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Abstract. Existence of an optimal shape of a deformable body made from a physically
nonlinear material obeying a specific nonlinear generalized Hooke’s law (in fact, the so
called deformation theory of plasticity is invoked in this case) is proved. Approximation of
the problem by finite elements is also discussed.
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1. Introduction

Shape optimization problems have been the subject of considerable research for
many years. One of the main monographs [1], which gives the rigorous mathematical

base of various questions related to these problems, was published by Haslinger and
Neittaanmäki.

In this paper a shape optimization problem for a deformable body obeying a
specific nonlinear generalized Hooke’s law, is examined. Regarding the constitutive

description of the model, results of the book [2], (Chap. 8) are employed. Among
related papers, let us mention [3] and a recent study [4].

A deformable body is represented by a two-dimensional domain where part of its
boundary is variable. This part of the boundary has to be optimized with respect to

a specific cost functional. Moreover, it is assumed that Dirichlet boundary conditions
are prescribed on the variable boundary. First, the existence of at least one optimal

shape from a given class of admissible domains is proved. Second, the finite element
approximation of the problem is discussed. Numerical implementation and results

can be found in [5].

81



2. Setting of the problem

In this section the boundary value problem is stated in its classical as well as
variational formulation and the existence of its unique solution is established. In

addition, the formulation of the shape optimization problem is given.
Let a plane body be represented by a bounded simply connected domain Ω(α) ⊂

�
2 with the boundary ∂Ω(α) = Γu∪Γα∪Γp, where Γu, Γα, Γp are nonempty disjoint
sets, open in ∂Ω(α). Γα is a variable part of the boundary and it is assumed that

its shape is described by the graph of a function α ≡ α(x2). The conditions that
must be satisfied by admissible functions α will be specified later. Γu, Γp are “fixed”

parts of the boundary. In fact, they are fixed in the sense that their shape is given,
but they are variable as well due to a motion of Γα, see Fig. 1. This fact should be

emphasized; therefore, in what follows we write Γp(α) and Γu(α) instead of Γp and
Γu, respectively. A possible partition of ∂Ω(α) is depicted in Fig. 1.

x1

x2

x3

B0 B1

1

Γu

Γp

Γp ΓαΩα

Figure 1. Deformable body Ω(α) and a partition of its boundary.

Thus
Ω(α) = {(x1, x2) ∈ �

2 | 0 < x1 < α(x2); 0 < x2 < γ},

where γ is a given positive constant. Suppose for simplicity that γ = 1, consequently

Ω(α) = {(x1, x2) ∈ �
2 | 0 < x1 < α(x2); 0 < x2 < 1}.

The admissible functions α form a set Uad specified as

Uad =
{
α ∈ C0,1([0, 1]) | 0 < B0 � α(x2) � B1 ∀x2 ∈ [0, 1];(2.1)
∣∣∣ dα
dx2

∣∣∣ � B2 a.e. in [0, 1]; measΩ(α) = B3

}
,

where B0, B1, B2 and B3 are given positive constants such that Uad �= ∅.
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Let α ∈ Uad be arbitrary but fixed.

In the following, a mixed boundary value problem is specified on the domain Ω(α)
corresponding to this particular α. It is supposed that Ω(α) is subject to body
forces F(α) =

(
F1(α), F2(α)

)
, surface tractions P(α) =

(
P1(α), P2(α)

)
on Γp(α)

and the Dirichlet boundary conditions are prescribed on Γu(α) ∪ Γα. In order to
keep the practical base of the problem, it is assumed that the boundary conditions

maintain their character on the part of the boundary where B0 � x1 � B1. In
addition, the plane strain assumption is adopted and the deformation theory for

elasto-plastic nonhomogeneous isotropic materials is used. It should be remarked in
this context that the deformation theory is suitable just for proportional loading.

Only nonreversible processes are investigated and the constitutive law (the stress-
strain relation) is assumed to be geometrically linear. In this case, the body can be,

in fact, assumed to be elastic and to obey a specific nonlinear generalized Hook’s law
(see [6], [2]).

The classical formulation of the boundary value problem can be written as follows:
find a displacement field u(α) =

(
u1(α), u2(α)

)
(sufficiently smooth) such that

∂

∂xj
τij(u(α)) + Fi(α) = 0,

εij(u(α)) =
1
2

(
∂uj(α)

∂xi
+

∂ui(α)
∂xj

)
,

τij(u(α)) =
(
k − 2
3
µ
(
Γ2(u(α))

))
ϑ(u(α))δij + 2µ

(
Γ2(u(α))

)
εij(u(α)),

τ33(u(α)) =
(
k − 2
3
µ
(
Γ2(u(α))

))
ϑ(u(α)),

ε13 = ε23 = ε33 = 0, τ13 = τ23 = 0

hold in Ω(α) and the following boundary conditions on ∂Ω(α) are satisfied:

u(α) = 0 on Γu(α) ∪ Γα,

τij(u(α))νj = Pi(α) on Γp(α).

