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BERNOULLI CLUSTER FIELD: VORONOI TESSELLATIONS*

Ivan Saxl, Praha, Petr Ponížil, Zlín

Abstract. A new point process is proposed which can be viewed either as a Boolean
cluster model with two cluster modes or as a p-thinned Neyman-Scott cluster process with
the retention of the original parent point. Voronoi tessellation generated by such a point
process has extremely high coefficients of variation of cell volumes as well as of profile areas
and lengths in the planar and line induced tessellations. An approximate numerical model
of tessellation characteristics is developed for the case of small cluster size; its predictions
are compared with the results of computer simulations. Tessellations of this type can be
used as models of grain structures in steels.

Keywords: cluster point process, Voronoi tessellation, induced tessellation, coefficients
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1. Introduction

The tessellation (or tiling) T d is a covering of �d by a countable family of closed

subsets (cells, tiles) Ci ∈ �
d , i = 1, 2, . . ., which is a packing at the same time.

Consequently, the cells have disjoint interiors and their union is �d . A closely related

but much more complicated problem are finite coverings and packings where the
packed and covered ground set A is a bounded subset of �d only. The latter problem

is much closer to practical tasks but the effects occurring near the boundary of A

are formidable. Hence a great advantage is gained if the covering and packing of a

bounded set A can be regarded as an intersection A ∩ T d.

There is a good reason to study tessellations because there are many natural divi-
sions of the space (crystalline solids, cellular tissues) as well as artificial ones created

*This work was supported by the Grant No. 201/99/0269 of the Grant Agency of the Czech
Republic (the first author) and by the Grant No. 96108 of the Ministry of Education of
the Czech Republic (the second author).
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by human activities (countries, jurisdictions, districts of administration, allotments).

As general references for random tessellations see Okabe et al. [4], Stoyan et al. [11],
Møller [2], [3].

In the present paper, convex random Voronoi tessellations are considered as a
model of the natural space-filling structure formed by grains of polycrystalline metals.

In particular, the main topic of interest are tessellations with a great nonuniformity
of the cell size. As the metals are opaque and the grain separation nearly impossible,

only a partial information on T 3 is accessible, namely the induced tessellations T k =
T d ∩ F d

k , k < d, where F d
k is the k-flat in �d . The notation T ′, T ′′ for k = 2, 1 will

be used in what follows for tessellations induced by T 3 in section planes and lines,
respectively.

The main size or scale characteristic of a tessellation is its intensity λ—the mean

number of cells (equivalently, of their generators) per unit volume of the embedding
space; λ′, λ′′ are then the intensities of induced tessellations T ′, T ′′, respectively.

A detailed description of a tessellation is given by the distributions of its cell

characteristics. The size dependent characteristics are homogeneous functions of
the degree −k/d of the intensity λ = 1/Ev, where k = d for the cell content v,

k = d− 1 for the cell surface content s, and k = 1 for the mean cell breadth w (the
mean length of cell projections into an isotropic bundle of 1D linear subspaces of

the embedding space). The shape characteristics like the number of cell faces nf are
independent of λ; k = 0. Similarly for the T ′ induced tessellation λ′ = 1/Ev′, where

v′ is the area of the induced cell (called the profile), the other size characteristics are
the perimeter s′ and the mean breadth w′ mutually related by the Cauchy relation

s′ = �w′. Finally, λ′′ = 1/Ev′′ in T ′′, where v′′ is the section (chord) length. Because
of the homogeneity property of the size characteristics with respect to the intensity λ,
it is sufficient to consider only the unit tessellations (λ = 1).

The scale of grain size and arrangement of technical materials is extremely wide.

Whereas grains are usually rather uniform equiaxial in pure metals and alloys with
close packed face-centred cubic and hexagonal lattices, like copper, aluminium, zinc

etc., grain structures of steels after various thermal treatments are extremely vari-
able with two or even more components of widely different sizes and arrangements.

Consequently, a sufficiently wide class of model tessellations must be developed in
order to cover a representative sample of natural tessellations occurring in practice.

The simplest possible common parameters serving as a basis of comparison between
model and real tessellations are the coefficients of variation CV v, CV v′ and CV v′′.

