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Abstract. We review the recent results for boundary value problems with boundary con-
ditions given by second-order integral-differential operators. Particular attention has been
paid to nonlinear problems (without integral terms in the boundary conditions) for elliptic
and parabolic equations. For these problems we formulate some statements concerning a
priori estimates and the existence theorems in Sobolev and Hölder spaces.
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Introduction

The theory of solvability of the boundary value problems for nondivergent elliptic
and parabolic equations describing stationary and nonstationary diffusion processes
has been actively developing over the last two decades.
First and foremost, the classical boundary value problems have been studied for

these equations. Nowadays, sufficiently complete results on solvability of the Dirich-
let and the oblique derivative problems have been obtained in Hölder and Sobolev
spaces. Surveys of these results and an extensive bibliography can be found in [8],
[15], [17–18]. In addition, papers cited in the above-mentioned reviews we should
mention also the publications [23–24] and [26].
In 1959, A. D. Venttsel introduced a new class of boundary conditions for elliptic

equations given by second-order integral-differential operators (see [27], and also
[12], [28]). From the probabilistic point of view, Venttsel boundary conditions are the
most general admissible boundary conditions, since they include Dirichlet, Neumann,
oblique derivative and mixed boundary conditions as special cases. Note also that

69



the problems with Venttsel type conditions have applications to various fields of
science and technology. Among them are the water wave theory and a model for
heat transfer, as well as engineering problems of “hydraulic fracturing” in oil wells
and aspects of financial mathematics (see [10], [13–14], [16], [25]).

In recent years, the studies of Venttsel problems have continued along diversity
of avenues. In particular, a survey of results on linear problems, having an integral
term in the boundary condition, can be found in [11]. We mention also the paper
[19] which deals with applications of the potential theory to Venttsel problems.

Let us consider in more detail the nonlinear Venttsel problem for parabolic and
elliptic equations. Such a problem (without integral terms) describes the diffusion
process in a bounded domain combining boundary reflection and diffusion along a
surface. This situation arises when the boundary is covered with a thin layer of a
material having higher permeability. The boundary condition in that case is given
by a nonlinear nondivergent equation of the second order with the principal term
being a parabolic (elliptic) operator in tangential variables.

The results already obtained for Venttsel problems mainly concern the nondegen-
erate case, when the thickness of the boundary layer is a positive constant.

The examination of Venttsel problems for general second order elliptic equations
was initiated by N. S. Trudinger in the late 1980’s. The classical solvability of the
problem for a quasilinear uniformly elliptic equation with a quasilinear uniformly
elliptic Venttsel condition was established by Y. Luo and N. S. Trudinger in the pa-
pers [20–22]. This result was generalized in [7]. In this paper we prove the existence
theorem in Sobolev spaces as well as the classical solvability result under the assump-
tion that the boundary condition has quadratic growth with respect to the tangential
gradient components. The restrictions on all the data of the problem are optimal
in [7]. In particular, in the case of Sobolev’s solutions, summable singularities with
respect to independent variables are also admissible.

We also studied the nonstationary nondegenerate quasilinear Venttsel problem in
the series of papers ([1], [6], [8–9]). Solvability in Sobolev and Hölder spaces was
established under the weakest (natural) structure conditions similar to those in the
above-described stationary case.

Thus, solvability results on nondegenerate Venttsel problems have been obtained
under the equally general assumptions as for the classical boundary value problems.
The case of degenerate Venttsel problems is more difficult and far from having been
solved completely at the moment.

The classical existence and uniqueness of solutions of stationary linear degenerate
problems was established in [22].

In the papers [4–5] we obtained some a priori estimates for solutions of nonlin-
ear degenerate Venttsel problems. The notion of a uniformly degenerating boundary
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condition, describing the situation when the thickness of the boundary layer can van-
ishes, was introduced in the process. Namely, we suggest that the elliptic (parabolic)
terms in the boundary operators contain a scalar multiplier that may vanish on some
subsets of the boundary, while the first-order terms involved in the boundary con-
ditions produce a nondegenerate nontangential operator. Experts believe that this
type of degeneracy is natural for diffusion processes.
In [5], global Hölder estimates for Sobolev’s solutions of stationary and nonsta-

tionary quasilinear problems were established by using a suitable combination of
the techniques for the oblique derivative and the nondegenerate Venttsel problems.
Again, as in the nondegenerate case, all results were obtained in [5] under the weakest
(natural) assumptions.
Finally, gradient estimates for classical solutions to stationary degenerate Venttsel

