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Abstract. The paper defines and studies the Drazin inverse for a closed linear operator A
in a Banach spaceX in the case that 0 belongs to a spectral set of the spectrum of A. Results
are applied to extend a result of Krein on a nonhomogeneous second order differential
equation in a Banach space.
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1. Introduction and preliminaries

The main purpose of this paper is to introduce the Drazin inverse AD of a closed

linear operator A on a Banach space X when 0 belongs to a spectral set of the
spectrum of A and apply it to represent solutions of differential equations in X .

Krein in his monograph [7] considered the nonhomogenous second order differential
equation

(1.1)
d2x
dt2
= B2x(t) + f(t), t ∈ [0, T ],

where B is assumed to be invertible on X . We will demonstrate the usefulness of the

introduced Drazin inverse by extending the above problem to a very general class of
operators B whose spectrum has a spectral set containing 0.

By C(X) we denote the space of all closed linear operators A with domain and
range in X ; D(A), N (A) and R(A) denote the domain, nullspace and range of A,
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respectively. For n � 1, D(An) is the set of all x ∈ X such that x, Ax, . . . , An−1x are

all in D(A); we also write D(A∞) for
∞⋂

n=1
D(An). By B(X) we denote the space of all

bounded linear operators defined on all of X . An operator A ∈ C(X) is invertible if

there exists an operator B ∈ B(X) such that AB = I and BAx = x for all x ∈ D(A);
A−1 = B is the inverse of A. In other words, A ∈ C(X) is invertible if and only if

N (A) = {0} and R(A) = X . If A ∈ C(X), then �(A) denotes the resolvent set of A,
that is, the set of all λ ∈ � such that λI −A is invertible. The complement of �(A)

in � is the spectrum σ(A) of A. We also define the extended spectrum σe(A) as the
subset of the extended complex plane � ∪ {∞} equal to σ(A) if A ∈ B(X), and to

σ(A)∪ {∞} otherwise. If A ∈ B(X), we write r(A) for the spectral radius of A. For
λ ∈ �(A), R(λ;A) denotes the resolvent operator (λI −A)−1 of A.

Let A ∈ C(X) with σ(A) �= � . Then a subset σ of σe(A) is called a spectral

set of A if it is both open and closed in the relative topology of σe(A) as a subset
of � ∪ {∞}. A singleton {µ} is a spectral set of A if and only if µ is an isolated

singularity of the resolvent R(λ;A) of A. We call µ a pole of A if µ is a pole of
R(λ;A).

If σ is a spectral set of A, then A admits a direct decomposition A = A1 ⊕ A2
relative to a topological direct sum X = X1 ⊕ X2 such that σ(A1) = σ, σ(A2) =

σ(A) \ σ. The (bounded) projection P of X with R(P ) = X1 and N (P ) = X2 is the
spectral projection of A corresponding to σ. If the spectral set σ is bounded, then

R(P ) ⊂ D(An) for all n, and the restriction Aσ of A to R(P ) is continuous ([10,
Theorem V.9.2]).

2. Characterizations of the spectral sets and the Drazin inverse

In this section we characterize a spectral set of A ∈ C(X) using the corresponding

spectral projection, and rely on this characterization to define a Drazin inverse AD

of A.

Theorem 2.1. Let A ∈ C(X) be a noninvertible operator and let σ be a bounded

set of � containing 0. Then σ is a spectral set of A if and only if there is a nonzero

projection P such that

(i) R(P ) ⊂ D(A),
(ii) PAx = APx for all x ∈ D(A),
(iii) σ(AP ) = σ,

(iv) A− µI − ξP is invertible for all µ ∈ σ and for some (equivalently for all) ξ ∈ �

such that |ξ| > 2r where r = supλ∈σ |λ|.
If (i)–(iv) hold, P is the spectral projection of A corresponding to σ.
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�����. Let σ be a spectral set of A containing 0. The spectral projection P

of A corresponding to σ is bounded. Let A = A1 ⊕ A2 be the decomposition of A

relative to X = R(P )⊕N (P ). Then conditions (i) and (ii) are clearly satisfied and
σ(AP ) = σ(A1 ⊕ 0) = σ(A1)∪ {0} = σ as 0 ∈ σ. The operator A2 is invertible since

0 /∈ σ(A) \ σ = σ(A2). Further, if |ξ| > 2r and µ ∈ σ then

A− µI − ξP = A1 ⊕A2 − (µI1 ⊕ µI2)− (ξI1 ⊕ 0)
= (A1 − (µ+ ξ)I1)⊕ (A2 − µI2)

is invertible since µ ∈ �(A2) and µ+ ξ ∈ �(A1) (as |µ+ ξ| � |ξ| − |µ| > 2r − r = r).
Conversely, assume P is a projection satisfying (i)–(iv). Let A = A1 ⊕ A2 be the

decomposition of A relative to X = R(P ) ⊕N (P ).
By condition (iv), there exists ξ with |ξ| > 2r such that A− ξP = (A1− ξI1)⊕A2

is invertible. Hence A2 (and also A1 − ξI1) is invertible. We have σ = σ(AP ) =

σ(A1⊕ 0) = σ(A1)∪{0}. But A1⊕A2 is noninvertible, which means that 0 ∈ σ(A1)
as A2 is invertible. Thus σ(A1) = σ.

