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APPLIED TO LEONTEV SYSTEMS AND MARKOV CHAINS*

Ivo Marek, Petr Mayer, Praha

Abstract. The paper surveys some recent results on iterative aggregation/disaggregation
methods (IAD) for computing stationary probability vectors of stochastic matrices and
solutions of Leontev linear systems. A particular attention is paid to fast IAD methods.
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1. Introductory remarks

Our aim is to report some results of computing some quantities arising in math-
ematical models of real life situations based on classical principles such as mass
preservation etc. expressed by Leontev systems [18] and Markov chains [6], [7], [10],

[11]. By doing that, special linear systems are to be investigated whose solutions are
structured in a particular way. The systems considered are as a rule very large in the

sense of the number of degrees of freedom and mostly ill-conditioned. We want to
show that in order to overcome the difficulties connected with these circumstances

it is necessary to propose adequate and mostly new computational means. Among
them the aggregation/disaggregation iterative methods (IAD) are highly efficient. In

comparison with other methods the superiority of IAD methods grows with the scale
of complexity. We are going to document this statement by a series of experiments

coming from our investigations in modeling some structural problems in biology and
in particular in physiology on the one hand and in problems of reliable railway safety

systems on the other.

*This work was partly supported by the Grant No. 201/02/0595 of the Grant Agency of
the Czech Republic, the Grant CEZ J04/98:210000010 and the Grant MSM 113200007.
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The paper is organized as follows. Section 1 Introductory Remarks is followed by

Section 2, in which some definitions and notation are given. Main objects of our study
are described in Section 3 Leontev systems and Section 4 Stationary Probability
Vectors of Stochastic Matrices. Section 5 contains the algorithm studied, while

convergence results are presented in Section 6 and Section 7. Section 8 is devoted to
presenting some numerical experiments and conluding remarks. The paper contains

a rich though surely incomplete list of references, especially of the recent ones.

2. Definitions and notation

Our analyses are carried out in finite dimensional Banach spaces. Because of the
equivalence of all norms on such spaces we can in principle use any norm. However,

in the context of stochastic matrices the l1-norm is the most adequate. Throughout
the whole paper the symbol ‖·‖ denotes the l1-norm on the appropriate space without

specifying the space explicitly.

Let N and n be positive integers. Objects of our investigation are matrices whose

elements are real numbers. Let C denote an N × N matrix. An N × N matrix
C = (cjk) with cjk ∈ �

1 is called nonnegative if cjk � 0, j, k = 1, . . . , N . In

particular, let I denote the N ×N identity matrix. We denote by �N the standard
arithmetic space of N -tuples of real numbers. Let [·, ·] denote the standard inner
product on �N :

[x, y] =
N∑

j=1

xjyj , x = (x1, . . . , xN )T , y = (y1, . . . , yN )T ∈ �N .

For example, we denote, on the one hand, ‖x‖ =
N∑

j=1
|xj |, and, on the other hand,

‖C‖ = max
{‖Cx‖
‖x‖ : x ∈ �N , x �= 0

}
.

2.1. Definition. Let A be an N × N matrix. A pair of matrices {M, W} is
called a splitting of A if A =M −W and the inverse M−1 exists. A splitting of the
matrix A is said to be of nonnegative type [13], or equivalently, weak, if the iteration

matrix T = M−1W is nonnegative. If, in particular, the matrices M−1 and W are
nonnegative, the splitting is called regular [24, p. 88]. If M−1 and T = M−1W are
nonnegative, the splitting is called weak regular [19, p. 56]. A splitting {M, W} is
called convergent if lim

k→∞
T k exists, T is zero-convergent if T k → 0 as k →∞.
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Let Y denote an N ×N matrix. We call a splitting {M, W} Y -convergent if

lim
k→0

Y T k = 0.

A collection of all distinct eigenvalues of a square matrix A is called the spectrum

of A and is denoted by σ(A). We denote

r(A) = Max{|λ| : λ ∈ σ(A)}

and call it the spectral radius of A.

