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DESCRIPTION OF THE MULTI-DIMENSIONAL

FINITE VOLUME SOLVER EULER*

Pavel Šolín, Linz, Karel Segeth, Prague

Abstract. This paper is aimed at the description of the multi-dimensional finite volume
solver EULER, which has been developed for the numerical solution of the compressible
Euler equations during several last years. The present overview of numerical schemes and
the explanation of numerical techniques and tricks which have been used for EULER could
be of certain interest not only for registered users but also for numerical mathematicians
who have decided to implement a finite volume solver themselves. This solver has been used
also for the computation of numerical examples presented in other papers of the authors.
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1. Introduction

The numerical software package EULER is written in C++ and is free accessible

in the Internet** for non-commercial purposes. The software is currently used by
approximately one hundred registered users from various institutes in various coun-

tries. The solver is based mainly on theoretical results published in [3], [4], [5], [6],
[7] but as the reader knows, there is, in general, a long way from the theory to the

implementation.

The presented paper is not intended to provide a basic knowledge about the com-

pressible Euler equations and the finite volume method. Readers who are not familiar

*This work was partly supported by Cooperation Research Project ME 148 (Czech
Republic).

** http://www.numa.uni-linz.ac.at/Staff/solin/euler (October 1, 2000).
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with the application of the finite volume method to the compressible Euler equations

are recommended to read at least the article [4] before starting with this one.
Let us devote two short sections to the compressible Euler equations and to the

finite volume method before we start dealing with the programming aspects.

2. Compressible Euler equations

Let the domain Ω ⊂ �
d occupied by the fluid be bounded and have a continu-

ous, piecewise linear boundary ∂Ω. The d-dimensional compressible Euler equations
consist of the continuity equation, d Euler momentum equations and the energy

equation. We will consider them in the space-time cylinder QT = Ω× (0, T ) (T > 0)
and write them in the form

(1)
∂w

∂t
+

d∑

s=1

∂fs(w)
∂xs

= 0,

where

(2) w =




�

�v1
...

�vd

e



, fs(w) =




�vs

�vsv1 + δs1p
...

�vsvd + δsdp

(e+ p)vs



, s = 1, . . . , d,

and

(3) e =
p

κ− 1 +
1
2
�|v|2.

We use the standard notation: t—time, x1, . . . , xd—Cartesian coordinates in �d ,

x = (x1, . . . , xd)T , �—density, v = (v1, . . . , vd)T—velocity vector with components
v1, . . . , vd in the directions x1, . . . , xd, p—pressure, e—total energy, δsj—Kronecker

delta, κ > 1—Poisson adiabatic constant. Due to physical reasons it is also suitable
to require � > 0, p > 0. The functions fs, s = 1, . . . , d, are called inviscid (Euler)

fluxes and are defined in the set

(4) Q =
{
(w1, . . . , wd+2)T ∈ �d+2 ; w1 > 0, wd+2 −

w22 + . . .+ w
2
d+1

2w1
> 0

}
.

System (1), (3) is equipped with the initial condition

(5) w(x, 0) = w0(x), x ∈ Ω,

and a set of boundary conditions which will be specified later.
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3. Application of the method of lines

Discretization of the above partial differential equations is done in two steps ac-
cording to the general framework of the method of lines (MOL). In the first step,

semi-discretization in space is performed using the finite volume method (FVM).
There are several reasons why FVM is popular for the compressible Euler equations

(see e.g. [3]). Discretizing only the space variable while keeping the time variable
continuous, one obtains an initial value problem for a system of non-linear ordinary
differential equations (ODE). In the second step, this ODE system is integrated in

time by suitable numerical methods for ODE’s.
More precisely, our aim is to find coefficients y ∈ C1(0, T ;QN) in the FMV setting

to the approximate solution

(6) wh(xt) =
N∑

i=1

yi(t)χi(x)

of the compressible Euler equations satisfying

ẏ(t) = F (y(t), t) for all t ∈ (0, T ),(7)

y(0) = y0.(8)

The symbol χi(x), 1 � i � N , denotes characteristic functions of finite volumes Ωi.
For the description of the finite volume grid, the exact definition of the non-linear

right-hand side (RHS) vector function F (y(t), t) and for the construction of the
initial condition y0 from the initial data (5) to the continuous problem see [4].