Let µ ∈ � . Then

A− µI − ξP = (A1 − (µ+ ξ)I1)⊕ (A2 − µI2)

is invertible by condition (iv), which implies that A2 − µI2 is invertible. Then

σ ⊂ �(A2), and σ(A1) ∩ σ(A2) is empty. Therefore σ is a spectral set of A, and
P is the corresponding spectral projection. �

Observe that the condition 0 ∈ σ is necessary for condition (iii) to hold and for the

invertibility of A2. We are in a position to introduce a generalization of the Drazin
inverse.

Definition 2.2. Let A ∈ C(X) be a noninvertible operator with a bounded

spectral set σ containing 0 and the corresponding spectral projection P . We define
the Drazin inverse of A relative to σ by

AD,σ = (A− ξP )−1(I − P )

for some ξ ∈ � such that |ξ| > 2r where r = sup
λ∈σ

|λ|.

If σ = {0}, we write AD in place of AD,σ.

As we can observe from the proof of the previous theorem, condition |ξ| > 2r is
required to ensure that A− ξP is invertible. From the above definition, we can also

immediately deduce that P = I − AAD,σ. The next theorem gives a representation
of the Drazin inverse and shows that the Drazin inverse depends on σ but not on

3



the choice of ξ. A similar definition of the generalized Drazin inverse relative to a

spectral set in a Banach algebra was given in [5].

Theorem 2.3. Suppose that an operator A ∈ C(X) possesses a Drazin inverse
and that P is the spectral projection of A corresponding to σ. Then the Drazin

inverse of A relative to σ is given by

(2.1) AD,σ = 0⊕A−12 ,

where A = A1 ⊕A2 is the decomposition of A with respect to the topological direct

sum X = R(P )⊕N (P ).

�����. By [10, Theorem V.9.2], X = R(P )⊕N (P ) and A = A1 ⊕A2 with A1

bounded, σ(A1) = σ, and A2 closed invertible. Then for any ξ ∈ � such that |ξ| > 2r,
where r = supλ∈σ |λ|,

AD,σ = (A− ξP )−1(I − P ) =
(
(A1 − ξI)−1 ⊕A−12

)
(0⊕ I) = 0⊕A−12

and the result follows. �

3. Applications to second order differential equations

In this section we consider an abstract differential equationon on a Banach space
that was studied by Krein [7, Chapter 3]. Let B be the infinitesimal generator of a

strongly continuous group of bounded linear operators T (t). Following [7, Definition
3.1.1], we say that a function x : [0, T ]→ X is a solution of

(3.1)
d2x
dt2
= B2x(t) + f(t), t ∈ [0, T ],

if x takes values in D(B2), is twice continuously differentiable and satisfies (3.1) on
the interval [0, T ]. Observe that if x is twice continuously differentiable on [0, T ], so

is Px for any P ∈ B(X).
Let f be a continuous function on [0, T ]. We define a primitive of f by

F (t) =
∫ t

0
f(s) ds for t ∈ [0, T ].

Observe that supt∈[0,T ] ‖F (n)‖ � MT n for each n ∈ � where F (n) denotes the

nth primitive of f and M = supt∈[0,T ] ‖f(t)‖. We begin with a theorem on the local
solution of a nonhomogeneous second order differential equation.
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Theorem 3.1. Let B be the infinitesimal generator of a strongly continuous

group of bounded linear operators T (t). If f is continuously differentiable on [0, T ]
and there exists a spectral set σ of B such that 0 ∈ σ ⊂ Dr where Dr = {λ : |λ| < r}
for some r > 0, then the unique solution of Equation 3.1 with initial conditions

x(0) = u0 and d
dt

∣∣
0
x(t) = v0 can be expressed explicitly as

x(t) =
∞∑

j=1

B2(j−1)PF (2j)(t)(3.2)

+
1
2

(
T (t) + T (−t)

)
(I − P )u0 +

1
2
BD,σ

(
T (t)− T (−t)

)
(I − P )v0

+
∫ t

0
BD,σ

(
T (t− s)− T (s− t)

)
(I − P )f(s) ds

for each t ∈ [0, r−1] provided that u0 ∈ D(B2) satisfies

(3.3)
∞∑

j=1

B2(j−1)PF (2j)(0) = Pu0

and v0 ∈ D(B) satisfies

(3.4)
∞∑

j=1

B2(j−1)PF (2j−1)(0) = Pv0,

where P is the spectral projection of B corresponding to σ and F (j) is the jth

primitive of f .