problems for fully nonlinear and quasilinear equations (under different assumptions
on the smoothness of a solution) were obtained in [4]. Unfortunately, the arguments
from [7] concerning gradient bounds are not applicable to a degenerate boundary
condition. Instead of this, we use in [4] the ideas from [18]. It requires the smoothness
of the right-hand side of the equation and the boundary condition for both fully
nonlinear and quasilinear cases. The question of gradient estimates for solutions
from Sobolev spaces is still an open one.
This paper is organized as follows. Section 1 is devoted to nondegenerate prob-

lems. For reasons of space, we formulate here the theorems concerning a priori
estimates and the existence results in Sobolev and Hölder spaces only for solutions
of nonstationary problems and provide all necessary references to analogous results
for stationary problems. The case of the degenerate boundary condition is considered
in Section 2, where we state some a priori estimates for solutions of nonstationary
and stationary problems for quasilinear equations. References to the corresponding
results for stationary problems for fully nonlinear equations can also be found there.

Notation. x = (x1, . . . , xn−1, xn) is a vector in �n with the Euclidean norm |x|;
(x; t) is a point in �n+1 ; Ω is a bounded domain in �n and ∂Ω is its boundary;
n(x) = (ni(x)) is the unit vector of the outward normal to ∂Ω at the point x. For
a cylinder Q = Ω × ]0, T [ we denote by ∂′′Q = ∂Ω × ]0, T [ its lateral surface and
by ∂′Q = ∂′′Q∪ {Ω × {0}} its parabolic boundary. We denote by Ω+(Q+) the part
of Ω (of Q) lying in the halfspace xn > 0 and by Γ (Ω+)(Γ (Q+)) the part of ∂Ω+

(of ∂′′Q+) lying on the hyperplane xn = 0. We define BR = {x ∈ �
n : |x| < R},

ΓR = Γ (B+R).
The indices i, j vary from 1 to n, while the indices l, m vary from 1 to n − 1.

Repeated indices indicate summation. The exponent q satisfies n < q < ∞.

The symbol Di denotes the operator of differentiation with respect to xi; in partic-
ular, Du = (D1u, . . . , Dnu) is the gradient of u. Let di be the tangential differential
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operator on ∂Ω, i.e., di = Di − ninjDj. Then du = (diu) is the tangential gradient
of u on ∂Ω; in particular, du = (D1u, . . . , Dn−1u, 0) on Γ (Ω+); ut = ∂u

∂t and
∂u
∂n is

the normal derivative of u. Setting p′ = p − (pn)n for a vector p ∈ �
n we define

operators δ = ∂
∂u +

p
|p|2

∂
∂x , δ

′ = ∂
∂u +

p′

|p′|2
∂

∂x′ .

We denote by ‖ · ‖p,Q the norm in Lp(Q). We also introduce the following spaces:
W 2,1

p (Q) with the norm ‖u‖W 2,1
p (Q) = ‖ut‖p,Q + ‖D(Du)‖p,Q + ‖u‖p,Q;

W 2,1
p (∂

′′Q) with the norm ‖u‖W 2,1
p (∂′′Q) = ‖ut‖p,∂′′Q + ‖d(du)‖p,∂′′Q + ‖u‖p,∂′′Q;

Vp(Q) with the norm ‖u‖Vp(Q) = ‖u‖W 2,1
p (Q) + ‖u‖W 2,1

p−1(∂
′′Q);

the space C(Ω)
(
C(Q)

)
of continuous functions on Ω

(
Q

)
with the norm ‖·‖Ω

(
‖·‖Q,

respectively
)
; the space Ck(Ω) of functions which have continuous derivatives up to

the k-th order;
the Hölder spaces Cγ(Ω) and C2+γ(Q) (0 < γ < 1) with the norms

‖u‖Cγ(Ω) = ‖u‖Ω + [u]γ,Ω,

‖u‖C2+γ(Q) = ‖u‖Q + ‖D(Du)‖Q + ‖ut‖Q + [D(Du)]γ,Q + [ut]γ,Q,

where [·]γ,Ω is the corresponding Hölder constant with exponent γ, while [·]γ,Q stands
for the Hölder constant with exponent γ with respect to the parabolic distance
dpar((x1; t1), (x2; t2)) = |x1 − x2|+ |t1 − t2|1/2.
We set f+ = max{f, 0}, f− = max{−f, 0}, osc

Ω
f = sup

Ω
f − inf

Ω
f. We denote by

tr(a) the trace of a matrix (a).