4. Numerical flux

Numerical flux is the basic feature of the FVM since the method is based on the

approximation of the flux of physical quantities (density, momentum, energy etc.)
through the shared faces of the finite volumes. The solver EULER is intended for the

computation of perfect gas flows past solid obstacles (airfoils etc.) and within various
channels (e.g. turbines, wind tunnels, diffusors, jets). Therefore, the boundary of

domains considered is assumed to consist only of impermeable solid walls and of inlet
and outlet parts. Thus, finite volumes can have either solid wall faces, inlet-outlet

faces or interior faces (faces shared by two adjacent finite volumes). For infinite
domains with periodic geometries we additionally define periodic faces which are a

subclass of the interior ones. Numerical flux has a special form for each one of these
three classes of faces. The treatment of solid wall faces is relatively simple (see [4]).

171



Numerical flux through inlet-outlet faces (in fact representing the treatment of inlet-

outlet boundary conditions to the compressible Euler equations) is not trivial and
will be addressed later. Let us first discuss several aspects concerning the interior
numerical flux.

4.1. Interior numerical flux.
The numerical flux Hint through interior faces has the form

(9) Hint(wi,wj , νij , |∂Ωij |) = |∂Ωij |T−1d (νij)fR

(
Td(νij)wi, Td(νij)wj

)
,

where wi, wj are (d + 2)-dimensional state vectors corresponding to the adjacent
finite volumes Ωi,Ωj and νij is a unit outer normal to the shared face ∂Ωij of the

finite volumes Ωi, Ωj pointing from Ωi to Ωj . For the exact form of the rotational
matrices Td(νij), T

−1
d (νij), see e.g. [4]. The non-linear vector-valued function fR is

called the approximate Riemann solver (ARS). It approximates the constant value
f1(qr(0, t̃)), qr(x̃1, t̃) being the exact solution to the Riemann problem

∂q

∂t̃
(x̃1, t̃) +

∂f1(q)
∂x̃1

(x̃1, t̃) = 0 in � × (0,+∞),(10)

q(x̃1, 0) =

{
qL, x̃1 < 0,

qR, x̃1 > 0,
(11)

arising in the normal direction on the interface of two adjacent finite volumes. The

solution of this 1D Riemann problem is described e.g. in [6].

4.2. ARS’s implemented in EULER.
EULER is based on the Godunov type schemes which are splitting the flux into its

positive and negative parts using the spectral decomposition of the Jacobi matrix

(12) A(w) =
Df1
Dw

of the first Euler flux. The Godunov flux splitting method results in the proposition
of an ARS of the general form

(13) fR(qL, qR) = f(qR)−
∫ qR

qL

A+(q) dq = f(qL) +
∫ qR

qL

A−(q) dq.

Integrals of the matricesA+ andA− (the positive and negative parts of the matrixA:
for the exact definition, see e.g. [6]) are not well defined because they depend on the
path in the state space. Nevertheless, there are some heuristic approximations of
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these integrals leading to successfully working ARS’s. The first three ARS’s which

are implemented in EULER are based on heuristic “numerical quadratures” of the
integrals involved in (13):

• ARS by Steger-Warming

(14) fR(qL, qR) = A+(qL)qL +A−(qR)qR,

• ARS by Vijayasundaram

(15) fR(qL, qR) = A+
(qL + qR

2

)
qL +A−

(qL + qR

2

)
qR,

• ARS by Van Leer

(16) fR(qL, qR) =
f1(qL) + f1(qR)

2
− |A|

(qL + qR

2

)(qR − qL

2

)
.

The fourth implemented ARS (by Osher-Solomon) is based on the exact compu-

tation of the integrals along a sophisticated path in the state space. This scheme is
depicted in the diagram on the following page.