The summation convention has been used in the above relations and is used through-
out this paper. If not specified differently, the subscripts i and j take the values 1, 2.

The symbols ε and τ stand for the linearized strain tensor and stress tensor, respec-
tively, δij is the Kronecker symbol and ϑ is the first invariant of ε. Furthermore,

k and µ denote the bulk and the shear modulus, respectively. Finally, Γ2 = eijeij ,
i, j = 1, 2, 3, where e is the deviator of the strain tensor ε. Since the plane strain

assumption is adopted we have eij = εij − 1
3ϑδij , e13 = e23 = 0 and e33 = − 13ϑ

(see [2]).
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Next, it is supposed that k and µ satisfy the following conditions (PM):

(PM)





k = k(x) is a continuous function of both variables x1, x2;

0 < k0 � k(x) � k1 < ∞ ∀x ∈ Ω(α),
where k0 and k1 are given positive constants;

µ(Γ2) = µ(t,x) is a continuous function of the variables

t = Γ2, x1, x2 and continuously differentiable with respect to t;

0 < µ0 � µ(t,x) � 3
2k(x) and 0 < η0 � µ(t,x) + 2∂µ(t,x)

∂t t � η1

∀x ∈ Ω(α) and t � 0, where µ0, η0, η1 are given positive constants.

It should be emphasized that the above introduced constants k0, k1, µ0, η0 and η1

are independent of α. The physical background of this model is described in detail
in [6] and [2]. The justification and validity of the constitutive relation, specified in

this way, is discussed in [6].
In order to present the variational formulation of the boundary value problem,

additional notation is given. Let Hk(Ω(α)), k an integer, be the classical Sobolev
space of functions, generalized derivatives of which up to the order k are square

integrable. It obviously holds that

L2
(
Ω(α)

)
≡ H0

(
Ω(α)

)
.

Symbols ‖.‖k,Ω(α) and (., .)k,Ω(α) are, as usual, used to denote the norm and the inner

product in Hk(Ω(α)), respectively. Furthermore, functional spaces

W (α) ≡
[
H1

(
Ω(α)

)]2
and K(α) ≡

[
L2

(
Ω(α)

)]2

are introduced and (f ,g)s,Ω(α), s = 0, 1 will stand for the inner product in K(α) and
W (α), respectively, according to the value of s. Its definition is

(2.2) (f ,g)s,Ω(α) = (f1, g1)s,Ω(α) + (f2, g2)s,Ω(α),

where f = (f1, f2) & g = (g1, g2) ∈ K(α) or W (α), respectively. An extension of the
definition (2.2) to sets other than Ω(α) as well as the definition of the norms in K(α)

and W (α) is obvious. Now the space of kinematically admissible functions (virtual
displacements) can be introduced as

V (α) = {f | f ∈ W (α); fi = 0 on Γu(α) ∪ Γα; i = 1, 2}.

Besides, it is assumed that F(α) ∈ K(α) and P(α) ∈
[
L2

(
Γp(α)

)]2
.
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The weak formulation of the boundary value problem reads as follows:

(P(α))

{
find u(α) ∈ V (α) such that
[
τ (u(α)), ε(v)

]
Ω(α)

= 〈L(α),v〉Ω(α) ∀v ∈ V (α),

where

[
τ (u(α)), ε(v)

]
Ω(α)

≡
∫

Ω(α)

τij(u(α))εij(v) dx,

〈L(α),v〉Ω(α) ≡
(
F(α),v

)
0,Ω(α)

+
(
P(α),v

)
0,Γp(α)

.

Obviously, when the weak solution is sufficiently smooth, then it is also the classical
one.

An equivalent formulation of (P(α)) can be given by making use of the energy
functional. Namely,

(P(α))

{
find u(α) ∈ V (α) such that

ΦΩ(α)(u(α)) � ΦΩ(α)(v) ∀v ∈ V (α),

where the total potential energy ΦΩ(α) can be written in the following way:

(2.3) ΦΩ(α)(v) ≡
∫

Ω(α)

[
1
2
kϑ2(v) +

1
2

Γ(v,v)∫

0

µ(t) dt

]
dx− 〈L(α),v〉Ω(α)

with (w ∈ V (α)),

Γ(w,v) = −2
3
ϑ(w)ϑ(v) + 2εij(w)εij(v).

It can be verified that Γ(v,v) = 2Γ2(v). If the conditions (PM) are met, the func-
tional ΦΩ(α) is continuous, coercive and strictly convex (consequently, also weakly
lower semi-continuous) on the space V (α). In the sequel, a unique solution u(α) of
P(α) exists. The detailed analysis of this statement can be found in [2].
Since α was arbitrary, the unique solution u(α) of P(α) exists for any α ∈ Uad.

Finally, the optimization problem can be formulated. First of all it is necessary
to introduce a cost functional, the formulation of which depends on the designer.