1. Nondegenerate case

We consider the initial-boundary value problem

ut − aij(x, t, u, Du)DiDju = a(x, t, u, Du) in Q = Ω × ]0, T [ ,(1.1)

ut − αij(x, t, u, du)didju = α(x, t, u, Du) on ∂′′Q,(1.2)

u|t=0 = 0 in Ω.(1.3)

Assume that (aij) is a symmetric matrix and the following natural structure con-
ditions hold for all (x, t) ∈ Q, z ∈ �1 , p ∈ �n :

ν|ξ|2 � aij(x, t, z, p)ξiξj � ν−1|ξ|2, ∀ξ ∈ �n ;(A0)

|a(x, t, z, p)| � µ|p|2 + b(x, t)|p|+ Φ1(x, t);(A1)

aij(x, t, z, p) have the first-order derivatives with respect to x, z, p;(A2)

(1 + |p|) ·
∣∣∣∣
∂aij(x, t, z, p)

∂p

∣∣∣∣ � µ, (1 + |p|)|δaij(x, t, z, p)| � µ|p|+ Φ2(x, t);(A3)

b, Φ1, Φ2 ∈ Lq+2(Q).(A4)

Here ν, µ are positive constants.
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The boundary condition (1.2) is assumed to be a uniformly parabolic Venttsel
condition, i.e., (αij) is a symmetric matrix, the function α(x, t, z, p) is differentiable
with respect to p and the following conditions hold for (x, t) ∈ ∂′′Q, z ∈ �1 , p ∈ �n :

ν1|ξ|2 � αij(x, t, z, p′)ξiξj � ν−11 |ξ|2, ∀ξ ∈ �n , ξ ⊥ n(x);(B0)

0 � −∂α(x, t, z, p)
∂p

n(x) � β(x, t).(B)

In addition we require for any (x, t) ∈ ∂′′Q, z ∈ �
1 , p ∈ �

n that the following
natural structure conditions be fulfilled:

|α(x, t, z, p′)| � µ1|p′|2 + β(x, t)|p′|+Θ1(x, t);(B1)

αij(x, t, z, p′) have the first-order derivatives with respect to x, z, p′;(B2)

(1 + |p′|) ·
∣∣∣∂αij(x, t, z, p′)

∂p′

∣∣∣ � µ1,

(1 + |p′|)
∣∣δ′αij(x, t, z, p′)

∣∣ � µ1|p′|+Θ2(x, t);

(B3)

β, Θ1, Θ2 ∈ Lq+1(∂′′Q).(B4)

Here ν1, µ1 are positive constants.

Theorem 1.1 (maximum principle). Let ∂Ω ∈ W 2
n+1. Assume that a function

u ∈ Vn+1(Q) ∩ C(Q) satisfies

ut − aij(x, t)DiDju+ bi(x, t)Diu+ c(x, t)u = f(x, t) in Q,(1.4)

ut − αsm(x, t)DsDmu+ βi(x, t)Diu+ γ(x, t)u = θ(x, t) on ∂′′Q.(1.5)

Also we assume that the coefficients in (1.4), (1.5) satisfy the following conditions:

aij = aji, ν|ξ|2 � aijξiξj � ν−1|ξ|2 for ξ ∈ �n ;

αsm = αms, ν1|ξ|2 � αsmξsξm � ν−11 |ξ|2 for ξ ∈ �n , ξ ⊥ n(x);
0 � βi(x, t)ni(x) for (x, t) ∈ ∂′′Q;

f+, |(bi(x, t))|, c− ∈ Ln+1(Q); θ+, |(βi(x, t))|, γ− ∈ Ln(∂′′Q),

where ν, ν1 are positive constants. Then u satisfies the estimate

sup
Q

u � C1

{
‖f+‖n+1,Q + ‖θ+‖n,∂′′Q + sup

Ω
u(·, 0)

}
,

where C1 depends only on n, ν, ν1, T , diam(Ω), the characteristics of ∂Ω, the
numbers ‖(bi)‖n+1,Q, ‖(βi)‖n,∂′′Q, and on the moduli of absolute continuity of the
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functions bi(x, t), c−(x, t) in the space Ln+1(Q) and of the functions βi(x, t), γ−(x, t)
in the space Ln(∂′′Q).

This theorem was proved in [8]. The proof is based on the Aleksandrov type
local maximum principle (see [1], Theorem 1). The stationary analogue of the local
theorem can be found in [6] (see Theorem 3). Note also that the stationary local
maximum principle was proved in [20] only for βm = 0.