3. Leontev systems

Let C be an N ×N matrix with nonnegative real elements cjk. A system

(3.1) x− Cx = b, b ∈ �N
+ ,

is called a Leontev system if C is zero-convergent and the matrix C is a Leontev

matrix [18, pp. 88–95].

It is obvious that system (3.1) is uniquely solvable and the solution denoted by x∗

is componentwise nonnegative.

3.1. ������. Let a matrix C with nonnegative real elements be irreducible and

satisfy
N∑

j=1

cjk � 1

and let there be an index k0, 1 � k0 � N , such that

N∑

j=1

cjk0 < 1.

Then C is a Leontev matrix.
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4. Stationary probability vectors of stochastic matrices

Problem P

We are going to consider the class of eigenvalue problem characterized by

(4.1) x = Bx, [x, e(N)] = 1,

under the restriction

(4.2)
N∑

j=1

bjk = 1, i.e. BT e(N) = e(N),

where e(N) = (1, . . . , 1)T ∈ �N . It follows from (4.1) that

r(B) = 1, ind(I −B) = 1,

where ind(C) denotes the maximal size of the Jordan blocks corresponding to the
value 0. We set ind(C) = 0 if 0 is not an eigenvalue of C, i.e. the inverse C−1 exists.
Note that any solution to (4.1) is called a stationary probability vector of B.

A matrix B satisfying (4.2) is called (column) stochastic. There is a permutation
matrix H such that [5, p. 341]

HBHT =




G0 0 . . . 0

G1 F1 . . . 0
...

...
. . .

...

Gp 0 . . . Fp


 ,

where
lim

k→∞
Gk
0 = 0

and Fj is an irreducible and stochastic matrix.

It is known [4] that the matrixH can be obtained by the so called Tarjan algorithm
and that its complexity is almost linear.

Let B be a stochastic matrix. We may always assume that B is convergent.
Otherwise we may consider

B̂ =
1
2
(I +B).

Let {M, W} be a splitting of A = I −B. Set

(4.3) T = P + Z,

where

(4.4) P 2 = P, PZ = ZP = 0, r(Z) � 1, 1 /∈ σ(Z).
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5. Aggregation/disaggregation algorithms

Let G be a map of {1, . . . , N} onto {1, . . . , n}. Whenever it is necessary we dis-
tinguish the indices from the set {1, . . . , n} by bars from those belonging to the set
{1, . . . , N}; otherwise we use a simplified notation.
Let K denote the permutation of the set {1, . . . , N} given by the relations

K(1) = j1, . . . ,K(N) = jN

and denote the associated permutation matrix by K, and let GK be the apropriate
map 1, . . . , N → 1, . . . , n. We then have

(Kx)T = (xj1 , . . . , xjn1
, xjn1+1

, . . . , xjn1+n2
, . . . , xjN )

= (uT
sub(1), . . . , u

T
sub(n)).

It is easy to see that

{j ∈ {1, . . . , N} : G(j) = 1} = {j1, . . . , jn1}
{j ∈ {1, . . . , N} : G(j) = 2} = {jn1+1, . . . , Jn1+n2}

...

{j ∈ {1, . . . , N} : G(j) = n} = {jn1+...+np−1+1, . . . , jN}

and

{j ∈ {1, . . . , N} : GK(j) = 1} = {1, . . . , n1}
{j ∈ {1, . . . , N} : GK(j) = 2} = {n1 + 1, . . . , n1 + n2}

...

{j ∈ {1, . . . , N} : GK(j) = n} = {n1 + . . .+ nn−1 + 1, . . . , N}

where B = KB̃K−1. We see that G yields an equivalent aggregation scheme for B

as does GK for the permutation-similar matrix B̃.

We define communication operators R mapping �N into �n and S(x) mapping
�

n into �N by setting

(5.1) (Ru)j =
∑

G(j)=j

uj , u ∈ �N , uT = (uT
sub(1), . . . , u

T
sub(n)), usub(j) ∈ �nj

and

(5.2) (S(x)z)j =
xj

(Rx)j
zj , z ∈ �n , zj ∈ �1 , G(j) = j, j = 1, . . . , N
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for x ∈ D, where

D =
{
x ∈ �N : xT = (x1, . . . , xN ), xj > 0, j = 1, . . . , N

}
.