Thus, let Q : (α,v) → �
1 , α ∈ Uad, v ∈ V (α) be a cost functional. Then the shape

optimization problem reads as follows:

(R)

{
find α� ∈ Uad such that

S(α�) � S(α) ∀α ∈ Uad,
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where S(α) = Q
(
α,u(α)

)
with u(α) being the solution of (P(α)). Assumptions on

S(α) guaranteeing the existence of a solution for the problem (R) will be specified
in the next section.

3. Existence of an optimal shape

The proof of existence of at least one solution of the optimization problem (R),
under some continuity assumptions, is the main result of this section.

Let Ω̂ = (0, B1) × (0, 1) be given. Then Ω̂ ⊃ Ω(α) ∀α ∈ Uad. Suppose that the

assumptions (PM) hold on Ω̂ and that

F ∈
[
L2(Ω̂)

]2
and P ∈

[
L2

(
Γ̂p

)]2
.

Introduce Ŵ =
[
H1(Ω̂)

]2
and

V̂ = {v ∈ Ŵ | ∃α ∈ Uad : v = 0 a.e. in Ω̂ \ Ω(α) and v
∣∣
Ω(α)

∈ V (α)}.

If v ∈ V (α) then the symbol v̂ will denote a specific extension of v, particularly, v̂ is
an element of V̂ such that v̂

∣∣
Ω(α)

≡ v.
As usual, throughout this paper the arrows⇒,→ and⇀ are used for the uniform,

strong and weak convergence, respectively.

In order to ensure the existence of at least one solution of the optimization prob-

lem (R), it is assumed that the functional S satisfies the following continuity as-
sumption (PS):

(PS)





αn ⇒ α in [0, 1], αn, α ∈ Uad,

û(αn)→ û(α) in V̂ ,

u(αn) ∈ V (αn) and u(α) ∈ V (α)

being the solutions of (P(αn))

and (P(α)), respectively,





⇒ lim inf
n→∞

S(αn) � S(α).

It is useful to remark that, for the specification of the strong convergence in V̂ , (2.2)
is adopted.

Before the existence of a solution of the problem (R) is proved, two lemmas are

established. For the first, it is also necessary to assume that the partition of the
“fixed” part of the boundary Γu(α)∪Γp(α) is such that Γu(α)∩Γp(α) contains only

a finite number of points. The number of these points does not depend on α, due to
the assumption about the character of the boundary conditions specified in Section 2.
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Additionally, the usual notation E(Ω) is introduced for the space of infinitely
differentiable functions, which can be continuously extended with all their derivatives
from Ω onto Ω.

Lemma 3.1. Let αn ⇒ α (n → ∞) in [0, 1], αn, α ∈ Uad and let v(α) ∈ V (α).
Then there exists a sequence

{wi} ⊂
[
E
(
Ω(α)

)]2 ∩ V (α)

such that for i →∞

wi → v(α) in V (α), ŵi → v̂(α) in V̂

and for an arbitrary i there exists an integer n0(i) such that

(3.1) Ω(αn) ⊃ suppwi ∀n � n0(i),

yielding

(3.2) ŵi |Ω(αn)∈ V (αn) ∀n � n0(i).

�����. Let v(α) ∈ V (α) be given. Then a sequence

{wi} ⊂
[
E
(
Ω(α)

)]2 ∩ V (α)

can be found such that

(3.3) dist
(
suppwi,Γα ∪ Γu(α)

)
> 0 ∀i

(at this point the assumption that the set Γu(α) ∩ Γp(α) is finite is exploited) and

wi → v(α) in V (α).

Obviously also

ŵi → v̂(α) in V̂ .

Let i be a fixed integer. Due to (3.3) there exists n0(i) such that (3.1) and conse-

quently (3.2) are met. �

Lemma 3.2. Let αn ⇒ α (n →∞) in [0, 1], αn, α ∈ Uad. Let u(αn) be solutions

of (P(αn)). Then
û(αn)→ ũ in V̂

where ũ
∣∣
Ω(α)

≡ u(α) is the solution of (P(α)) and ũ = 0 a.e. in Ω̂ \ Ω(α) (thus
ũ = û(α)).
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�����. Using the assumptions (PM) it can be proved for the solutions u(αn) ∈
V (αn) of (P(αn)) that

ΦΩ(αn)(u(αn)) � C1

∫

Ω(αn)

εij(u(αn))εij(u(αn)) dx(3.4)

− C2‖u(αn)‖0,Ω(αn) − C3‖u(αn)‖0,Γp(αn),

where the constant C1 depends only on µ0 and η0 and the constants C2 and C3
depend only on ‖F‖0,Ω̂ and ‖P‖0,Γ̂p

, respectively. From Korn’s inequality it can be

shown that the first integral on the right hand side of (3.4) can be estimated using
the relation

(3.5)
∫

Ω(αn)

εij(v)εij(v) dx � C(Ω(αn))‖v‖21,Ω(αn) ∀v ∈ V (αn),

where C(Ω(αn)) is a constant which generally depends on Ω(αn). On the other hand,
it can be proved that this constant depends solely on B1 from the definition (2.1)

of Uad (see [7], Remark 2.1). Thus C(Ω(αn)) can be replaced by a constant C that
does not depend on αn ∈ Uad. Using the trace theorem, the last term on the right

hand side of (3.4) can be estimated as

(3.6) ‖v‖0,Γp(αn) � C‖v‖1,Ω(αn).