The reason why we present the diagram corresponding to the ARS by Osher-
Solomon is to show where the remarkable advantage of this scheme in CPU efficiency

in comparison with the above ARS’s comes from. While the first three schemes need
to evaluate the matrices A+,A− or |A| and multiply them by the state vectors, the
ARS by Osher-Solomon needs only to do a few binary decisions (indicated by α,
β, γ, δ, ω in the diagram) and to evaluate a few simple algebraic expressions. The

complete scheme can be found either in [5] or directly in the C++ source code. ARS
must be computed on each grid face and at each time step—in 3D, one hundred
thousand grid faces and fifty thousand time steps still correspond to a relatively

small task. It is easy to see that the efficiency of the ARS has crucial influence on
the CPU requirements of the computation. In addition, the Osher-Solomon ARS has

the best accuracy and robustness among the schemes mentioned.

The reader may ask why we did not remove the first three ARS’s when the Osher-

Solomon scheme is so much better. The reason is that EULER is not a commercial
code and one of its main purposes is to serve as a tool helpful for learning, testing

and understanding various aspects of the numerics. One can simply choose an ARS
in the configuration file before starting the computation.

The ARS by Steger-Warming is a fully upwind scheme (the positive part of the

matrix A is computed at qL and its negative part at qR). This brings very good
stability but too much diffusion to the scheme. The result is a remarkable loss of
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f1(qL)
f1(qL) + f1(qR)− f1(q

s
R)

f1(qL) + f1(qA)− f1(q
s
L)

f1(qL) + f1(qR) + f1(qA)− f1(q
s
L)− f1(q

s
R)

f1(qL) + f1(qD)− f1(q
s
L)

f1(qL) + f1(qR) + f(qD)− f1(q
s
L)− f1(q

s
R)

f1(qL) + f1(q
s
R)− f1(q

s
L)

f1(qL) + f1(qR)− f1(q
s
L)

f1(q
s
L)

f1(qR) + f1(q
s
L)− f1(q

s
R)

f1(qA)
f1(qR) + f1(qA)− f1(q

s
R)

f1(qD)
f1(qR) + f1(qD)− f1(q

s
R)

f1(q
s
R)

f1(qR)

accuracy in comparison with other schemes. The lack of accuracy can be observed

mainly along shock waves which in fact are not captured and do not seem to represent
a discontinuity in the solution. The scheme by Vijayasundaram involves less diffusion

because both the positive and the negative part of the matrix A are computed
exactly at the average of the states qL and qR. This scheme has less diffusion and

is more accurate. It is capable to capture a position and size of shocks very well
but sometimes produces oscillations. The ARS by Van Leer is similarly accurate as

the Vijayasundaram scheme but has better stability properties. We recommend the
reader to compare all the four schemes on some examples included in the EULER

package to get a feeling for the relation between the diffusion and robustness of
upwind schemes.
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4.3. Multi-dimensionality of ARS.
There is an interesting feature of the ARS which enables EULER to compute 1D,

2D and 3D problems using only one code. Let us demonstrate it on an example of
ARS based on a heuristic numerical quadrature (where it can be understood easier).

The Jacobi matrix A of the first Euler flux f1 has, in the three-dimensional case,
the explicit form

(17) A(w) =




0 1 0 0 0
κ−1
2 |v|2 − v21 (3− κ)v1 (1 − κ)v2 (1− κ)v3 κ− 1
−v1v2 v2 v1 0 0

−v1v3 v3 0 v1 0
a5,1 a5,2 (1− κ)v1v2 (1− κ)v1v3 κv1




where

a5,1 = v1
(
(κ− 1)|v|2 − κ

e

�

)
,

a5,2 = κ
e

�
− (κ− 1)v21 −

κ− 1
2

|v|2.

