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Abstract. The asymptotic behavior of global errors of functional estimates plays a key
role in hypothesis testing and confidence interval building. Whereas for pointwise errors
asymptotic normality often easily follows from standard Central Limit Theorems, global
errors asymptotics involve some additional techniques such as strong approximation, mar-
tingale theory and Poissonization. We review these techniques in the framework of density
estimation from independent identically distributed random variables, i.e., the context for
which they were introduced. This will avoid the mathematical difficulties associated with
more complex statistical situations in which these tools have proved to be useful.
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1. Introduction

Since its first version about Bernoulli trials stated by de Moivre at the beginning

of the eighteenth century, the Central Limit Theorem (CLT) has assumed a key role
in Probability and Statistics. De Moivre’s proof relied on the fact that n! behaves

asymptotically as Cnne−n
√
n, where the constant C was proved by Stirling to be

equal to
√
2�. Using this one can prove for any random variable Zn with binomial

distribution B(n, p), p ∈ (0, 1), n � 1 the de Moivre-Laplace formula

P (Zn = k) =
Cn(x)√
2�np(1− p)

exp

(
−x

2

2

)
, 0 � k � n,

where x = (k − np)/
√
np(1− p). In the above formula Cn(x) tends to 1 as n tends

to infinity, uniformly on any bounded interval. This yields the first form of the CLT.
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With the same notation and −∞ � a < b � ∞, it states that

lim
n−→∞

P

(
Zn − np√
np(1− p)

∈ (a, b)
)
=
1√
2�

∫ b

a

exp
(
−x

2

2

)
dx,

i.e. the limit distribution as n tends to infinity of
(
(Zn − np)/(

√
np(1− p))

)
is the

standard normal distribution N (0, 1). One had to wait until the end of the nine-
teenth century to see a CLT for sums of random variables with arbitrary distribution.

The works by Tchebychev using the moments method and those of Liapunov using
characteristic functions appeared at that time. The CLT for independent random

variables that is taught in basic Probability courses is due to Lindeberg (1922) for
the sufficiency part and to Feller (1935) for the necessary one. It is stated as follows.

Let {Xi, i = 1, 2, . . .} be a sequence of independent real random variables with zero
mean and finite standard deviation σi and denote by IA the indicator function of a

set A. Let

Sn =
n∑

i=1

Xi and sn =

( n∑

i=1

σ2i

)1/2
.

As n tends to infinity we have

(Sn/sn)
D−→ N (0, 1) and max

1�i�n
σi/sn −→ 0

if and only if

∀ε > 0, s−2n

n∑

i=1

E
(
X2i I{|Xi|>εsn}

)
−→ 0.(1)

Condition (1) is called the Lindeberg condition. If the variables {Xi : i = 1, 2, . . .}
have a finite moment of order 3, it is easily proved that

s−2n

n∑

i=1

E
(
X2i I{|Xi|>εsn}

)
� ε−1s−3n

n∑

i=1

E
(
|Xi|3

)
,

in which case one often prefers to use the Liapunov condition

s−3n

n∑

i=1

E
(
|Xi|3

)
−→ 0 as n −→∞,(2)

as a sufficient condition for asymptotic normality because it is easy to check.

The study of sums of random variables has generated a considerable literature
and many generalizations in all possible directions of the Lindeberg-Feller result
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have appeared in the second half of the twentieth century. The main aspects of these

developments are: extension to triangular arrays, characterization of the possible
limit laws (infinite divisible laws), treatment of dependent variables, i.e. martingales,
m-dependent and associated sequences, mixing processes, extension to vector spaces

and functional forms. Historical background and references can be found in Heyde
(1983).

For functional estimates the asymptotic normality of pointwise errors often fol-

lows from the standard CLT. However, in hypothesis testing and confidence interval
building, information on global errors of estimates is needed. The aim of the paper is

to expose the additional techniques (strong approximation, martingales, Poissoniza-
tion) involved in the proofs of CLT for global errors. We restrict ourselves to density

estimation from independent identically distributed (i.i.d.) random variables, i.e. the
context for which these techniques were introduced, to avoid mathematical difficul-

ties.