It is easy to understand that the constant C in (3.6) can also be chosen independently

of αn ∈ Uad. From (3.4)–(3.6) it finally follows for the solutions u(αn) ∈ V (αn) of
(P(αn)) that

ΦΩ(αn)(u(αn)) � C1‖u(αn)‖21,Ω(αn) − C2‖u(αn)‖1,Ω(αn),

where C1 and C2 do not depend on αn ∈ Uad. Consequently, ΦΩ(αn) is coercive,
uniformly with respect to αn ∈ Uad, since we may choose a fixed u0 such that

suppu0 ⊂ Ω(αn) & u0 ∈ V (αn) ∀n

and write
C3 = Φsuppu0u

0 = ΦΩ(αn)u
0 � ΦΩ(αn)u(αn).

Summing up, there exists a constant C > 0 that does not depend on αn ∈ Uad and
fulfils the inequality

‖û(αn)‖1,Ω̂ = ‖u(αn)‖1,Ω(αn) � C ∀n.
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Consequently, a subsequence {u(αnj )} can be found such that

(3.7) û(αnj )⇀ ũ in V̂ .

Denote u� ≡ ũ
∣∣
Ω(α)
. It will be proved that u� solves (P (α)) and that ũ = 0 a.e. in

Ω̂ \ Ω(α). First, the latter statement will be treated. Let us introduce a set

Hm(α) =

{
(x1, x2) ∈ �

2
∣∣∣ 0 < x1 < α(x2) +

1
m
; 0 < x2 < 1

}
, m ∈ �

and let m ∈ � be arbitrary but fixed. Then, obviously, there exists nj0(m) such that

Hm(α) ⊃ Ω(αnj ) ∀nj � nj0(m).

Since
û(αnj )

∣∣
Ω̂\Hm(α)

= 0 ∀nj � nj0(m),

we conclude ũ = 0 a.e. in Ω̂ \ Ω(α) taking into account (3.7) and the fact that m

was arbitrary. Obviously, u� = 0 on Γα.
Similarly as above, one can prove that u� = 0 on Γu(α). In particular, exploiting

the assumption about the character of the boundary conditions (specified in Sec-
tion 2), one may suppose that (in accordance with Fig. 1) the statement has to be

proved for x2 = 0. It is enough to prove that

(3.8) u� = 0 on {x1 | B0 < x1 < α(0)}.

Naturally,

u(αnj ) = 0 on {x1 | B0 < x1 < αnj (0)} ∀nj .

Analogously as above, a set

Gm(α) =

{
x1

∣∣∣ B0 < x1 < α(0)− 1
m

}
, m ∈ �

can be introduced. There exists nj0(m) such that

Gm(α) ⊂ {x1 | B0 < x1 < αnj(0)} ∀nj � nj0(m)

and therefore
u(αnj) = 0 on Gm(α) ∀nj � nj0(m),

yielding (3.8) since m was arbitrary.
Summing up, u� ∈ V (α).
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In the following the proof that u� solves (P(α)) is provided. Denote by u(α) ∈
V (α) the solution of (P(α)). It has to be proved that

(3.9) u� = u(α) a.e. in Ω(α).

It follows from the definition of (P(α)) that

(3.10) ΦΩ(α)(u
�) � ΦΩ(α)(u(α)).

The converse inequality in (3.10) will be proved. Now the statement of Lemma 3.1
is needed, according to which a sequence

{wi} ⊂
[
E
(
Ω(α)

)]2 ∩ V (α)

such that

(3.11) wi → u(α) in V (α)

can be chosen with the property that for i fixed there exists nj0(i) such that (3.1)
and (3.2) hold ∀nj � nj0(i). Substituting wi into (P(αnj )), one has

ΦΩ(α)(wi) = ΦΩ(αnj
)

(
ŵi

∣∣
Ω(αnj

)

)
� ΦΩ(αnj

)(u(αnj ))(3.12)

= ΦΩ̂(û(αnj )) ∀nj � nj0(i).

Let nj → ∞. Using (3.7) and the weak lower semi-continuity of ΦΩ̂ on V̂ , we can

writte
lim inf
nj→∞

ΦΩ̂(û(αnj )) � ΦΩ̂(ũ) = ΦΩ(α)(u�),

which together with (3.12) yields

(3.13) ΦΩ(α)(wi) � ΦΩ(α)(u�).

Passing to the limit (i →∞) in the above relation, using the continuity of ΦΩ(α) on
V (α) and (3.11), we obtain

(3.14) lim
i→∞

ΦΩ(α)(wi) = ΦΩ(α)(u(α)) � ΦΩ(α)(u�).