We check immediately that

RS(x)z = z, ∀x ∈ D, z ∈ �p .

Therefore,

P (x) = S(x)R

is a projection,

[P (x)]2 = P (x).

Moreover,

P (x)x = x, ∀x ∈ D

and

P (x)T e = e, ∀x ∈ D.

We define a matrix B(x) = RBS(x), x ∈ D, and call it the aggregated matrix
(with respect to B).

To guarantee that the proposed two-level algorithms can be unlimitedly realized
we need the following two statements proved in [14].

5.1. Proposition [14]. Let a matrix B be stochastic. Then its aggregated matrix

B(x), x ∈ D, is stochastic, too.

5.2. Proposition [14]. Let a stochastic matrix B be irreducible. Then its

aggregated matrix B(x), x ∈ D, is irreducible, too.

5.3. Algorithm SPV (B;M, W ; t, s;x(0)).

Let B be an N × N irreducible stochastic matrix, let {M, W} be a splitting of
nonnegative type of a matrix A and let T =M−1W with r(T ) = 1, s, t � 1 positive
integers.

Let ε > 0 be a given tolerance and let x(0) with (x(0))j > 0, [x(0), e(N)] = 1,
j = 1, . . . , N , be an arbitrary vector.
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Step 1. Set 0→ k.

Step 2. Construct the matrix

B(x(k)) = RBsS(x(k)).

Step 3. Find the unique solution vector z̃(k) to Problem (P) with B(y(k)), i.e. the
unique solution to the problem

B(x(k))z̃(k) = z̃(k),(5.3)

[z̃(k), e(n)]n = 1.(5.4)

Step 4. Disaggregate by setting

v(k+1) = S(x(k))z̃(k).

Step 5. Let

x(k+1,m) = Tx(k+1,m−1), x(k+1,0) = v(k+1), m = 1, . . . , t,

x(k+1) = x(k+1,t), [x(k+1), e(N)]N = 1.

Step 6. Test whether

‖x(k+1) − x(k)‖ < ε.

Step 7. If NO in Step 6, then let

k + 1→ k

and GO TO Step 2.

Step 8. If YES in Step 6, then set

x̂ := x(k+1)

and STOP.
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5.4. Algorithm LM (C;M, W ; t; y(0)).

Let C be an N×N aggregation convergent matrix with nonnegative real elements,
and let {M, W} be a splitting of A = I − C of nonnegative type.

Step 1. Set 0→ k.

Step 2. Construct the matrix

C(y(k)) = RCS(y(k)).

Step 3. Find the unique solution z̃(k) to the problem

(5.5) z̃(k) − C(y(k))z̃(k) = Rb.

Step 4. Disaggregate by setting

v(k+1) = S(y(k))z̃(k).

Step 5. Let

My(k+1,m) = Ny(k+1,m−1) + b, y(k+1,0) = v(k+1), m = 1, . . . , t,

y(k+1) = y(k+1,t).

Step 6. Test whether ∥∥y(k+1) − y(k)
∥∥ < ε.1

Step 7. If NO in Step 6, then let

k + 1→ k

and GO TO Step 2.

Step 8. If YES in Step 6, then set

x∗ := y(k+1)

and STOP.

1Here the symbol ‖ · ‖ denotes any norm on �N . We recommend the l1-norm.
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6. Convergence results

6.1. Error-vector formulas

6.1. Proposition. The error-vector formulas for the sequence of approximants
{x(k)} returned either by the SPV(B;M, W ; t, s; y(0))—algorithm 5.3 or {y(k)} re-
turned by the LM(C;M, W ; t; y(0))—algoritm 5.4 read

(6.1)





x(k+1) − x̂ = Jt(x(k))(x(k) − x̂),

y(k+1) − x∗ = Jt(y(k))(y(k) − x∗)

where

(6.2) Jt(x) = T t[I − P (x)V ]−1(I − P (x))

with V = Z coming from the spectral decomposition of B (4.3) for the case of
Algorithm 5.3 and V = C for the case of Algorithm 5.4. Furthermore, Jt(x) =

T t−1J1(x), t � 1, holds for any x with all components positive.