After putting the third velocity component v3 equal to zero, the fourth row and
fourth column of A become zero with the exception of the fourth diagonal element.
Leaving this column and row out, one obtains a 4× 4 matrix

(18) A(w) =




0 1 0 0
κ−1
2 |v|2 − v21 (3− κ)v1 (1− κ)v2 κ− 1
−v1v2 v2 v1 0
a4,1 a4,2 (1 − κ)v1v2 κv1




with

a4,1 = v1
(
(κ− 1)|v|2 − κ

e

�

)
,

a4,2 = κ
e

�
− (κ− 1)v21 −

κ− 1
2

|v|2,

which is exactly the two-dimensional form of the Jacobi matrix of the first Euler

flux f1. Setting in (17) the last two velocity components v2, v3 equal to zero and
leaving out the third and fourth row and third and fourth column, one analogously

has the one-dimensional form

(19) A(w) =




0 1 0
κ−1
2 |v|2 − v21 (3− κ)v1 κ− 1

v1
(
(κ− 1)|v|2 − κ e

�

)
κ e

� − (κ− 1)v21 − κ−1
2 |v|2 κv1


 .
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Similar statements hold also for the positive and negative parts A+ and A− of the
matrix A and for the first Euler flux f1.

Thus, when one represents a 2D state vector w = (�, �v1, �v2, e)T in the 3D form

w = (�, �v1, �v2, 0, e)T , a three-dimensional ARS can be used for 2D computations.
Analogously, representing a 1D state vector w = (�, �v1, e)T as w = (�, �v1, 0, 0, e)T ,

a 3D ARS works as a 1D one.

The reader can see that it is sufficient to implement only the three-dimensional
ARS’s for 1D, 2D and 3D computations. The price for this benefit of structural

simplicity is a low number of irrelevant operations in the 1D and 2D cases which do
not affect the efficiency of the solver. With the Osher-Solomon scheme everything
works in the same way and, moreover, the cost for the multi-dimensionality in one

and two dimensions is even lower.

Below we show that the character of the finite volume method allows to store all
data for the 1D and 2D computations in three-dimensional data structures.

5. Evaluation of the RHS

Except for the semi-implicit backward Euler scheme, all explicit as well as implicit

time integration schemes which are implemented in the EULER package require
explicit evaluation of the non-linear RHS vector function F (y(t), t) from (7). This

is done in a very simple way by means of one loop over all grid faces (see [4] for
the explicit form of F ). Let us first shortly describe the data structure which has

essential importance for the efficient evaluation of the RHS.

5.1. Data structures.

Grid points are stored in the structure

struct Point {

double x, y, z;

};

In the 2D and axisymmetric 3D cases, we put z = 0, for 1D and quasi-1D computa-

tions, y = z = 0. Point operators that facilitate adding points and multiplying them
by a real constant are defined.

State vectors and their time derivatives as well as numerical fluxes are represented

by the structure

struct Vector {

double q1, q2, q3, q4, q5;

};

176



For 2D and axisymmetric 3D computations, the fourth component q4 is set to zero.

In the 1D and quasi-1D cases, both q3 = q4 = 0. Vector operators that facilitate
adding vectors and multiplying them by a real constant are defined.
Solid-wall faces are stored in the structure

struct SolidFace {

double sinfi, cosfi, sinpsi, cospsi;

double size;

FiniteVolume *e;

};

One needs an exact information on the direction of the normal vector to all grid
faces for the computation of numerical fluxes. We describe this direction (in 3D)

using two angles, ϕ and ψ. The information on the direction is stored in terms of
the values sinϕ, cosϕ, sinψ and cosψ (rather than by means of only the two values

ϕ and ψ). The use of this data during the computation is so extensive that it makes
sense to store the pre-computed values in order to improve efficiency of the solver.

The usual convention is that the normal vector for solid-wall and inlet-outlet faces
points out of the domain Ω. The variables size and e represent the size of the face

and the pointer to the adjacent finite volume, respectively.
Inlet-outlet faces are stored by means of the structure

struct IOFace {

double sinfi, cosfi, sinpsi, cospsi;

double size;

int index;

FiniteVolume *e;

Vector bdystate;

};

In addition to the variables involved in the SolidFace data structure, one needs
to store the index of the grid face in order to distinguish different boundary con-

ditions at different inlet-outlet parts of the boundary ∂Ω and a vector bdystate
representing the boundary state. This vector is used for the computation of the

inlet-outlet numerical flux. We will describe the role of the vector bdystate in detail
in Subsection 5.3 devoted to the treatment of inlet-outlet boundary conditions.