A study of rather common steels after various thermal treatments revealed that CV v′

can be as high as 3 and also CV v′′ > 1.1 must be expected [13]. The lower bounds

on these coefficients of variations are their values corresponding to monohedral tes-
sellations of cells (grains) the shape of which approaches a ball (tetrakaidecahedron,
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rhombic dodecahedron). On the opposite side there are multimodal grain structures

with regions of small grains separated by overgrown grains of size greater by several
orders of magnitude. The present model has been developed just in order to hit off
the latter situation.

2. Voronoi tessellations generated by
Bernoulli point cluster fields

A random Voronoi tessellation is constructed from a given random point process Φ
by adjoining to every point xi ∈ Φ the cell formed by all points y of the embedding

space �d such that ‖xi − y‖ � ‖xj − y‖ for all xj ∈ Φ, xj �= xi. The point cluster
field Ψ is created by applying the operation of clustering to a given parent point

process Φp, namely by replacing every point xi ∈ Φp by a point cluster Z ⊕ xi [11],
[12]. Φp is usually a stationary Poisson point process (PPP) of intensity λp. First,
the definition is necessary of point clusters used in what follows.

Let Z be the class of all finite point sequences Z ∈ �d . A random element Z ∈ Z
with a distribution P (Z) is a random cluster. A Poisson cluster is the support set
of a (non-stationary) Poisson point process in �d with finite intensity measure Λ of

expectation N = Λ(�d ) called the mean cluster cardinality. For any Borel set A,
card(A ∩ Z) is a Poissonian random variable of mean Λ(A). A cluster is called

(Poisson) globular (PG) or spherical (PS), if

Λ(A) =
N

νd(BD)
νd(BD ∩A) or Λ(A) =

N

νd−1(∂BD)
νd−1(∂BD ∩A),

respectively. Here νk(•) is the k-dimensional Hausdorff measure and BD is the ball
of diameter D (centred at the origin O). The points forming a cluster (called the
daughters) are then dispersed either within BD or on its boundary ∂BD. Poisson
globular and spherical clusters form a subclass ZPGS of Z.
In the proposed model called the Bernoulli cluster field Φ (in analogy to the

Bernoulli lattice process), the implantation of a point cluster xi ⊕ Z is carried out

with a fixed cluster probability 0 � p � 1 (the point xi is then removed) whereas
only the point xi is retained with the probability 1− p. Equivalently, the cluster Z

has two modes: it is the above defined point cluster of PG or PS type—with the
probability p—or the origin O—with the probability 1− p. The process can also be

looked upon as an independent p-thinning (with the retention of the original parent
point xi) of the ordinary cluster field Ψ. The intensity of the resulting point process Φ

is λ = (pN + 1 − p)λp; if p = 1 then Φ is the Neyman-Scott cluster field with PG
or PS clusters, if p = 0 then Φ = Φp is the underlying point process (i.e. PPP). The
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ball size D is expressed by the dimensionless parameter δ = D/�p, where �p is the

mean nearest neighbour distance of the parents (�p = 0.554λ
−1/3
p for PPP in �3 ).

Properties of tessellations generated by Neyman-Scott fields of PG or PS clusters
have been examined in detail by Saxl and Ponížil [6], [7]. T 3 tessellations generated

by PS fields have unimodal distributions of cell size characteristics and the cells are
plate-like, rod-like and wedge-like. On the contrary, characteristics of tessellations

generated by PG fields have strictly bimodal distributions whenever δ is small and
N > 5. Besides outer cells with a volume v not much different from 1, also very

small inner cells of a volume of 0.09 δ3 are formed (Saxl and Ponížil [6], [7]). These
inner cells are completely encircled by cells generated by points of the same cluster

and their proportion α increases with growing N ; at N = 99 it is α ≈ 0.6.

a) b)

Figure 1. Planar sections (induced tessellations T ′) of T 3 tessellations generated by
Bernoulli cluster fields with p = 0.5 and δ = 0.05. a) T 3 generated by a
BePS cluster field, N = 70 (a section of the cube in which the simulation was
carried out; only the cells lying in the central part of the cube are considered
in order to suppress the edge effects). b) T 3 generated by a BePG cluster field,
N = 50 (only the cells hitting the measuring square window are shown).