�����. By the definition of the SPV(B;M, W ; t)-algorithm,

(6.3) My(k+1,1) =WS(x(k))z(k),

where
z(k) =

(
IF − RVS(x(k))

)−1
Rx̂, x̂ = (I − V )x̂.

It follows that

My(k+1,1) =W{S(x(k))(IF − RVS(x(k))−1Rx̂}
=W

(
I − P (x(k))V

)−1
P (x(k))(I − V )x̂

=W
(
I − P (x(k))V

)−1(
P (x(k))− I + I − P (x(k))V

)
x̂

=Wx̂−W
(
I − P (x(k))V

)−1(
I − P (x(k)

)
x̂

and, since Mx̂ =Wx̂,

My(k+1,1) −Wx̂ =M(y(k+1,1) − x̂)

=W
(
I − P (x(k))V

)−1(
I − P (x(k))

)
(x(k) − x̂).

Finally,
y(k+1,1) − x̂ = T

(
I − P (x(k))V

)−1(
I − P (x(k))

)
(x(k) − x̂).
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This is just formula (6.2) for t = 1. To obtain (6.2) for arbitrary t � 1 one needs
to apply T t−1 to J1(x(k)). It is obvious that the algorithm SPV(B;M, W ; t, s;x(0))
achieves this purpose by applying the iteration procedure determined by the splitting
{M, W}.
It is easy to see that the error-vector formula (6.1) for the sequence returned by

Algorithm 5.4 is obtained in the same manner as that of 5.3 because the role of the

matrix V = Z in Algorithm 5.3 is played in Algorithm 5.4 by the matrix V = C

itself. �

6.2. Proposition. The spectra of Jt(x̂) and (I−P (x̂))Jt(x̂) are related as follows:

σ(Jt(x̂)) ⊂ σ
(
(I − P (x̂))Jt(x̂)

)
∪ {0}.

Consequently, r(Jt(x̂)) = r
(
(I − P (x̂))Jt(x̂)

)
.

�����. Let 0 �= λ ∈ σ(Jt(x̂)) and let w be a corresponding eigenvector Jt(x̂)w =
λw, w �= 0. According to the definition of Jt(x) we see that

(I − P (x̂))Jt(x̂)(I − P (x̂))w = λ(I − P (x̂))w.

�

6.2. Convergence of the SPV algorithms

Some propositions, lemmas and theorems of this and the next subsection are stated
without proof; the corresponding proofs can be found in [15], [1].
In Step 3 of Algorithm 3.5 the existence of a stationary probability vector on the

aggregated level is required. To this purpose we have

6.3. Proposition [14]. The aggregated matrix RBS(x), x ∈ �
N , xj > 0,

j = 1, . . . , N , is column stochastic.

A uniqueness result concerning the stationary probability vector in the above

proposition is guaranteed by the following

6.4. Proposition [14]. Let x ∈ Int�N and let B be an irreducible column

stochastic matrix. Then the aggregated matrix RBS(x) is irreducible.

6.5. Theorem. Let B be an N × N irreducible column stochastic matrix. Let

{M, W} be an aggregation-convergent splitting of nonnegative type of the matrix
I − B. Denote the iteration matrix corresponding to this splitting by T , i.e. T =
M−1W .
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Then there is a neighbourhood Ω(x̂) and a positive integer t � 1 such that

SPV(B;M, W ; t, s;x(0))—Algoritm 5.3 is convergent whenever x(0) ∈ Ω(x∗). More-
over, the error estimate

‖x(k) − x̂‖ � κ�k‖x(0) − x̂‖
holds where ‖ · ‖ denotes any norm on �N and κ and � < 1 are positive real numbers

independent of k = 0, 1, . . .