The estimates and errors under study are defined in Section 2 where the problem is

set. A rich literature is available on the approximation of empirical processes. Hence
a natural idea is to express the statistics under consideration as functionals of empiri-

cal processes and to exploit asymptotic results in this field. The method is presented
in Section 3. Convergence to normality also holds for various statistics when the

standard CLTs are not directly applicable (rank statistics, L- or M -estimates). We
give in Section 4 an example of U -statistics and the application of a CLT for these

statistics to L2-errors. The main drawback of the techniques described in Sections
3 and 4 is the necessity of assuming analytical conditions on the function to be esti-

mated at some stage of their application. These conditions can not be checked from
a sample and therefore are not desirable in view of statistical applications. For this

reason more probabilistic methods based on Poissonization were developed. They
are presented in Section 5. Their interest relies on the independence properties of

Poisson processes, which significantly simplify calculations.

2. Problem setting

Let X = {Xi : i = 1, 2, . . .} be an infinite sequence of i.i.d. random variables with
common unknown density f with respect to the Lebesgue measure λ on �. We
denote by µ the measure with density f , by F the distribution function of µ and by

Fn the empirical distribution function defined from the sample X1, . . . , Xn, i.e.,

Fn(x) =
1
n

n∑

i=1

I{Xi�x}.
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We can consider different types of estimates fn of f based on X1, . . . , Xn. As shown

below most of these estimates are of the form

(3) fn(x) =
1
n

n∑

i=1

Kn(x,Xi),

where Kn is called the “generalized” kernel.
• histogram
Let Pn = {An,i : i ∈ {. . . ,−1, 0, 1, . . .}} be a partition of � into Borel sets with

positive measure. The standard histogram fn associated with Pn is defined by

fn(x) =
µn(An(x))
λ(An(x))

,

where An(x) is the set of the partition Pn that contains x and µn is the empirical
measure on Borel sets

µn(A) =
1
n

n∑

i=1

IA(Xi).

Thus fn(x) is of the form (3) with

Kn(x, y) =
∑

j

IAnj (x)IAnj (y)/λ(Anj).

• kernel estimate
The standard Parzen-Rosenblatt kernel estimate on � is defined by

fn(x) =
1
nhn

n∑

i=1

K

(
x−Xi

hn

)

where K is a real function on � integrating to one and hn > 0 is the smoothing

parameter. Therefore it can be expressed in the form (3) with

Kn(x, y) =
1
hn
K

(
x− y

hn

)
.

• Barron estimates
Choose a reference density g from which the unknown density f is not too far in

some sense to be specified later on. Let {mn}, 0 < mn < n, n � 2, be a sequence
of integers, set hn = 1/mn and denote by ν the probability measure with density g.

Next, introduce partitions Pn = {An,1, An,2, . . . , An,mn}, n � 2, of � such that the
An,i’s are intervals with ν(An,i) = hn and define

(4) fn(x) = ((1− an)µn(An(x))/hn + an)g(x),
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where an = (1 + nhn)−1 and An(x) = An,i if x ∈ An,i. One can get this estimate

by transforming first the data into [0, 1] by the distribution function of g, then by
constructing a histogram on [0, 1] from a uniform partition into mn intervals, taking
the mixture of this histogram and the uniform density with weights 1 − an and

an, respectively, and finally transforming this mixture back to the real line. This
estimate was introduced by Barron (1988) and generalized by Barron, Györfi and

van der Meulen (1992). It can be written in the form (3) with

Kn(x, y) =
∑

j

(
1− an

hn
IAnj (y) + an

)
IAnj (x)g(x).

