
.

From (2.4) we have

k0(λ− x)− k1(λ− x) � f(x)− k0x � k0(λ− x)− k2(λ− x)

for x ∈ [0, λ]. Then, since λ = nh, we get

(3.2) (k0 − k1)h � |ArqAr,q+1| � (k0 − k2)h.

Hence, we observe by (2.3) that

(3.3) 0 < C2h � |ArqAr,q+1| � C3h.
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Second, we see that apparently

(3.4)
q − r

n− r
� q − r + 1

n− r + 1
for 0 � r � q � n and r < n.

Consider the vector

(3.5)
−−−−−−→
Ar−1,qArq = (h, y),

where

(3.6) y = k0h+ (q − r)
f(rh) − k0rh

n− r
− (q − r + 1)

f((r − 1)h)− k0(r − 1)h
n− r + 1

.

Obviously, to get estimates like (3.3), we only have to estimate the second coordinate

y, expressed by (3.6). Using (3.6) and (3.4), we observe that if y � k0h then

y � k0h+
q − r

n− r
[f(rh)− k0rh− f((r − 1)h) + k0(r − 1)h](3.7)

� k0h+ (f(rh)− f((r − 1)h)− k0h) = f(rh)− f((r − 1)h),

since the expression in the square brackets [ ] is nonnegative. Similarly, if y � 0 then

y � k0h+
q − r + 1
n− r + 1

{f(rh)− k0rh− f((r− 1)h)+ k0(r− 1)h} � f(rh)− f((r− 1)h),

since {} is nonpositive. From here and (3.7) we obtain

|y| � |f(rh)− f((r − 1)h)| for y � k0h or y � 0,

which leads, by the mean value theorem, to

(3.8) |y| � C4h,

where C4 is a constant. For the remaining case 0 < y < k0h we immediately get

again (3.8) with C4 = k0. Finally, from (3.5) and (3.8) we obtain

(3.9) h � |Ar−1,qArq| � C5h.

The same lower bound holds also for |Ar−1,qAr,q+1|. Its upper bound follows from
(3.3), (3.9) and the triangle inequality. Hence, (2.1) is valid.

From (3.9) we have

(3.10) sinAr−1,qArqAr,q+1 � h

C5h
=
1
C5

.

Similar relations hold for the other angles, i.e., (2.2) is valid. �
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������ 3.2. If f ∈ C2[0, λ] and Kh is the union of all triangles from the

triangulation Th proposed in the proof of Theorem 3.1 then

(3.11) max
z∈∂K

dist(z, ∂Kh) � C6h
2.

This property follows immediately from the standard interpolation theory [2]. If
K is a usual straight triangle then the triangulations Th are uniform, i.e., any two

adjacent triangles form a parallelogram.

The following theorem shows that under certain assumptions we can construct
interior or exterior polygonal approximations of K and their triangulations forming

a strongly regular family. This property is often required in many theoretical and
practical problems.

Theorem 3.3. Let f ∈ C2[0, λ], let K be the associated quasi-triangle and let

(2.5) or (2.6) hold. Then there exist h0 > 0 and a sequence of polygonal domains

{Kh} such that (3.11) holds, A0A1 ∪A0A2 ⊂ ∂Kh, and either K ⊂ Kh or Kh ⊃ K

for all h ∈ (0, h0). For each Kh there exists a triangulation Th such that (2.1) and

(2.2) hold.

�����. Let fh be a continuous piecewise linear function defined on [0, λ] such

that

(3.12) fh(0) = f(0), fh(λ) = f(λ)

and

(3.13) |fh(rh) − f(rh)| � C1h
2, r = 0, . . . , n.

The graph of fh and the segments A0A1 and A0A2 form the boundary of a polygonal
approximation Kh of K (see Figure 3). To provide Kh ⊃ K we just take fh � f ,

and we choose fh � f to construct Kh ⊂ K. Concerning the interior approximation,
we see that k0rh < fh(rh) whenever r < n and h � (k0 − k1)/C1, where C1 is the

constant from (3.13).
By (3.13) we can easily derive (3.11), since f ∈ C2[0, λ].

To check the validity of (2.1) and (2.2) is essentially the same as in Theorem 3.1
if we write fh instead of f everywhere in its proof. Hence, Arq are defined by (3.1),

where f is replaced by fh, etc. Then, in view of (3.13), we get similarly to (3.2) that

(k0 − k1)h−
C1h

2

n− r
� |ArqAr,q+1| � (k0 − k2)h+

C1h
2

n− r
,

which again yields (3.3).
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The triangle inequality

|y| � |fh(rh)− f(rh)|+ |f(rh) − f((r − 1)h)|+ |f((r − 1)h)− fh((r − 1)h)|

together with (3.13) again gives (3.9). �

Lemma 3.4. Let Ω be a bounded planar domain with a boundary ∂Ω which

consists of a finite number of differentiable arcs meeting at interior angles ϕ, where

(3.14) 0 < ϕ0 � ϕ � 2�− ϕ0.

Then there exists a division of Ω into a finite number of quasi-triangles with curved
sides on ∂Ω only.

�����. For simplicity we present only a sketch of the proof.

Let T be an arbitrary triangulation consisting of straight-line triangles such that
Ω ⊂ ⋃

K∈T

K (T can be, e.g., a uniform one), and let

(3.15) P =
⋃

K∈T , K⊂Ω
K

be non-empty. Hence, P is a closed polygon contained in Ω.

Now, consider the “strip” between ∂P and ∂Ω. Obviously, connecting the nodes
of ∂P with certain points of the boundary ∂Ω (e.g., along the normal to ∂Ω or using
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axes of exterior angles of P at the nodes of ∂P ) and with end-points of smooth arcs

forming ∂Ω, we can divide the strip into a finite number of triangles with at most
one curved side on ∂Ω only (see Figure 4). If not all of them are quasi-triangles
according to Definition 2.3, then we divide all triangles from T by midlines, denote

the new triangulation again by T and continue from (3.15).
If the triangulation T is sufficiently fine then conditions (2.3) and (2.4) are sat-

isfied, since ∂Ω is piecewise differentiable and thus each differentiable arc is locally
becoming straight as h tends to zero. Hence, the above division process has to finish

in a finite number of steps. �

Figure 4

Note that there are several constructive proofs of Lemma 3.4. However, their
detailed descriptions are always too technical.

Theorem 3.5. Let Ω be a domain as described in Lemma 3.4. Then there exists
a strongly regular family F = {Th}h→0 of triangulations of Ω. If, moreover, ∂Ω is
piecewise twice differentiable then

(3.16) max
x∈∂Ω

dist(x, ∂Ωh) � C7h
2,

where Ωh =
⋃

K∈Th

K.

�����. If a division of Ω into a finite number of quasi-triangles from Lemma 3.4
is built then for any natural number n we form triangulations as in Theorem 3.1.

Obviously, all triangulations of all quasi-triangles can be taken together as a global
triangulation of the whole domain Ω in view of the way of construction.

If ∂Ω is piecewise twice differentiable the condition (3.16) follows directly from
(3.11).
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The only problem is to guarantee the nonexistence of common points for any two

piecewise linear approximations of two neighbouring arcs, built outside Ω. However,
this requirement is, obviously, fulfilled in view of (3.14) for sufficiently large n. �

������ 3.6. If a quasi-triangle from the previous proof corresponds to a convex
or concave function f then we may also utilize triangulations generated in Theo-

rem 3.3 due to requirement (3.12).
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