6.3. Convergence of the LM algorithms

6.6. Theorem. Let C be an N ×N matrix with nonnegative real elements cjk,

let C be zero-convergent and b ∈ �
N
+ . Let {M, W} be an aggregation-convergent

splitting of nonnegative type of the matrix I − C. Denote the iteration matrix

corresponding to this splitting by T , i.e. T =M−1W .

Then there is a neighbourhood Ω(x∗) and a positive integer t � 1 such that
LM(C;M, W ; t; y(0)) Algorithm 5.4 is convergent whenever y(0) ∈ Ω(x∗). Moreover,
the error estimate

‖y(k) − x∗‖ � κ�k‖y(0) − x∗‖
holds where ‖ · ‖ denotes any norm on �N and κ and � < 1 are positive real numbers

independent of k = 0, 1, . . .

7. Fast IAD methods

7.1. Proposition [16]. Let α1, . . . , αn be positive real numbers. Let

(7.1) xsub(j) = αjysub(j), j = 1, . . . , n,

where xT = (xT
sub(1)

, . . . , xsub(n)), y = (ysub(1), . . . , ysub(n)) are vectors x, y blockwise

written in accordance with the block form of B given by the map G. Then

(7.2) P (x)y = y.

�����. We see that

(P (x)y)j = (S(x)Ry)j =
xj

(Rx)j
(Ry)j

and further, because of (7.1),

(P (x)y)j =
αjyj

αj(Ry)j
(Ry)j = yj, j ∈ {j : G(j) = j}, j = 1, . . . , n.

Consequently, (7.2) holds. �
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7.2. Corollary. If (7.1) holds for some x(k)—an element returned by SPV

Algorithm—instead of x and x̂—the unique stationary probability vector of B—

instead of y, then (
I − P (x(k))

)
(x(k) − x̂) = 0

and, by (6.1),
x(k+1) = x̂.

�����. According to (6.1) and Proposition 7.1, we have

(
I − P (x(k))

)
(x(k) − x̂) = (x(k) − x̂)− P (x(k))(x(k) − x̂) = −x̂+ P (x(k))x̂ = 0.

�

7.3. Theorem [16]. Let B be an N ×N irreducible stochastic matrix such that

in the block form

(7.3) B =




B11 B12 . . . B1n
B21 B22 . . . B2n
...

...
. . .

...

Bn1 Bn2 . . . Bnn


 ,

the off-diagonal blocks satisfy the relations Rj = range(Bjk) = {αfsub(j) : α ∈ �1},
G(j) = j, where fsub(j) is a vector in �

nj , nj being the size of the block Bjj . Let

{M, W} be a splitting of A = I−B of positive type such that W =M −A = (Wjk),

Wjj = 0. Let

(Rx)j =
∑

G(j)=j

xj , j = 1, . . . , n,

where the index j corresponds to the block Bjj in (7.3).

Then x(2) = x̂, Bx̂ = x̂, [x̂, e(N)] = 1, where x(k) is a return of the SPV(B;M, W ;
t, s;x(0)) algorithm in the kth step.

�����. Let x(0) be an initial approximation of x̂. By Proposition 7.1 we have

(x(1))sub(j) ∈ Rj , j = 1, . . . , n,

and consequently,
(x(2))sub(j) ∈ Rj , j = 1, . . . , n.

Then, by hypothesis,
(x̂)sub(j) = αj(x

(1))sub(j)

with some positive reals α1, . . . , αn. Utilizing Corollary 7.2 we deduce x(2) − x̂ = 0
and this completes the proof. �
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Continuing in the spirit of Theorem 6.6 one easily arrives at

7.4. Theorem [16]. Let b ∈ �
N
+ be in the range of CN , where CN denotes

the block matrix C with the diagonal blocks in the expression (7.4) replaced by
zero-blocks and C is a nonnegative matrix such that in the block form

(7.4) C =




C11 C12 . . . C1n
C21 C22 . . . C2n
...

...
. . .

...