Theorem 1.2 (Hölder estimates of solutions). Suppose that ∂Ω ∈ W 2
n+2 and a

function u ∈ Vn+1(Q)∩C(Q) satisfies (1.1)–(1.2) and the initial condition u|t=0 = ϕ

in Ω.
Let the following conditions hold:

(1) |u| � M0 in Q;
(2) [ϕ]γ1,Ω � Mγ1 with γ1 = const > 0;
(3) the conditions (A0), (A1), (B), (B0), (B1) are fulfilled for |z| � M0;
(4) b ∈ Ln+2(Q), Φ1 ∈ Ln+1(Q), β ∈ Ln+1(∂′′Q), Θ1 ∈ Ln(∂′′Q).

Then there exists γ2 > 0, completely determined by n, ν, ν1, γ1 and ∂Ω, such
that

[u]γ2,Q � Mγ2 ,

and Mγ2 depends on the same arguments as γ2 and, in addition, on µ, µ1, M0,
Mγ1 , ‖Φ1‖n+1,Q, ‖Θ1‖n,∂′′Q, and on the moduli of absolute continuity of b(x, t) in
Ln+2(Q) and of β(x, t) in Ln+1(∂′′Q).

To prove this estimate we refer the reader to [6] (see Theorem 1). The elliptic
analogue of Theorem 1.2 can also be found in [6] (see Theorem 1′). It generalizes
the results of [20–21] to the case of unbounded b, β, Φ1 and Θ1.

Theorem 1.3 (Gradient estimates for solutions). Let ∂Ω ∈ W 2
q+2, and let a

function u ∈ Vq+2(Q) be a solution to the problem (1.1)–(1.3) such that ‖u‖Q � M0.

We also assume that the conditions (A0)–(A4), (B), (B0)–(B4) hold for |z| � M0.

Then
‖Du‖Q � C2, [Du]γ,Q � C3, ‖u‖Vq+2(Q) � C4,

where the constants γ ∈ ]0, 1[, C2 − C4 depend on n, ν, ν1, q, µ, µ1, ‖b‖q+2,Q,
‖β‖q+1,∂′′Q, ‖Φh‖q+2,Q, ‖Θh‖q+1,∂′′Q (h = 1, 2), M0, and on the properties of ∂′′Q.

The above estimates were established in [9] (see Theorem 3.1 and Corollary 3.1).
The corresponding results for the stationary problem were obtained in [7]. Note that
the gradient estimates for solutions of stationary problems were established in [21]
under the hypotheses more limiting than ours: the right-hand sides of the equation
and the boundary condition were assumed to be differentiable with respect to all
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variables, the function α(x, z, p) had to be nondegenerate with respect to the normal
component of the gradient and could have at most the linear growth according to p.

Note also that the arguments from [7, 9] can be extended to the case of fully nonlinear
Venttsel boundary value problems.
If the gradient estimates have been established, the investigation of our problem

reduces to the application of the solvability results for the classical boundary value
problems.

Theorem 1.4 (Global solvability in Sobolev spaces). Let the following conditions
hold:

(1) ∂Ω ∈ W 2
q+2;

(2) the conditions (A0)–(A4), (B), (B0)–(B4) are fulfilled;
(3) the functions aij(x, t, z, p) and αij(x, t, z, p′) are continuous with respect to all
their arguments and the functions a(·, z, p) and α(·, z, p) regarded as elements
of the spaces Lq+2(Q) and Lq+1(∂′′Q) are continuous with respect to (z, p).

Then the problem (1.1)–(1.3) has a solution u ∈ Vq+2(Q).

Theorem 1.5 (Global solvability in Hölder spaces). Let the following conditions
hold:

(1) ∂Ω ∈ C2+γ̃ , γ̃ ∈ ]0, 1[;
(2) the conditions (A0), (A2)–(A3), (B0), (B2)–(B3), as well as the following
structure conditions are fulfilled:

|a(x, t, z, p)| � µ(|p|2 + 1) for (x, t) ∈ Q, z ∈ �1 , p ∈ �n ;(A1′)

Φ2 ∈ Lq+2(Q);(A4′)

0 � −∂α(x, t, z, p)
∂p

n(x) � χ−1 for (x, t) ∈ ∂′′Q, z ∈ �1 , p ∈ �n ;(B′)

|α(x, t, z, p′)| � µ1(|p′|2 + 1) for (x, t) ∈ ∂′′Q, z ∈ �1 , p ∈ �n ;(B1′)

Θ2 ∈ Lq+1(∂
′′Q),(B4′)

where µ, µ1, χ = const > 0.
(3) the functions aij , a, αij , α satisfy the Hölder condition with the exponent γ̃

in the variables x, z, p and with the exponent γ̃/2 in the variable t.