These properties are naturally transposed also to tessellations generated by

Bernoulli cluster fields. The choice δ � 0.1 and high N produces a tessellation
consisting of a (1 − p) : p mixture of large and only slightly corrugated parent cells

and of such cells fragmented into N small elongated cells. The 3D cell arrangement
is clearly observable also from 2D planar sections—Fig. 1. The distribution of the

cell volume is roughly bimodal with the mode ratio approximately 1 : N in the case
of spherical clusters and trimodal in the case of globular clusters (with inner cells

lying completely within the fragmented parent cell in a close neighbourhood of the
parent point)—Fig. 2. Even when the spherical and globular cases have considerably

160



-2 -1.5 -1 -0.5 0 0.5

log x

-3

-2

-1

0

1
lo

g 
 f(

x)
BePG30

mean cell breadth w

p=0.0303

p=0.5

-1.5 -1 -0.5 0 0.5

log x

-3

-2

-1

0

lo
g 

 f(
x)

BePS30

mean cell breadth w

p=0.0303

p=0.5

a) b)

Figure 2. Trimodal tessellations generated by BePG cluster fields and bimodal tessellations
generated by BePS cluster fields at two different values of the probability p.

different size properties (see below) they both give rather high values of the CV v

and of other coefficients of variation.

The exact properties of tessellations must be found by computer simulation. How-
ever, a rough model can be proposed of the tessellation characteristic behaviour based

on the known characteristics of the limit cases p = 0—a Poisson-Voronoi tessella-
tion (PVT) of intensity λp—and p = 1—a tessellation generated by a Neyman-Scott

cluster field of intensity λ = Nλp. The model is suitable for sufficiently small values
of δ ensuring only a negligible influence of partitioned cells on their non-partitioned
neighbours.

Let us consider a tessellation characteristic, which is a homogeneous function of
the degree −k/d of the intensity λ. Let λp = 1, i.e. λ = 1+ p(N − 1); neglecting the
interaction of neighbouring parent cells, we may consider the resulting tessellation as
a mixture of p cells containing a cluster of the mean cardinality N and (1− p) cells

of the original parent process. Let qk be the value of the considered characteristic
in a unit cluster tessellation and Qk its value in the unit PVT. Denoting by q̃k the

corresponding characteristic of the mixture, its j-th moment about origin can be
written as (in the units of Eṽ = 1)

µ′j(q̃k) =
Np

µ′
j(qk)

Njk/d + (1− p)µ′j(Qk)

λ
λjk/d(1)

=
N (d−jk)/dpµ′j(qk) + (1 − p)µ′j(Qk)

λ(d−jk)/d
.

In order to simplify the formula, m(q) will be introduced for µ′j(qk)/µ′j(Qk) and c

for d− jk/d. Then e.g.

(2) µ′1(w̃) = Ew̃ = EW
1 + p(N cm(w) − 1)

λc
, c = 2/3,
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and similarly for Eñf , Es̃, Eṽ2 with c = 1, 1/3 and −1, respectively. For jk �= 0,
i.e. c �= 1, µ′j(qk) has an extreme at

(3) pe =
1
1− c

[
c

N cm(q)− 1 −
1

N − 1

]
.

Eṽ2 has a maximum at

pmax =
1
2

[
1 +

m(v2)(N − 1)− 2N
(N −m(v2))(N − 1)

]
≈ 1
2

[
1 +

m(v2)− 2
N −m(v2)

]
for high N.

The second term in the brackets is of the order of 0.01, hence pmax ≈ 1
2 . Con-

sequently, an approximate formula for (CV v)max ≈
√
0.3N − 1 (independently of

m(v2)) holds in a reasonable agreement with the accurate calculation—see Fig. 3.
The corresponding values of {Ew,Es} at pmax are shown in Fig. 4.
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Figure 3. Coefficients of variation of tessellations generated by BePG and BePS cluster

fields: the curves result from the approximate theory (Eq. (1)), the points show
the estimates obtained by computer simulations.
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Figure 4. Bernoulli cluster field tessellations in the w − s plane. The curves are parame-
trized by the probability 0 � p � 1. The common end-point (PVT) corresponds
to p = 0, whereas the loose p = 1 end-points delineate the curve {Ew,Es}N

characterizing the effect of the mean cardinality N on the position in the w–s
diagram for tessellations generated by Neyman-Scott cluster fields with spherical
(right upper corner) and globular (medium quasi-diagonal part) clusters. The
black points show the positions of maxima of CV v (the values ≈ 3.0, ≈ 7.8
correspond to N = 30, 200, resp., in both the BePG and BePS cases).