Then (3.10) and (3.14) imply

ΦΩ(α)(u
�) = ΦΩ(α)(u(α)).
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Finally, from this and from the uniqueness of the solution of the problem (P(α)),

(3.9) follows.

It remains to show that for a suitable sequence {u(αnj )} one can prove the strong
convergence in (3.7). It was already proved that u� ≡ ũ

∣∣
Ω(α)

= u(α) = û(α)
∣∣
Ω(α)

a.e. in Ω(α). It follows from (3.12) that

(3.15) ΦΩ̂(ŵi) � ΦΩ̂(û(αnj )) ∀nj � nj0(i).

Expressing the value of ΦΩ̂(û(αnj )) by means of the Taylor expansion around û(α)
one gets

ΦΩ̂(û(αnj ))(3.16)

= ΦΩ̂(û(α)) +DΦΩ̂
(
û(α); û(αnj )− û(α)

)

+
1
2
D2ΦΩ̂

(
û(α) + t

(
û(αnj )− û(α)

)
; û(αnj )− û(α), û(αnj )− û(α)

)

� ΦΩ̂(û(α)) +DΦΩ̂
(
û(α); û(αnj )− û(α)

)
+ C‖û(αnj )− û(α)‖21,Ω̂.

In the above expression, the fact that the second differential of ΦΩ̂ is positive definite

was used, i.e. that

D2ΦΩ̂(u+ tv;v,v) � C‖v‖2
1,Ω̂

holds for any t ∈ [0, 1] and ∀u,v ∈ V̂ ; C is a positive constant (for the proof see [2]).
Now the strong convergence in (3.7) follows from (3.14)–(3.16).

In addition, since the solution of (P(α)) is unique, the whole sequence {u(αn)}
converges, i.e.

(3.17) û(αn)→ û(α) in V̂ ,

which completes the proof. �

Lemma 3.2 justifies the possibility of writing down the strong convergence in

continuity assumption (PS) without making it too restrictive.

Theorem 3.3. Let (PS) be satisfied. Then there exists at least one solution
α� ∈ Uad of the optimization problem (R).

�����. Denote q = inf
α∈Uad

S(α). Let {αn} ⊂ Uad be a minimizing sequence, i.e.

(3.18) q = lim
n→∞

S(αn).
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Since Uad is a compact subset of C([0, 1]), hence according to the Arzelà-Ascoli

theorem there exists a subsequence of {αn} (denoted for the sake of simplicity by
the same symbol) such that

αn ⇒ α� in [0, 1] and α� ∈ Uad.

Taking the solutions u(αn) of (P(αn)) and the solution u(α�) of (P(α�)), then,
according to Lemma 3.2,

û(αn)→ û(α�) in V̂ .

Now the assumption (PS) implies

lim inf
n→∞

S(αn) � S(α�)

which together with (3.18) completes the proof. �

Two examples of possible cost functionals satisfying (PS) are

S1(α) = ΦΩ(α)(u(α)),

S2(α) =
∫

Ω(α)

(
u(α) − ud

)2
dx,

where u(α) is the solution of (P(α)), ΦΩ(α) is defined by (2.3) and ud is a given

displacement field such that ud ∈ [L2(Ω̂)]2.
The verification of (PS) for the funcionals S1 and S2 can be done in the following

way. Let αn ⇒ α (n → ∞) in [0, 1], αn, α ∈ Uad, moreover, let u(αn) and u(α) be
the solutions of (P(αn)) and (P(α)), respectively, then (compare with Lemma 3.2)

(3.19) û(αn)→ û(α) in V̂ .

It will be proved that

lim inf
n→∞

Sk(αn) � Sk(α), k = 1, 2.

First, k = 1. The continuity of ΦΩ̂ on V̂ directly yields that

lim
n→∞

ΦΩ(αn)(u(αn)) = lim
n→∞

ΦΩ̂(û(αn)) = ΦΩ̂(û(α)) = ΦΩ(α)(u(α)).

For k = 2, it has to be proved that

(3.20) lim inf
n→∞

∫

Ω(αn)

(
u(αn)− ud

)2
dx �

∫

Ω(α)

(
u(α) − ud

)2
dx.
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A set

G̃m(α) =

{
(x1, x2) in �

2
∣∣∣ 0 < x1 < α(x2)−

1
m
; 0 < x2 < 1

}
, m ∈ �

can be introduced and, obviously, there exists n0(m) such that

G̃m(α) ⊂ Ω(αn) ∀n � n0(m).