It is not difficult to see that many other sorts of estimates (orthogonal series, spline,
etc.) are covered by (3). For such estimates it is clear that the wide range of limit

theorems for sums of random variables will provide, for fixed x, conditions for the
asymptotic normality of (fn(x) − f(x)) or (fn(x) − Efn(x)), suitably normalized.
Now, let d(f, g) be a distance or divergence between the densities f and g and let

us consider functions ϕ[d(fn, gn)] of global errors of estimates d(fn, gn) where

gn = f or gn = Efn.

It is a much more difficult task to investigate the question of asymptotic normality
of statistics of the form

(ϕ[d(fn, gn)]− an)/bn

where {an} and {bn} are suitable centralizing and normalizing deterministic se-
quences.
Typical examples of such statistics are built with pth powers (ϕ(z) = zp) of Lp-

errors. The Lp-error (1 � p <∞) between fn and gn is defined by

‖fn − gn‖p, ω =

{∫

�

|fn(x)− gn(x)|p ω(x) dλ(x)
}1/p

,

where the weight function ω(.) is nonnegative, possibly random and/or depending

on n.
Among Lp-errors (1 � p � ∞) three are very popular. They are the L1, L2 and

L∞ errors. The last one is defined, with the same notation as above, by

‖fn − gn‖∞, ω = sup
x∈�

|fn(x)− gn(x)|ω(x).

The L1-error with ω(.) ≡ 1 is certainly the more natural error in the context of
density estimation because it is well defined whenever fn and gn are integrable and
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invariant under measurable one-to-one onto transformations (like rescaling of the

axes) and can be expressed by means of measures of sets. The L1- and L∞-errors
have the nice property of being easily visualized. The L1-distance between two curves
is the measure of the area between these curves whereas the L∞-distance between

them is the width of the smallest band of plane containing both of them. This visual
aspect is important when using graphical tools in exploratory data analysis. The

L2-error is known for its nice properties allowing considerable specific developments.
Section 4 will exploit the possibility of writing it as a scalar product. Many distances

or pseudo-distances can be put in place of d(fn, gn) depending on the problem under
study and the aspects to be emphasized. We will illustrate the last section of the

paper by considering the Kullback-Leibler divergence. Some recent works have shown
the need for convergence results and CLT for pseudo-distances inducing stronger

topologies than Lp-distances (for instance in the area of communication networks,
see Györfi, Liese, Vajda and van der Meulen (1998) and Berlinet, Vajda and van der

Meulen (1998)).

3. Strong approximation

As a rich literature is available on approximation of empirical processes (see

Shorack and Wellner (1986), Wellner (1992) for a review of applications and van der
Vaart and Wellner (1996)), a natural idea is to express the difference (fn(x)− f(x))
as a function of the standard empirical process

αn(t) =
√
n(Fn(t)− F (t)), t ∈ �.

Indeed, we can write

fn(x)− f(x) = (fn(x)− Efn(x)) + (Efn(x)− f(x))

and note that
fn(x) =

∫

�

Kn(x, t) dFn(t)

and
Efn(x) =

∫

�

Kn(x, t) dF (t).

The term (Efn(x) − f(x)) is non random. Suitable analytical conditions on the

generalized kernel Kn, on the density f and the weight function ω will make it tend
to zero. Now,

fn(x)− Efn(x) = n−1/2
∫

�

Kn(x, t) dαn(t).
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We know that the asymptotic behavior of the empirical process αn(.) is close to the

behavior of Bn(F (.)) where {Bn(u), 0 � u � 1} is a sequence of Brownian bridges:
{Bn(u), 0 � u � 1} has the same distribution as {W (u)− uW (1), 0 � u � 1} where
W is the standard Brownian motion on (0, 1). Bn(.) is a Gaussian process with

E(Bn(t)) = 0 and E(Bn(s)Bn(t)) = min(s, t)− st, 0 � s, t � 1.