It follows from the above formulas that arbitrarily small values of Ew̃, Es̃ and
arbitrarily high values of Eṽ2 can be achieved by choosing suitable values of para-

meters p andN (the tip of the BePG curve for N = 999 has coordinates [≈ 0.3,≈ 1.8]
and CVv ≈ 17).
The present model obviously holds only if the changes in the original parent cells

due to cluster implantation can be neglected, i.e. when the cluster size δ is small,

very roughly if δ � 0.1. The partial breakdown of the model at δ = 0.5 and complete
breakdown at δ = 2 will be demonstrated below.

Also the mean values of induced tessellation size characteristics can be easily
calculated. By the well known relations between the characteristics of a unit T 3 and

T ′, T ′′ (e.g. [10])

1
λ′
= Eṽ′ =

1
Ew̃

, Es̃′ =
�

4
Es̃

Ew̃
,(4a)

1
λ′′
= Eṽ′′ =

4
Es̃
= �

Eṽ′

Es̃′
.(4b)

An illustrative tool can be then introduced, namely the w–s diagram in which any

unit tessellation T 3 is described by a point {Ew,Es}. The w–s diagram can also be
understood as a λ′–4λ′′ diagram, or, equivalently, as an (Eṽ′)−1–4(Eṽ′′)−1 diagram;
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this is a direct consequence of Eqs. (3). The w–s diagram of the Bernoulli cluster

tessellations constructed by using the above given formulas is shown in Fig. 4. The
different shapes of BePG and BePS curves follow from dissimilar values of m(q),
q = w, s. Namely, m(q) � 1 in the former case and m(q) � 1 in the latter one.
The minimum values of Es (tips of the curves in Fig. 4) are attained at the values
pmin(s) given by Eq. 3; they decrease with growing 30 � N � 200 within the ranges
{0.17, 0.07} and {0.24, 0.15} for BePS and BePG, respectively.
In order to calculate the coefficients of variation of 2D profile areas and 1D profile

lengths, the individual contributions of small and large fraction profiles must be
separated. Sampling of cells by sectioning flats is not uniform but weighted by the

cell properties, namely by w and s/4 in the planar and line sections, respectively.
Consequently, the number ratio of small and large cells in the original 3D tessellation

is r = pN/(1−p), whereas the corresponding ratios for profiles are r′ = rm(w)/N1/3

and r′′ = rm(s)/N2/3 (on the other hand, the areal and lineal fractions of small cells

remain constant and equal to their volume fraction p). A simple calculation then
gives

Eṽ′
2
= EV ′2

(
pN−2/3m(w)m(v′2) + (1 − p)

)
[1 + p(N − 1)]4/3

pN2/3m(w) + (1− p)
,(5a)

Eṽ′
2
= EV ′′2

(
pN−1/3m(s)m(v′′2)− (1− p)

)
[1 + p(N − 1)]2/3

pN1/3m(s) + (1− p)
.(5b)

The maximum values are again attained at p ≈ 0.5—Fig. 2. However, whereas
CV v is nearly equal in both the BePG, BePS tessellations, other coefficients of

variation have considerably higher values in BePS tessellations and the corresponding
difference is greater at higher values of N (≈ 35% for CV v′ and 27% for CV v′′ at

N = 70). The cause is the loss of inner cell profiles and the increase of outer cell and
profile size with growing N in BePG tessellations (there is only ≈ 80 outer cells and
≈ 120 inner ones in a 3D fragmented cell at N = 200).