Interior faces are stored in the form

struct IntFace {

double sinfi, cosfi, sinpsi, cospsi;

double size;

FiniteVolume *e1, *e2;

};
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For interior faces, the following convention is used: the normal vector to the face

points from the element e1 to the element e2. Computing the numerical flux Hint,
one uses the state at e1 as wi and the state at e2 as wj in the relation (9).

Finite volumes are represented by the structure

struct FiniteVolume {

Vector y, ydot;

double volume;

};

Vector variables y and ydot represent coefficients of the piecewise constant approx-
imate solution wh(x, t) and its time derivative ∂

∂twh(x, t) on the finite volume, re-

spectively. Let us remark that these constant values approximate the exact solution
at its center of gravity.

Solid-wall faces, inlet-outlet faces, interior faces and finite volumes are stored in
four separate lists.

5.2. Algorithm.
At the beginning of the computation, the initial condition for the flow is distributed

into all finite volumes, filling appropriately their variable y.

Evaluation of the right-hand side F is done in one loop over all grid faces. The

variable ydot in all finite volumes is set to zero at the beginning of each loop.
Numerical fluxes for all solid-wall and inlet-outlet faces are computed using the state

variable y from the adjacent finite volume e and the information about rotations
of the face and its size. The numerical flux is divided by the volume size of the

adjacent finite volume e and added with the negative sign to its ydot variable. For
the interior faces, the numerical flux divided by the volume size of e1 is added with

the negative sign to its ydot variable. The same value of the numerical flux, divided
by the volume size of the second adjacent finite volume e2, is added with a positive

sign to its ydot variable. It is important that the normal to the face points from e1
to e2.

5.3. Inlet-outlet boundary conditions.
In general, the inlet-outlet boundary conditions for the compressible Euler equa-

tions have not been completely understood yet. There are several treatments based
more or less on the theory of characteristics. The following three approaches are

offered by EULER. They can be applied in various combinations to different parts of
the inlet-outlet boundary of the domain Ω, their behaviour is slightly different and

it depends on the experience of the user to decide which one of them is optimal for
her/his simulation.
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At the beginning of the computation, user-defined boundary states are always

distributed to all inlet-outlet faces. Often they match the initial condition.

Approach 1: The state represented by the vector bdystate in the IOFace data
structure is assumed to lie exactly on the inlet-outlet face. Before each evaluation
of the RHS, some quantities are extrapolated from the adjacent finite volume to

the inlet-outlet face or the other way according to the type of flow at the adjacent
finite volume. EULER offers several possibilities for the choice of combinations of

extrapolated quantities (see the user’s guide on the Internet pages). Let us introduce
one possible choice as an example:

• The whole vector y from the adjacent finite volume e is copied to the vector
bdystate of the inlet-outlet face if the state y represents a supersonic out-
let (i.e. the corresponding Mach number is greater than one and the normal
component of the velocity has the same direction as the normal vector to the

inlet-outlet face).

• Density and all velocity components are copied from the vector y to the vector
bdystate and the pressure is copied the other way if the state y represents a

subsonic outlet (i.e. the corresponding Mach number is lower than one and the
normal component of the velocity has the same direction as the normal vector

to the inlet-outlet face).

• Density and all velocity components are copied from the vector bdystate to
the vector y and the pressure is copied the other way if the state y represents

a subsonic inlet (i.e. the corresponding Mach number is lower than one and
the normal component of the velocity has the opposite direction to the normal
vector to the inlet-outlet face).

• The whole vector bdystate is copied to the vector y if the state y represents a
supersonic inlet (i.e. the corresponding Mach number is greater than one and
the normal component of the velocity has the opposite direction to the normal

vector to the inlet-outlet face).

The numerical flux through the inlet-outlet face is then computed in such a way
that the first Euler flux f1 is applied directly to the vector bdystate.