This approximation result applies well to errors that are functionals of (fn(.)−gn(.))
like Lp-errors (1 � p � ∞). Let

In(p) = ‖fn − Efn‖p
p, ω

and let În(p) be obtained from In(p) by substituting

n−1/2
∫

�

Kn(x, t) dBn(F (t)) for (fn(x) − Efn(x)).

To get the desired result, that is the convergence in distribution to the standard
normal N (0, 1) of

(In(p)− an)/bn,

we have to prove both the convergence

(5) (În(p)− an)/bn
D−→ N (0, 1)

and the asymptotic negligibility (convergence in probability to zero) of

(6) (In(p)− În(p))/bn.

The convergence of (În(p) − an)/bn is proved by using moments and covariance

properties of Brownian bridges together with a standard CLT. The asymptotic neg-
ligibility of (In(p)− În(p))/bn is proved by applying strong approximation theorems
on the empirical process.

However, this short presentation should not give the reader the feeling that things

are easy. Heavy calculations are needed to handle stochastic integrals appearing in
both parts of the proof (see for instance Horváth, 1991). The main drawback of the
technique is the necessity, up to now, to assume analytical conditions on f or on the

smoothing parameter leading to suboptimal rates of convergence.
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4. U-statistics

Hall (1984) proposed a new method of proof to deal with nonparametric estimators

of a multivariate density and to include the case of optimally constructed estimators,
not covered in previous papers. While this method works for the general estimates
defined by (3) it is limited to the integrated square error (p = 2)

In(2) = ‖fn − f‖22, ω =
∫

�

(fn(x)− f(x))2 ω(x) dλ(x).

The specific treatment of In(2) relies on the possibility of writing it as the sum of
three terms:

In(2) = ‖fn − Efn‖22, ω

+ 2
∫

�

(fn(x)− Efn(x))(Efn(x)− f(x))ω(x) dλ(x)

+ ‖Efn − f‖22, ω.

The last term is deterministic and can be analyzed by analytic methods (this needs
regularity assumptions on f).

The second term is readily described by a CLT because it can be written as a sum
of i.i.d. random variables.

The first term may be expressed as

‖fn − Efn‖22, ω = 2
∑

1�i<j�n

Hn(Xi, Xj)

+
n∑

i=1

∫

�

(Kn(x,Xi)− EKn(x,Xi))
2 ω(x) dλ(x),

where

Hn(x, y) =
∫

�

(Kn(u, x)− EKn(u,X1))(Kn(u, y)− EKn(u,X1))ω(u) du.

The second term in the expression of ‖fn − Efn‖22,ω is a sum of i.i.d. random
variables and therefore satisfies a CLT. The first term equals twice a centered U -

statistic with a variable kernel function Hn. This means that Hn is a symmetric
function satisfying E(Hn(X1, X2)) = 0. Moreover, this U -statistic is degenerate in

the sense that

E(Hn(X1, X2)
∣∣ X1) = 0, a.s.
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Defining

Yi =
i−1∑

j=1

Hn(Xi, Xj), Si =
i∑

j=2

Yj , 2 � i � n,

and noting that

E(Yi

∣∣ X1, . . . , Xi−1) = 0, a.s. 2 � i � n,

one concludes that the sequence {Si, 2 � i � n} is a martingale in which

Sn =
∑

1�i<j�n

Hn(Xi, Xj).

Thus, using Brown’s martingale CLT, Hall proves in his paper the following theorem

for centered, degenerate U -statistics with a variable kernel.

Theorem 1. Assume that Hn is symmetric, E(Hn(X1, X2)|X1) = 0 a.s.,

E(H2n(X1, X2)) <∞ for each n and define

Gn(x, y) = E(Hn(X1, x)Hn(X1, y)).

If, as n −→∞,

(E(G2n(X1, X2)) + n
−1E(H4n(X1, X2)))/(E(H

2
n(X1, X2)))

2 −→ 0,

then

n−1
∑

1�i<j�n

Hn(Xi, Xj)

is asymptotically normally distributed with zero mean and variance 12E(H
2
n(X1, X2)).