Cn1 Cn2 . . . Cnn


 ,

the off-diagonal blocks satisfy the relations Rj = range(Cjk) = {αfsub(j) : α ∈ �1},
G(j) = j, where fsub(j) is a vector in �

nj , nj being the size of the block Cjj . Let

{M, W} be a splitting of A = I − C of nonnegative type such that W = M − A =
(Wjk), Wjj = 0.

Then y(2) = x∗, x∗ = Cx∗ + b, where y(k) is the return of the LM algorithm in
the kth step.

7.5. ������. A particular case, when the ranges of Bjk consist of a linear hull

of a single vector of the standard basis in the appropriate space �nj , is presented
in [7].

7.6. ������. Note that the iteration processes defined by the splittings de-
scribed in Theorem 7.3 are in general divergent. As an example of a divergent

process can be taken the Jacobi method in the case of a p-cyclic matrix. Neverthe-
less, the convergence of the SPV algorithm based on such splittings may be fast and

terminates after at most two IAD sweeps.

7.7. ������. To check that a given block matrix satisfies the conditions of
Theorem 7.3 might be difficult. This is because the problem to determine the rank

of a matrix is non well posed. Fortunately, we have the following modification of
Theorem 7.3:

7.8. Theorem. Let B be an irreducible stochastic matrix such that every column
of each of the blocks Bjk, j �= k, have the form (1 − τ)αjfsub(j) + τgsub(j), where

‖gsub(j)‖ < α and αj , j = 1, . . . , p, and α are positive real numbers. Furthermore, let

{M, W} be a splitting of A = I−B of positive type such that W =M −A = (Wj,k),

and Wj,j = 0.
Then there is a τ0 > 0 such that the rate of convergence of the IAD algo-

rithm SPV(M ;M, W ; t, s;x(0)) is bounded above by the product τ Max{κj : j =
1, . . . , p} for all τ � τ0, where κj = cond(Inj −Bj,j)

−1.
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7.9. ������. It is obvious that a statement analogous to Theorem 7.8 is valid

for the case of Algorithm 5.4.

In literature some algorithms are known such as PABLO and TPABLO [2] that

transform the original matrix into its block-equivalent permutation-similar form with
the goal of conditioning the diagonal blocks optimally. Our analysis shows that it

is desirable simultaneously to force the off-diagonal blocks to be as close as possible
to rank-one blocks having the same ranges of the row blocks. Obviously, these two

requirements are in conflict with each other. Hence, a reasonable criterion needs to
be found.

8. Numerical experiments and concluding remarks

We are going to consider the class of N×N stochastic matrices that are expressed
as full nj × nk block-matrices Bjk, 1 � j, k � n, n � 2 constructed according to the
following rules.

10 Each block Bjk, j �= k, is given as a combination of the tensor product of

vectors fsub(j) ⊗ gsub(k) and a matrix Cjk:

Bjk = τCjk + fsub(j) ⊗ gsub(k), 1 � τ, j, k = 1, . . . , n, k �= j,

where the components of the vectors fsub(j), gsub(k) and matrices Cjk are random
numbers from the interval (0, 1).

20 The diagonal blocks of orders nj × nj are formed by n2j random numbers from
the interval (0, 1), where j = 1, . . . , n, and then normalized in order to make the

resulting matrix B column stochastic.

With matrices from the above class we have tested the behaviour of the SPV

algorithm 5.3 by varying the following parameters: τ (the departure of a block
from beeing rank one) and ε (the measure for matrix B to be nearly completely

decomposable—NCD). We keep n = 4 and nj = n(block) = 100, thus N = 400.

The following methods are compared:

the standard power method,

the standard block Jacobi method,

the standard block Gauss-Seidel method (G.-S.),

Marek-Mayer method (M+M) [14],

Vantilborgh’s method (Vant.) [23],

Koury-McAllister-Stewart method (KMS) [9], [19], [20].