Then the problem (1.1)–(1.3) has a solution u ∈ C2+γ̃(Q).

These assertions were obtained in [9] (see Theorems 1 and 4.1, respectively). The
elliptic analogues of the existence theorems which sufficiently improve the results of
[21] can be found in [7].
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2. Degenerate case

In the cylinder Q = Ω × ]0, T [ we consider the equation

(2.1) ut − aij(x, t, u, Du)DiDju+ a(x, t, u, Du) = 0

and suppose that

u|t=0 = ϕ(x) in Ω,(2.2)

τ(x, t)
[
ut − αij(x, t, u, du)didju+ α1(x, t, u, du)

]

+ α2(x, t, u, Du) = 0 on ∂′′Q.

(2.3)

We assume that the boundary condition (2.3) is a uniformly degenerating parabolic
Venttsel condition, i.e., (αij) is a symmetric matrix, the function α2(x, t, z, p) is
differentiable with respect to p and for (x, t) ∈ ∂′′Q, z ∈ �

1 , p ∈ �
n the condition

(B0) as well as the following conditions are fulfilled:

τ is a nonnegative function on ∂′′Q satisfying the Lipschitz
condition with the constant λ;

(D)

|α1(x, t, z, p′)| � µ1(|p′|2 + 1);(B1-1)

0 < χ � ∂α2(x, t, z, p)
∂p

n(x) � χ−1;(B̃)

|α2(x, t, z, p)| � χ−1(|p|+ 1).(B1-2)

Here µ1, χ are positive constants.

Theorem 2.1 (An Aleksandrov type local maximum principle). Suppose that a
function u ∈ W 2,1

n+1(Q
+) ∩W 2,1

∞ (Γ (Q
+)) ∩ C(Q+) satisfies

ut − aij(x, t)DiDju+ bi(x, t)Diu+ c(x, t)u = f(x, t) in Q+,(2.4)

τ(x, t)ut − αsm(x, t)DsDmu+ βi(x, t)Diu+ γ(x, t)u = θ(x, t) on Γ (Q+).(2.5)

Assume also that the coefficients in (2.4), (2.5) satisfy the following conditions:

aij = aji, aijξiξj � 0 for ξ ∈ �n , tr(aij) > 0 a.e. in Q+, c � 0;
αsm = αms, αsmξsξm � 0 for ξ ∈ �n−1 , τ � 0,

βn � −χ < 0;
|(βm)|
|βn| � χ1; χ1 = const > 0; γ � 0.

If, in addition, u � 0 on ∂′Q\Γ (Q+), then

u � C5

[
diam(Ω+)

∥∥∥θ+
χ

∥∥∥
∞,Γ (Q+)

+ (diam(Ω+))n/(n+1)
∥∥∥f+

∆

∥∥∥
n+1,Q+

]
,
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where

C5 = C5(n, χ1, (diam(Ω))−1/(n+1)‖h‖n+1,Q+),

h =
|(bi)|
∆

, ∆ = (det(aij))1/(n+1)

and we set 00 = 0 if such an indeterminacy arises.

This estimate was established in [1] (see Theorem 2). The stationary analogue
of this theorem can be found in [5, Theorem 4.3]. In addition, we note that the
stationary theorem was proved in [20] only for uniformly elliptic operators in the
domain; it was assumed also that b = 0.

Theorem 2.2 (Hölder estimates of solutions). Let ∂Ω ∈ W 2
∞, and let u ∈

W 2,1
n+1(Q) ∩ W 2,1

∞ (∂
′′Q) ∩ C(Q) be a solution of (2.1)–(2.3). Assume also that the

following conditions hold:

(1) |u| � M0 in Q;
(2) [ϕ]γ3,Ω � Mγ3 with γ3 = const > 0;
(3) the conditions (A0), (A1), (D), (B̃), (B0), (B1-1)–(B1-2) are fulfilled for

|z| � M0;
(4) b ∈ Ln+2(Q), Φ1 ∈ Ln+1(Q).