Finally, In(2) can be written as the sum of a deterministic term ‖Efn−f‖22, ω and
of three random terms. Applying twice a standard CLT together with Theorem 1

and a suitable approximation result for ‖Efn− f‖22, ω one gets asymptotic normality
for In(2) in the case where one of the random term is dominant. Otherwise one has

to prove joint asymptotic normality to be able to conclude for In(2).

The remark made at the end of Section 3 concerning undesirable assumptions on
f remains valid.
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5. Poissonization

The word “Poissonization” covers essentially two techniques. The first consists in

randomizing a sample size by means of a Poisson random variable while the second
exploits the possible representation of a multinomial vector by a vector of indepen-

dent Poisson random variables conditionally on their sum. Their interest relies on
the nice properties of Poisson processes, namely independence of their increments

and the behavior of their moments. These properties considerably simplify calcula-
tions. In many situations, Poisson approximations of empirical processes have better

rates of convergence than Gaussian ones. Their superiority is a consequence of their
better behavior on the tails and can be amplified in the case of weighted empirical

processes.

5.1. Poissonization of sample size.
The idea goes back to Kac (1949), of approximating

nFn(t) =
n∑

i=1

1{Xi�t}

by

An(t) =
Nn∑

i=1

1{Xi�t},

where Nn is a Poisson random variable with mean n, independent of X = (X1, . . . ,
Xn, . . .). The representation of the process nFn by means of An plus a remainder
Rn is known as the Kac representation. The process An is a Poisson process with

intensity E(An(t)) = nF (t) and, if the Xi’s are supposed to be uniform on (0, 1), we
have as n −→∞ the following approximation result in the sense of weak convergence
(see Csörgő and Horváth, 1993):

n−1/4{nFn(t)−An(t) + t(Nn − n)} −→ (signZ)|Z|1/2B(t)

where B(.) is a Brownian bridge and Z is a standard N (0, 1) random variable inde-

pendent of B(.). The sample size Poissonization can be used not only for empirical
processes but also for any statistics built from (X1, X2, . . . , Xn). As an example let

us mention the pioneering work of Rosenblatt (1975) exploiting this method initially
suggested by Bickel to study the behavior of bivariate kernel density estimates

fn(x) =
1
nh2n

n∑

i=1

K

(
x−Xi

hn

)
,
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with a kernel K supposed to be zero outside a compact set of �2 . In his paper,

Rosenblatt considered

f∗n(x) =
1
nh2n

Nn∑

i=1

K

(
x−Xi

hn

)
,

where Nn is a Poisson(n) random variable independent of X, as a tool to prove the
asymptotic normality of the square of the L2-error ‖fn− f‖22, ω. Using the properties
of the Poisson process An, one can write

‖f∗n − Ef∗n‖22, ω =
∑

j,k

Uj,k(n)

where Uj,k(n) and Uj′,k′(n) are independent if |j − j′| � 2 or |k − k′| � 2. Then a
CLT can be proved for ‖f∗n −Ef∗n‖22, ω just as for an m-dependent process using the

Liapunov condition. The asymptotic normality of the L2-error associated with f∗n
is then transferred to fn by means of approximation theorems. Rosenblatt proved
his results in the multivariate case in which this methodology works as well, un-

derlining the fact that the Poissonization technique requires weaker assumptions on
the underlying density and the parameters of estimates than the strong Gaussian

approximation (see Bickel and Rosenblatt, 1973). The same technique was used by
Horváth (1991) to prove CLTs for Lp norms of errors associated with the above

density estimates. It should be stressed that, as Nn is unbounded, the effective com-
putation of an estimate based on (X1, X2, . . . , XNn) would require the knowledge of

the values of the infinite sequence of variablesX. Therefore Poissonized samples and
more generally samples with unbounded random size are mainly probabilistic tools.