Then ∫

Ω(αn)

(
u(αn)− ud

)2
dx �

∫

G̃m(α)

(
u(αn)− ud

)2
dx ∀n � n0(m),

yielding

lim inf
n→∞

∫

Ω(αn)

(
u(αn)− ud

)2
dx

� lim inf
n→∞

∫

G̃m(α)

(
u(αn)− ud

)2
dx = lim inf

n→∞
‖u(αn)− ud‖20,G̃m(α)

= lim
n→∞

‖u(αn)− ud‖20,G̃m(α)
= ‖u(α)− ud‖20,G̃m(α)

also by virtue of (3.19). Consequently, (3.20) follows from the fact thatm is arbitrary.

4. Approximation of (P)

In this section the discretization forms of the boundary value problem as well as

of the optimization problem are given. The main contribution of this part of the
paper is in the last theorem, which states the relation between the solutions of the

discretized and continuous optimization problems.

First, let h > 0 be given. Then the set Uh
ad can be defined in the following way:

Uh
ad = {αh ∈ C([0, 1]) | αh

∣∣
[ai−1,ai]

∈ P1([ai−1, ai]), i = 1, 2, . . . , p} ∩ Uad,

where 0 ≡ a0 < a1 < . . . < ap ≡ 1 is a partition of [0, 1] and P1([ai−1, ai]) denotes
the set of all linear functions on an interval [ai−1, ai], i = 1, 2, . . . , p. Consequently,

Ω(αh) is a domain with a polygonal boundary.

Let h and αh ∈ Uh
ad be fixed. Then Ω(αh) can be divided into a finite number of

closed triangles T , the collection of which is denoted by Th(αh). Th(αh) is called a
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triangulation of Ω(αh) if, first, each straight element of Γαh
composes a full side of

a triangle, second, ⋃

T∈Th(αh)

T = Ω(αh)

and, third,

T, T ′ ∈ Th(αh) =⇒ T ◦ ∩ T ′
◦ = ∅

and either T ∩ T ′ = ∅ or T and T ′ have in common

one whole edge or one vertex

(T ◦ stands for the interior of T ).

Let only h be fixed. It will be assumed that the following conditions are satisfied.
First, the procedure for the construction of the triangle vertices (nodes) is uniquely

associated with each αh ∈ Uh
ad. Second,

max
T∈Th(αh), αh∈Uh

ad

diamT � βh,

where β is a suitable positive constant, which does not depend on h. Third, Th(αh)

are topologically equivalent with continuous dependence on αh. This means that
Th(αh) contain the same number of nodes and the nodes have the same neighbours

for any αh ∈ Uh
ad.

Furthermore, the usual assumption of uniform regularity of Th(αh) with respect

to h and αh will be adopted (see [1]), i.e. there exists, independently of h and αh, a
constant δ > 0, such that each internal angle of each triangle from Th(αh) is greater
than δ.

The following finite dimensional space can be associated with an arbitrary trian-
gulation Th(αh):

Vh(αh) =

{
vh ∈

[
C

(
Ω(αh)

)]2 | vh ∈ [P1(T )]2 ∀T ∈ Th(αh)

}
∩ V (αh),

where P1(T ) denotes the space of linear functions on the triangle T .
The discretization of the boundary value problem (P(αh)) is defined as follows:

(Ph(αh))

{
find uh(αh) ∈ Vh(αh) such that

[τ (uh(αh)), ε(vh)]Ω(αh) = 〈L(αh),vh〉Ω(αh) ∀vh ∈ Vh(αh)

or equivalently,

(Ph(αh))

{
find uh(αh) ∈ Vh(αh) such that

ΦΩ(αh)(uh(αh)) � ΦΩ(αh)(vh) ∀vh ∈ Vh(αh).
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In a usual way, with each internal node and a node on ∂Ω(αh) \ (Γu ∪ Γαh
) a

piecewise linear and continuous on Ω(αh) shape function ϕj
αh
, j = 1, . . . , Zh will be

associated, where Zh is the total number of nodes. As a consequence of the above
specified properties, shape functions are uniquely associated with each αh and the

solution uh(αh) can be expressed as their linear combination.

Analogously, the approximation of (R) can be written as

(Rh)

{
find α�

h ∈ Uh
ad such that

Sh(α�
h) � Sh(αh) ∀αh ∈ Uh

ad,

where Sh(αh) = Q
(
αh,uh(αh)

)
with uh(αh) being the solution of (Ph(αh)).

Similarly to the continuous case two theorems can be established.

Theorem 4.1. The problem (Ph(αh)) has a unique solution.

�����. Since ΦΩ(αh) is continuous on V (αh) and Vh(αh) is a finite dimensional

subspace of V (αh), the existence of the solution of (Ph(αh)) follows directly from the
theorem about the existence of the minimum of a continuous function on a compact

set. The uniqueness is then a simple consequence of the fact that the solution of
(P (αh)) is unique. �

Theorem 4.2. Let assumption (PS) hold. Then there exists at least one solution
α�

h ∈ Uh
ad of the problem (Rh).

�����. Denote q = inf
αh∈Uh

ad

Sh(αh). A minimizing sequence {αn
h} ⊂ Uh

ad thus

satisfies

(4.1) q = lim
n→∞

Sh(αn
h).