Summarizing, all important size characteristics of a tessellation generated by

Bernoulli cluster fields with moderate cluster size can be approximately calculated
from the characteristics of the tessellations generated by the corresponding Neyman-

Scott cluster field (p = 1) and of PVT (p = 0). The input data are as follows: mean
breadth Ew, surface area Es and three cell and profile second moments about the

origin Ev2, Ev′2, Ev′′2—see Tab. 1.
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BePG BePS
N

Ew Es Ev2 Ev′2 Ev′′2 Ew Es Ev2 Ev′2 Ev′′2

30 1.14 5.09 4.00 1.90 1.038 1.60 6.17 2.26 0.90 0.675
50 1.03 4.76 5.03 2.42 1.14 1.69 6.33 2.41 0.874 0.660
70 0.96 4.60 6.08 2.91 1.25 1.77 6.48 2.49 0.841 0.635
99 0.90 4.38 7.16 3.45 1.37 1.87 6.63 2.52 0.787 0.610
200 0.78 4.09 10.55 5.04 1.68 2.13 7.04 2.76 0.707 0.575
PVT 1.485 5.821 1.18 0.697 0.631 − − − − −

Table 1. Input data for calculating size characteristics of selected tessellations generated by
Bernoulli cluster fields; δ = 0.05.

3. Results of simulations

The incremental method with the nearest neighbour algorithm [4] was used to

construct the Voronoi tessellation associated with point fields of examined types. The
tessellations generated by spherical cluster fields would not be normal because cells

generated by points of the same cluster have a common vertex at their parent point.
In order to avoid this, all daughter points were given small i.i.d. random shifts ξ;

their distribution was 3-variate centred normal with the variance σ2I, σ = 0.0002�p,
hence 250 times smaller than the value of δ = 0.05. This value ensured tolerable

stability of the construction. The point field was generated within a unit cube
and a great care was given to the suppression of edge effects which can seriously
influence the numerical results, in particular in tessellations with great dispersion of

cell sizes. After removing the cells affected by cube edges, usually about 103 cells
per a realization remained for the statistical analysis. For tessellations generated

by Neyman-Scott cluster fields (i.e. p = 1), the average number of realizations was
about 103, hence the values in Tab. 1 are based on average on 2 × 106 3D cells and
on approximately the same number of the 2D and 1D profiles for each choice of N .

The construction of tessellations generated by Bernoulli cluster fields was more

difficult due to considerably lowered stability, particularly in the case of BePS tes-
sellations with high N . The numbers of examined cells and profiles were typically

between 105 and 106 cells for BePG cluster fields and between 3 × 104 and 105 for
BePS fields.

Simulated {Ew,Es} curves lie systematically within the loops calculated by the
approximate numerical approach, however the deflection is small at δ = 0.05. It does

not exceed 10% even at δ = 0.5, but the numerical model is completely wrong at
δ = 2—Fig. 5.

Values of the coefficients of variation obtained by numerical approximation and
by simulations are in a very good agreement in the case of CV v and the mutual
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Figure 5. A comparison of calculated {Ew,Es} values (full lines) with the results of com-

puter simulations: a) δ = 0.05; only the central part of Fig. 3 is shown, b) the
partial and complete breakdown of the calculations by Eq. 3 at δ = 0.5, 2.

differences, which are clearly systematic (see Fig. 2), are higher at higher values of p,

where large cells and profiles are infrequent and, consequently, improperly sampled.
In any case, the error is rather in the simulated values than in the calculation.

The proposed model considerably widens the spectrum of tessellations available
up to now. The calculations of 3D grain size characteristics have been based nearly

exclusively on monohedral and quasi-monohedral tessellations and on PVT (for re-
view see [5]). The only exception was the Johnson-Mehl model [2] in a detailed study

by Horálek [1]; the whole Johnson-Mehl model is described in the w–s diagram by
a curve starting at the PVT point, passing between the BePG and BePS loops and

ending at Ew ≈ 0.9, Es ≈ 3.9 (with CV v → ∞). In contrast to this, the present
model is practically unlimited and fills an appreciable area in the {w, s} plane. Also
the coefficients of variation have only the lower bounds and no singularities except
in the origin.

The relations of the present model to the estimation of the grain size as represented

by various National Standards (see Vander Voort [14]) are discussed in [8], [10], [13],
[15], its application to the simulation of intercrystalline crack growth is described

in [9].
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