5.2. Poisson representation of multinomial distribution.
The distribution of a multinomial vector Z = (Z1, Z2, . . . , Zk) with parameters

n, p1, . . . , pk can be represented as the distribution of a vector Y = (Y1, Y2, . . . , Yk)
of k independent Poisson variables with expected values np1, . . . , npk and subject

to the condition Y1 + Y2 + . . . + Yk = n. The Poissonization technique exploits
this property and is widely used in urn occupancy problems to obtain asymptotic

formulas for sequential occupancy probabilities or expected values of waiting times.
See Johnson and Kotz (1977) or Barbour, Holst and Janson (1992) and the references

therein. As a number of test statistics (most notably chi-square and likelihood ratio
statistics) have the form

Sk =
k∑

i=1

ψi(Zi),
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where ψ1, . . . , ψk are measurable real-valued functions, it is fundamental to give

conditions under which the limiting distribution of Sk is known. The first results
of this kind were given by Steck (1957) using the Poisson representation of Z, and
extended by Morris (1975). A new area of application for this type of Poissonization

was recently opened in functional estimation to get limit theorems for functions of
global errors ϕ[d(fn, gn)] (see Berlinet (1995) for formalization of the method and

list of references). Different sorts of nonparametric estimates are defined as functions
of multinomial vectors Z = (Z1, . . . , Zk) defined from partitions of �, each Zi being

a number of observations falling into some cell of a partition (think of the standard
histogram or regressogram for example). The idea to get the asymptotic distribution

of ϕ[d(fn, gn)] is to replace vectors Z by vectorsY of Poisson variables conditioned on
their sum and then to transfer back the results to the original statistics, approximated

by functions of multinomial variables. The key theorem for this purpose was proved
by Beirlant, Györfi and Lugosi (1994). It relies on the idea of partial inversion

for obtaining characteristic functions of conditional distributions. Roughly speaking
their theorem states conditions guaranteeing that whenever a CLT holds for statistics

of the form ∑

j

ψj(Yj)

then it also holds for the statistics

∑

j

ψj(Zj),

where functions and variables depend on n. For details and application to various

kinds of estimates and different types of errors, see Beirlant, Györfi and Lugosi
(1994), Beirlant and Mason (1994), Berlinet, Devroye and Györfi (1995) and Berlinet

(1995). Now, suppose that we know a density g such that the Kullback-Leibler
divergence between f and g, i.e.

D(f, g) =
∫

�

f(x) ln
f(x)
g(x)

dλ(x)

is finite. Consider the Barron estimate fn of f defined in Section 2. Beirlant, Györfi

and van der Meulen (1992) proved that under the conditions

(7) lim
n→∞

hn = 0, lim
n→∞

nhn =∞,

we have

lim
n→∞

D(f, fn) = 0 a.s.
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and

lim
n→∞

E(D(f, fn)) = 0.

The question of asymptotic normality of

D(f, fn)− ED(f, fn)

has been very recently investigated by Berlinet, Györfi and van der Meulen (1997) us-
ing Poissonization techniques. Let µ∗Nn

be the Poissonized empirical measure defined

on Borel sets by

µ∗Nn
(A) =

1
n

Nn∑

i=1

IXi∈A.

If the functions ψj are chosen as

ψj(x) = n
√
2hn

n2µ(Anj)
2(nµ(Anj) + 1)2

(
(x− µ(Anj))

2 − E(µ∗Nn
(Anj)− µ(Anj))

2
)

(j = 1, . . . ,mn), then

n
√
2hn(D(f, fn)− ED(f, fn)) =

mn∑

j=1

ψj(µn(Anj)) + ∆n,

where ∆n is shown to tend to zero in probability. Hence the problem is reduced to
the proof of a CLT for

Sn =

(
t

mn∑

j=1

ψj(µNn(Anj))

)
+ v

Nn − n√
n

.