Approach 2: The state represented by the vector bdystate in the IOFace data
structure is assumed to lie at the center of gravity of a fictitious finite volume which

lies outside of the domain Ω and is adjacent to the inlet-outlet face. Before each
evaluation of the RHS, some quantities are extrapolated from the adjacent finite

volume e to the fictitious one or the other way according to the type of flow at the
adjacent finite volume e (exactly in the same way as shown in Approach 1). The

numerical flux is computed using (9) with both the states in the real and fictitious
adjacent finite volumes. The time derivative ydot is affected by the numerical flux
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only in the real finite volume. This approach leads to a more robust scheme which

gives results very similar to the previous one.
Approach 3: The state represented by the vector bdystate in the IOFace data
structure is assumed to represent a fictitious infinite reservoir (“infinite finite vol-

ume”) which lies outside the domain Ω and is adjacent to the inlet-outlet face. No
quantities are extrapolated and the numerical flux is computed using both the vec-

tor y corresponding to the adjacent finite volume e and the constant reservoir state
bdystate. This approach leads to a very robust scheme which is, for certain models,

safer and closer to the physical reality than the previous ones. In fact, this approach
extends the geometrically finite computational domain to infinity and removes part

of the inlet-outlet boundary. It can be applied very successfully to the simulation of
reservoirs and, in fact, very often there is a reservoir in the reality even if it is not

involved in the model. The standard inlet-outlet boundary conditions which are the
source of huge theoretical and also computational problems are often a consequence

of the removal of such a reservoir. These reservoir boundary conditions can also be
applied very successfully to problems where one can be sure that the flow near the

inlet-outlet boundary or some of its parts remains unchanged.

6. Time integration

The advantage of the application of the method of lines is that it strictly separates
the time integration from the space discretization, which increases the modularity

of the numerical method. One can use any suitable ODE initial value problem
solver for the approximate solution of the ODE system (7), (8) arising from the

semi-discretization of the compressible Euler equations in space. Several schemes of
explicit, semi-implicit and fully implicit types are implemented in EULER.

6.1. Explicit schemes.
Explicit Runge-Kutta schemes of the first, second and fourth orders are the can-

didates for the explicit time integration in EULER. As they are widely known, we
think it is not necessary to repeat their exact definition.

In general these methods are not very suitable for the numerical integration of
stiff problems, which our problem definitely is. These schemes are unstable unless

the time step is very small, restricted by the diameter of the space discretization as
well as by certain properties of the flow (the CFL condition, see e.g. [6]). Without

adaptivity, lack of precision often leads to approximate solutions containing negative
density or pressure values. In this sense, one can easily construct flow problems

which do not have any large number of degrees of freedom and which cannot be
solved by non-adaptive explicit schemes in any reasonable time, anyway.
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Despite these facts explicit schemes are still very popular because of their very

simple implementation, clearly understandable function and very low memory re-
quirements. In this way, simpler flow problems are solvable but the question about
the precision of the time integration should not be asked. When one just uses two

different time steps, unless the computation breaks down, one obtains two different
solutions.

In our opinion, it is reasonable to use the explicit schemes when debugging the
code as they are too simple to contain hidden errors. In particular, they can be useful

when a new treatment of boundary conditions is implemented or when a completely
new flow problem is solved. Nevertheless, it is better to switch to higher-quality

schemes as soon as possible. The exception are of course huge 3D flow problems
where the memory limit is exceeded when using more precise and stable schemes.

6.2. Semi-implicit schemes.
For the purpose of improving the stability and precision of time integration, we

implemented a semi-implicit scheme based on the backward Euler method with lin-
earized approximate Riemann solvers. We have not linearized the ARS by Osher-

Solomon because it would be extremely complicated and, in the linearized form, this
ARS loses its main advantages with respect to the other ARS’s.
We linearize the ARS by Steger-Warming (14) as

(20) f
(lin)
R (q0L, q

0
R, qL, qR) = A+(q0L)qL +A−(q0R)qR,

the linearized ARS by Vijayasundaram (15) used in our code has the form

(21) f
(lin)
R (q0L, q

0
R, qL, qR) = A+

(
q0L + q0R
2

)
qL +A−

(
q0L + q0R
2

)
qR,

Van Leer ARS (16) is linearized using the relation

(22) f1(w) = A(w)w

as

f
(lin)
R (q0L, q

0
R, qL, qR) =

A(q0L)qL +A(q0R)qR

2
(23)

− 1
2
|A|

(
q0L + q0R
2

)
(qR − qL).