Then there exists γ4 > 0, completely determined by n, ν, ν1, γ3, χ, λ and by the
properties of ∂Ω, such that

[u]γ4,Q � Mγ4 ,

and Mγ4 depends on the same arguments as γ4 and, in addition, on µ, µ1, M0, Mγ3 ,
‖Φ1‖n+1,Q, and on the modulus of absolute continuity of b(x, t) in Ln+2(Q).

This statement was proved in [5] (see Theorem 1.1). For the stationary analogue
of Theorem 2.2 we refer the reader also to [5, Theorem 4.1].

As discussed in introduction, the gradient estimates have been obtained, for the
moment, only for classical solutions of stationary degenerate problems. Now we state
the relevant theorems.

Assuming here and in the sequel that ∂Ω ∈ C2, we consider the problem

−aij(x, u, Du)DiDju+ a(x, u, Du) = 0 in Ω,(2.6)

−τ2(x)
[
αij(x, u, du)didju+ α1(x, u, du)

]
+ α2(x, u, Du) = 0 on ∂Ω.(2.7)
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Suppose that (aij), (αij) are symmetric matrices and the following structure con-
ditions are satisfied:

for all x ∈ Ω, z ∈ �1 , p ∈ �n ,

aij , a are differentiable with respect to all their arguments;(A2′)

(1 + |p|) ·
∣∣∣∂aij(x, z, p)

∂p

∣∣∣, |δaij(x, z, p)|, |δ′aij(x, z, p)| � µ;(A3-0)

(1 + |p|) ·
∣∣∣∂a(x, z, p)

∂p

∣∣∣, |δa(x, z, p)|, |δ′a(x, z, p)| � µ(|p|2 + 1);(A3-1)

for all x ∈ ∂Ω, z ∈ �1 , p ∈ �n ,

αij , α1, α2 are differentiable with respect to all their arguments;(B2′)

(1 + |p′|) ·
∣∣∣∂αij(x, z, p′)

∂p′

∣∣∣, |δ′αij(x, z, p′)| � µ1;(B3-0)

(1 + |p′|) ·
∣∣∣∂α1(x, z, p′)

∂p′

∣∣∣, |δ′α1(x, z, p′)| � µ1(|p′|2 + 1);(B3-1)

(1 + |p|) ·
∣∣∣∂α2(x, z, p)

∂p

∣∣∣, |δ′α2(x, z, p)| � χ−1(|p|+ 1).(B3-2)

Here µ, µ1, χ are positive constants.

As the interior gradient estimates for solutions of (2.6) are known, we have only
to obtain the boundary ones. So, flattening the boundary we may consider only a
solution u of a local problem:

−aij(x, u, Du)DiDju+ a(x, u, Du) = 0 in B+1 ,(2.8)

−τ2(x)
[
αsm(x, u, D′u)DsDmu+ α1(x, u, D′u)

]
+ α2(x, u, Du) = 0 on Γ1.(2.9)

Theorem 2.3 (A local estimate of |D′u|). Let a function u ∈ C2(B+1 ∪ Γ1) be a
solution to the problem (2.8)–(2.9) such that ‖u‖B+1

� M0. Suppose that functions
aij , α2 are continuously differentiable with respect to p while functions αsm are
continuously differentiable with respect to p′. Assume also that the conditions (A0),
(A1′), (A2′), (A3-0)–(A3-1), (D), (B̃), (B1-1)–(B1-2), (B2′), (B3-0)–(B3-2) hold for
|z| � M0.

Then there exist positive constants γ5 ∈ ]0, 1[ and C6 such that for any R � 1/2

osc
B+R

D′u � C6R
γ5 .

Here γ5 = γ5(n, ν, ν1, χ, λ) while C6 depends on the same arguments as γ5 and, in
addition, on µ, µ1, M0.
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Corollary. Under the hypotheses of Theorem 2.3 there exists a positive constant
Ĉ such that

‖Du‖
Cγ5(B+1/4)

� Ĉ.

Here Ĉ is determined by the same parameters as C6 from Theorem 2.3.

Gradient estimates for C2 solutions of stationary quasilinear problems were estab-
lished in [4] (see Theorems 2.1, 2.2 and Corollary 2.1). For the detailed calculations
we refer the reader to [2–3]. It should be mentioned that similar results were obtained
in [2–4] for solutions of fully nonlinear problems under the assumption: a solution u

satisfies u ∈ C3(B+1 ∪ Γ1).

This work was partially supported by Russian Fund for Fundamental Research,
grant no. 96-01-00087 and the Grant agency of Charles University in Prague, Czech
Republic (GAUK 6189).
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