Since Uh
ad is a compact subset of C([0, 1]), according to the Arzelà-Ascoli theorem

there exists a subsequence of {αn
h} (denoted for the sake of simplicity by the same

symbol) such that

αn
h ⇒ α�

h in [0, 1] as n →∞, and α�
h ∈ Uh

ad.

The continuous dependence of {Th(αh)} on αh and the properties of the shape func-

tions specified at the beginning of this section yield

ϕ̂j
αn

h
→ ϕ̂j

α�
h
(as n →∞) in V̂ , j = 1, . . . , Zh.
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Consequently, the solutions ûh(αn
h) of (Ph(αn

h)) also satisfy

ûh(αn
h)→ ûh(α�

h) in V̂ .

Exploiting the assumption (PS) and (4.1) one can write

q � Sh(α�
h),

which completes the proof. �

In what follows, the relationship between the solutions of the optimization prob-

lems (Rh) and (R) when h → 0+ will be discussed. At this point, the following
stronger continuity assumption on the cost functional S is needed:

(PZ)





αh ⇒ α in [0, 1], αh ∈ Uh
ad, α ∈ Uad,

ûh(αh)→ û(α) in V̂ ,

uh(αh) ∈ Vh(αh) and u(α) ∈ V (α)

being the solutions of (Ph(αh))

and (P(α)), respectively,





⇒ lim
h→0+

Sh(αh) = S(α).

Lemma 4.3. Let αh ⇒ α(h → 0+) in [0, 1], αh ∈ Uh
ad, α ∈ Uad. Let uh(αh) be

the solutions of (Ph(αh)). Then

ûh(αh)→ ũ in V̂ ,

where ũ
∣∣
Ω(α)

≡ u(α) is the solution of (P(α)) and ũ = 0 a.e. in Ω̂ \ Ω(α) (thus
ũ = û(α)).

�����. As in Lemma 3.2 one can construct a subsequence {uhj (αhj)} such
that

(4.2) ûhj (αhj)⇀ ũ in V̂ ,

where moreover

ũ
∣∣
Ω(α)

∈ V (α) and ũ = 0 a.e. in Ω̂ \ Ω(α).

Apart from the proof of the strong convergence (of the full sequence) in (4.2), it

remains to show that ũ
∣∣
Ω(α)

is the solution of (P(α)). Denote u� ≡ ũ
∣∣
Ω(α)
. As in
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Lemma 3.2 it can be proved that u� = 0 on Γα and on Γu(α), thus u� ∈ V (α). Let

u(α) ∈ V (α) be the solution of (P(α)). Then

(4.3) u� = u(α) a.e. in Ω(α)

should be proved. Obviously

ΦΩ(α)(u
�) � ΦΩ(α)(u(α))

holds. Consequently, the opposite inequality is to be proved. According to
Lemma 3.1 there exists a sequence

{wi} ⊂
[
E
(
Ω(α)

)]2 ∩ V (α)

such that

(4.4) wi → u(α) in V (α)

and for i fixed there exists hj0(i) such that (3.1) and (3.2) are met ∀hj � hj0(i).

Denote by
wihj

= rhj

(
ŵi

∣∣
Ω(αhj

)

)
∈ Vhj (αhj )

the Lagrangian interpolation of ŵi

∣∣
Ω(αhj

)
. Then the definition of

(
Phj (αhj )

)
yields

ΦΩ(αhj
)(wihj) � ΦΩ(αhj

)(uhj (αhj ))

and also

(4.5) ΦΩ̂(ŵihj
) � ΦΩ̂(ûhj (αhj )) ∀hj � hj0(i).

From the well-known approximation properties of the Lagrange interpolation one

obtains
ŵihj

→ ŵi in V̂ as hj → 0+.

Furthermore, this convergence and the continuity of ΦΩ̂ on V̂ yield

(4.6) lim
hj→0+

ΦΩ̂(ŵihj
) = ΦΩ̂(ŵi)

and the weak lower semi-continuity of ΦΩ̂ on V̂ together with (4.2) leads to

(4.7) lim inf
hj→0+

ΦΩ̂(ûhj (αhj)) � ΦΩ̂(ũ) = ΦΩ(α)(u�).
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Combining (4.5)–(4.7) one obtains

ΦΩ(α)(wi) = ΦΩ̂(ŵi) = lim
hj→0+

ΦΩ̂(ŵihj
)(4.8)

� lim inf
hj→0+

ΦΩ̂(ûhj (αhj)) � ΦΩ(α)(u�).

Passing to the limit (i →∞) in (4.8) it can finally be concluded that

ΦΩ(α)(u(α)) � ΦΩ(α)(u�),

making use of (4.4). Thus

ΦΩ(α)(u
�) = ΦΩ(α)(u(α))

and, as a consequence, (4.3) holds. The fact that the subsequence {uhj(αhj )} in (4.2)
strongly converges, can be proved in the same way as in the continuous case (see
Lemma 3.2). In addition, again, since u(α) is unique, the convergence holds for the
whole sequence, i.e.