�����. Since σ is a spectral set, let B = B1 ⊕ B2 be the decomposition
corresponding to the topological direct sum X = X1 ⊕ X2 where X1 = R(P ) and
X2 = N (P ). The operatorB1 is bounded with r(B1) < r and B2 is a closed invertible
operator with D(B2) = X2∩D(B). We observe that (3.1) with T = r−1 has a unique

solution if and only if the following two differential equations

d2x1
dt2

= B21x1(t) + f1(t), t ∈ [0, r−1],(3.5)

x1(0) = Pu0,
d
dt

∣∣∣∣
0

x1(t) = Pv0

and

d2x2
dt2

= B22x2(t) + f2(t), t ∈ [0, r−1],(3.6)

x2(0) = (I − P )u0,
d
dt

∣∣∣∣
0

x2(t) = (I − P )v0
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have unique solutions on the subspaces X1 and X2 respectively. Since B2 is an

invertible generator of a C0-group in X2, the existence and uniqueness of the solution
of (3.6) follow from [7, Theorem 3.1.5]. The existence and uniqueness of the solution
of (3.5) can be seen from writing (3.5) as a Cauchy problem in the product space

X1 ×X1 and from observing that B1 is a bounded operator. It remains to express
the solution explicitly in terms of B and its Drazin inverse.

On the subspace X1, consider the infinite series
∞∑

j=1
B
2(j−1)
1 F

(2j)
1 (t) for each

t ∈ [0, r−1]. The series converges since
∞∑

j=1

∥∥B
2(j−1)
1 F

(2j)
1 (t)

∥∥ �
∞∑

j=0

∥∥Bj
1F
(j+2)
1 (t)

∥∥

and

lim sup
j→∞

∥∥Bj
1F
(j+2)
1 (t)

∥∥1/j � lim sup
j→∞

‖Bj
1‖1/j lim sup

j→∞

∥∥F
(j+2)
1 (t)

∥∥1/j

< rr−1 = 1.

By direct verification, we can see that the series satisfies (3.5) and hence it is the
unique solution of (3.5).

Finally, on X2, the closed operator B2 is the infinitesimal generator of a strongly
continuous group T2(t) which is equal to T (t)(I −P ). By [7, Theorem 3.1.5] and the

relation BD,σ = 0⊕B−12 , the unique solution of (3.6) is the last three terms of (3.2).
The proof is complete. �

In the preceding theorem, we were able to express explicitly only the local solution
of (3.1). The domain of the solution depends on r, the radius of the disc that contains

the spectral set σ. However, if 0 is an isolated spectral point of B then the global
solution of (3.1) can be expressed explicitly in terms of B and its Drazin inverse.

Theorem 3.2. Let B be the infinitesimal generator of a strongly continuous

group of bounded linear operators T (t). If f is continuously differentiable on [0, T ]
for any T > 0 and 0 is an isolated spectral point of B then the unique solution of

Equation 3.1 with initial conditions x(0) = u0 and d
dt

∣∣
0
x(t) = v0 can be expressed

explicitly as

x(t) =
∞∑

j=1

B2(j−1)PF (2j)(t)(3.7)

+
1
2

(
T (t) + T (−t)

)
(I − P )u0 +

1
2
BD

(
T (t)− T (−t)

)
(I − P )v0

+
∫ t

0
BD

(
T (t− s)− T (s− t)

)
(I − P )f(s) ds,
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provided that u0 ∈ D(B2) satisfies

(3.8)
∞∑

j=1

B2(j−1)PF (2j)(0) = Pu0

and v0 ∈ D(B) satisfies

(3.9)
∞∑

j=1

B2(j−1)PF (2j−1)(0) = Pv0,

where P is the spectral projection corresponding to 0 and F (j) is the jth primitive

of f .

When B is a nilpotent operator, the infinite series in the solution is truncated at
the nilpotency index.

Theorem 3.3. Let B be the infinitesimal generator of a strongly continuous

group of bounded linear operators T (t). If f is continuously differentiable on [0, T ]
and 0 is a pole of B of order 2k for k ∈ �, then the solution to Equation 3.1 with

initial conditions x(0) = u0 and d
dt

∣∣
0
x(t) = v0 is

x(t) =
k∑

j=1

B2(j−1)PF (2j)(t)(3.10)

+
1
2

(
T (t) + T (−t)

)
(I − P )u0 +

1
2
BD

(
T (t)− T (−t)

)
(I − P )v0

+
∫ t

0
BD

(
T (t− s)− T (s− t)

)
(I − P )f(s) ds,

provided that u0 ∈ D(B2) satisfies

(3.11)
k∑

j=1

B2(j−1)PF (2j)(0) = Pu0

and v0 ∈ D(B) satisfies

(3.12)
k∑

j=1

B2(j−1)PF (2j−1)(0) = Pv0,

where P is the spectral projection corresponding to 0 and F (j) is the jth primitive

of f . If f is continuous differentiable and 0 is a pole of B of order 2k + 1 then the
term B2kPF (2k+2)(t) is added to the solution.
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