This is done by using moment properties of Poisson variables and the Liapunov
condition. In this way Berlinet, Györfi and van der Meulen (1997) obtained the

following result, which is the first asymptotic distributional theorem for the Kullback-
Leibler divergence of density estimates.

Theorem 2. Let µ and ν be probability measures on �d with densities f and

g with respect to the Lebesgue measure. Let Sµ be the closure of the set Sµ =

{x : f(x) �= 0} and let fn be given by

fn(x) = (nµn(An(x)) + 1)ang(x)

with (hn) satisfying

lim
n→∞

hn = 0, lim
n→∞

nhn =∞.

If D(f, g) <∞ and ν(Sµ − Sµ) = 0 then

n
√
2hn[D(f, fn)− E(D(f, fn))]

D−→ N (0, σ2)

as n→∞, where σ2 = ν(Sµ) > 0.
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Observe that the asymptotic variance is less than or equal to 1, in any dimension,

for all densities f for which the consistency in Kullback-Leibler divergence of the
estimate is guaranteed.

The problem of strong consistency in the sense of information divergences

Dϕ(f, g) =
∫
g ϕ

(
f

g

)
dλ

topologically stronger than the Kullback-Leibler divergence is more difficult. See

in this respect Györfi, Liese, Vajda and van der Meulen (1998) who considered the
χ2-divergence (ϕ(t) = |1 − t|2), and Berlinet, Vajda and van der Meulen (1998) for
other divergences. It is an open problem to find the asymptotic distribution of errors

defined from general ϕ-divergences.

The representation of multinomial vectors by vectors of i.i.d. Poisson variables

given their sum can be viewed as a particular case of the sample size Poissoniza-
tion. Let X = {Xi : i = 1, 2, . . .} be a sequence of i.i.d. random variables and
let P = {A1, A2, . . . , Ak} be a partition of �. Consider a Poisson random vari-
able Nn, with mean n and the Poissonized empirical measure µ∗Nn

. The vector

(nµ∗n(A1), . . . , nµ
∗
n(Ak)) is a vector of independent Poisson random variables with

the same distribution as (nµn(A1), . . . , nµn(Ak)), conditionally on their sum.

To obtain limit theorems, one often has to combine different methods. To illustrate

this, let us mention the result given by Berlinet, Devroye and Györfi (1995) for the
standard histogram fn built from a partitionPn of � into intervals Anj , j � 1, with
equal measure hn = cn−1/3. For any continuously differentiable density f ,

√
n (‖fn − f‖ − E‖fn − f‖) /σ

is asymptotically Gaussian N (0, 1). The constant σ is given explicitly and shown
to be less than 1− 2/�. The authors prove the result with a centering constant equal
to E‖f∗n − f‖, where f∗n is the Poissonized histogram defined by

f∗n(x) =
µ∗Nn
(An(x))

hn
.

For the statistic (‖fn − f‖ − E‖f∗n − f‖) the technique of replacement exposed in
this paragraph is used. It remains to prove that the Poissonization of sample size

provides a suitable approximation f∗n to fn. This is done through careful inspection
of the L1-error.
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6. By way of conclusion

As we have mentioned, there are prima facie reasons why, up to now, strong ap-
proximation methods need additional assumptions: the computation and the approx-

imation of the stochastic integrals involved in these methods use regularity or bound-
edness properties of the unknown density. These assumptions cannot be checked from

a data set and therefore are not desirable in view of statistical applications. The same
is true for methods needing a good approximation of f by Efn. As suggested early

by Rosenblatt for quadratic functionals, it seems that the technique of Poissonization
is more natural, in the sense that it requires weaker assumptions on the underlying

density and the parameters of the estimates. Other sample size randomization tech-
niques appeared in the literature (Pollard, 1982). To obtain limit theorems under

weak assumptions it seems that some standard analytical tools should be replaced
by more probabilistic methods relying on probabilities of sets.
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