ûh(αh)→ û(α) in V̂ as h → 0+,

which completes the proof. �

Finally, a theorem dealing with the relation between the solutions of the optimiza-
tion problems (Rh) and (R) will be presented.

Theorem 4.4. Let (PZ) be satisfied. Let {α�
h}, h → 0+, be a sequence of solutions

of (Rh) and let uh(α�
h) ∈ Vh(α�

h) be the unique solutions of (Ph(α�
h)). Then for

α�
h ⇒ α� in [0, 1]

(4.9) ûh(α�
h)→ û(α�) in V̂ as h → 0+

holds and, moreover, α� is a solution of (R) and û(α�)
∣∣
Ω(α�)

solves (P(α�)).

�����. Due to the compactness of Uad, it may be assumed that

α�
h ⇒ α� in [0, 1] as h → 0+

and α� ∈ Uad. Let uh(α�
h) be the unique solutions of (Ph(α�

h)). By virtue of
Lemma 4.1

ûh(α�
h)→ û(α�) in V̂ as h → 0+
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holds and û(α�)
∣∣
Ω(α�)

= u(α�) is the solution of (P(α�)). It remains to prove that

α� is a solution of (R), i.e. that

(4.10) S(α�) � S(α) ∀α ∈ Uad.

The assumption (PZ) implies

(4.11) lim
h→0+

Sh(α�
h) = S(α�).

Take an arbitrary α ∈ Uad. There exists a sequence {αk}, αk ∈ Uk
ad such that

αk ⇒ α in [0, 1] as k → 0+

(for the proof see [8]). Consequently, it is possible to use again Lemma 4.1 obtaining

ûk(αk)→ û(α) in V̂

and according to the assumption (PZ)

(4.12) lim
k→0+

Sk(αk) = S(α)

holds. The formulation of (Rh) results in

(4.13) Sh(α�
h) � Sh(αh) ∀h.

Finally, (4.11)–(4.13) on a suitable filter of indices {hf} implies

S(α�) � S(α).

Since α ∈ Uad was arbitrary, (4.10) holds. �

In the last part of this paper it will be proved that the cost functionals introduced
in Section 3 satisfy the stronger assumption (PZ). Thus, it has to be proved that if

αh ⇒ α in [0, 1] & ûh(αh)→ û(α) in V̂

with uh(αh) and u(α) being solutions of (Ph(αh)) and (P(α)), respectively, then

(4.14) lim
h→0+

ΦΩ(αh)(uh(αh)) = ΦΩ(α)(u(α))
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and

(4.15) lim
h→0+

∫

Ω(αh)

(
uh(αh)− ud

)2
dx =

∫

Ω(α)

(
u(α) − ud

)2
dx

are satisfied.

Let (4.14) be proved first. From the weak lower semi-continuity of ΦΩ̂ on V̂ it
follows that

ΦΩ(α)(u(α)) = ΦΩ̂(û(α)) � lim inf
h→0+

ΦΩ̂(ûh(αh))(4.16)

= lim inf
h→0+

ΦΩ(αh)(uh(αh)).

According to Lemma 3.1 there exists a sequence {wi} ⊂
[
E
(
Ω(α)

)]2 ∩ V (α) such
that

ŵi → û(α) in V̂ , i →∞,

and for i fixed there exists h0(i) such that (3.1) and (3.2) hold ∀h � h0(i). Denote
by wih = rh

(
ŵi

∣∣
Ω(αh)

)
∈ Vh(αh) the Lagrangian interpolation of ŵi

∣∣
Ω(αh)

. Then

(4.17) ΦΩ(αh)(wih) � ΦΩ(αh)(uh(αh)) ∀h � h0(i).

Since
ŵih → ŵi in V̂ as h → 0+,

we have, using also (4.17),

lim inf
h→0+

ΦΩ(αh)(uh(αh)) � lim inf
h→0+

ΦΩ(αh)(wih)(4.18)

= lim
h→0+

ΦΩ̂(ŵih) = ΦΩ̂(ŵi) = ΦΩ(α)(wi).

Passing to the limit (i →∞) in (4.18) and using the continuity of ΦΩ̂ on V̂ we obtain

lim inf
h→0+

ΦΩ(αh)(uh(αh)) � ΦΩ(α)(u(α)),

which together with (4.16) enables us to get

(4.19) lim inf
h→0+

ΦΩ(αh)(uh(αh)) = ΦΩ(α)(u(α)).

From (4.17) it also follows that

lim sup
h→0+

ΦΩ(αh)(uh(αh)) � lim sup
h→0+

ΦΩ(αh)(wih) = ΦΩ(α)(wi)
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for any i. Hence,

lim sup
h→0+

ΦΩ(αh)(uh(αh)) = ΦΩ(α)(u(α)).

From this and (4.19), (4.14) follows.
The verification of (4.15) is straightforward.
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