Positive integers shown in Tables 1–6 denote the amount of iteration sweeps needed
to achieve the accuracy 1× 10−14.
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method τ = 0 τ = 0.001 τ = 0.01 τ = 0.1 τ = 1

power 1004000 1001000 982000 821000 312000
Jacobi 20 20 20 20 18
G.-S. 9 9 9 9 9
M+M 14 14 14 14 14
Vant. 1 2 2 2 3
KMS 1 2 2 2 3

Table 1. n = 100, n(block) = 4, ε = 0.00001.

method τ = 0 τ = 0.001 τ = 0.01 τ = 0.1 τ = 1

power 113300 113000 110800 92700 35100
Jacobi 23 23 23 22 20
G.-S. 9 9 9 9 10
M+M 14 14 14 14 14
Vant. 1 2 2 3 3
KMS 1 2 2 3 3

Table 2. n = 100, n(block) = 4, ε = 0.0001.

method τ = 0 τ = 0.001 τ = 0.01 τ = 0.1 τ = 1

power 12630 12600 12350 10330 3912
Jacobi 25 25 25 25 23
G.-S. 10 10 10 10 11
M+M 14 14 14 14 14
Vant. 1 2 3 3 4
KMS 1 2 3 3 4

Table 3. n = 100, n(block) = 4, ε = 0.001.

method τ = 0 τ = 0.001 τ = 0.01 τ = 0.1 τ = 1

power 1401 1398 1371 1147 438
Jacobi 28 28 28 27 25
G.-S. 11 11 11 12 12
M+M 14 14 14 14 14
Vant. 1 3 3 4 5
KMS 1 3 3 4 4

Table 4. n = 100, n(block) = 4, ε = 0.01.
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method τ = 0 τ = 0.001 τ = 0.01 τ = 0.1 τ = 1

power 164 163 160 135 54
Jacobi 30 30 30 29 26
G.-S. 12 12 12 12 13
M+M 14 14 14 13 12
Vant. 1 3 4 5 7
KMS 1 3 4 4 6

Table 5. n = 100, n(block) = 4, ε = 0.1.

method τ = 0 τ = 0.001 τ = 0.01 τ = 0.1 τ = 1

power 26 26 25 21 13
Jacobi 32 32 32 30 26
G.-S. 12 12 12 13 13
M+M 10 10 10 10 10
Vant. 1 3 5 6 9
KMS 1 3 4 5 7

Table 6. n = 100, n(block) = 4, ε = 1.

The results obtained demonstrate very nicely some facts implied by the theory.
First, since all elements of the blocks forming the matrices considered are positive,

each of the methods from our list of tested methods is convergent.
Second, the influence of parameters τ and ε can be traced from Tabs. 1–6. While

the successive diminishing of the measure of NCD implies a deterioration of conver-

gence of the power method, the IAD methods KMS and Vant. clearly show just an
opposite tendency; the M+M method is very moderately dependent on the measure

of NCD.
Third, dependence on the parameter τ is absent for the power method, block

Jacobi, block Gauss-Seidel and M+M methods. Small changes in speed of these
methods are caused by the fact that a decrease of τ implies an increase of the volume

of the diagonal blocks and subsequently a possible enlarging of their conditioning.
In general, the speed of convergence of KMS and Vant. is influenced positively by

increasing the NCD property and negatively by the condition of the diagonal blocks.
Moreover, these methods return an exact solution if the off-diagonal blocks of B are

rank one matrices possesssing the same range for all matrices of a fixed row. These
facts suggest to build up procedures that would transform a given stochastic block

matrix into another suitable form that would equilibrate the condition numbers of
the diagonal blocks and simultaneously rearrange the block by permutation similarity

to obtain the matrix in the form of the sum of a block diagonal and a matrix whose
all off-diagonal blocks are rank one matrices and in every block row possess the same
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range. So far, there exist procedures transforming a given block matrix into another

one with maximal masses concentrated in the diagonal blocks, e.g. PABLO and
TPABLO [2]. The M+M method possesses some more particular properties. First,
the speed of convergence is immune of any of the parameters τ and ε. The second is

an extremely important property that is absent from all other methods considered
in our survey: This method is still applicable even if the individual elements of the

matrix B are not available for computations and only the actions of B for any vector
are. This property is very useful in some applications such as the modeling of reliable

railway safety algorithms [6], [7], [8].
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