In relations (20), (21), (23), the variables q0L, q
0
R correspond to the approximate

solution at the previous time level. Linearizing also the solid-wall and inlet-outlet
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numerical fluxes, we end up with a sparse system of linear algebraic equations. This

system is preconditioned using the incomplete LU decomposition and the user can
choose several conjugate and bi-conjugate gradient schemes for its iterative solution.

It turns out that the semi-implicit scheme is really remarkably more precise and
stable than the explicit ones while it needs less memory than the higher-order adap-

tive fully implicit schemes which will be mentioned in the next subsection. Therefore,
the semi-implicit scheme can be successfully applied to (not extremely large) flow

problems which are not solvable with explicit schemes and which are, at the same
time, too large for the fully implicit ones.

Obviously, the described linearized backward Euler method is not unconditionally

stable and it still needs the CFL condition to keep the time step sufficiently small, but
in comparison with the explicit Runge-Kutta schemes, the size of the time step can

be several times larger. In our opinion, the quality of the scheme can be essentially
improved by applying a suitable multigrid or algebraic multigrid technique to the

iterative solution of the sparse system. This topic would be a natural continuation
of our work in this direction.

6.3. Implicit higher-order adaptive schemes.
Now we come to the most precise time-integration schemes which are offered by

EULER. Profiting from the modularity achieved by the separation of the space and

time discretization of partial differential equations, we apply highly efficient ODE
schemes offered by the standard ODE packages ODEPACK (see [1]) and DDASPK3.0

(which is a descendant of DDASSL [2]) for the time integration. These packages
contain schemes based mainly on the backward difference formula (BDF). In both

cases, the detailed description can be found directly in the source codes.

These ODE packages always help to overcome stability problems. One no longer
needs to guess a value for the CFL constant and to repeat the computation if his guess
has been too large. What is even more important, the implicit solvers always perform

a certain precision check which helps to eliminate problems with negative pressures
and densities during the computation. These troubles are usual for problems with

badly shaped meshes or steep gradients, mainly when being solved by the explicit
or semi-implicit schemes. In such cases, due to lack of precision of the approximate

time integration, the approximate solution to the semi-discrete problem easily leaves
the exact one and runs out of the set of admissible states.

The only restriction for the presented ODE packages is their large memory re-

quirements. Namely, most of the schemes offered are proposed for the solution of
stiff systems and therefore use the Jacobi matrix of the right-hand side, which costs a

lot of memory. Moreover, due to their multistep algorithms, the solvers need to store
the complete solution vector at several times levels. On the other hand, also for large
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problems there is a possibility to take advantage of a precise implicit higher-order

adaptive scheme of the Adams-Bashforth type offered by ODEPACK for non-stiff
problems, where the Jacobi matrix is not used. This scheme is quite efficient also
for large problems. Even if one does not have troubles with negative pressures and

densities, controlled precision is particularly useful for nonstationary problems when
one is interested in the precise solution at all time levels.

7. Multi-dimensional computations

As indicated in Sections 4 and 5, three-dimensional ARS’s and three-dimensional

data structures allow us to perform 1D, quasi-1D, 2D, axisymmetric 3D and 3D com-
putations. We would like to make several remarks on the details in this section.

7.1. One-dimensional case.
In 1D, the computational domain Ω is a bounded interval and the finite volumes

have the form of intervals. EULER allows non-equidistant partitions. There are no
solid walls in this case and only two inlet-outlet faces at both ends of the interval are

considered. All grid faces (corresponding in 1D to the grid points of the partition
of Ω) have a uniform nonzero size (there is no preferred value but one must use the

same value also for the computation of the sizes of the finite volumes).

7.2. Quasi-1D problems.
EULER provides the analytical solution (more exactly, the numerical construction

of the analytical solution) of the stationary quasi-1D compressible Euler equations
as well as their finite volume solution in the non-stationary case. In the latter case,

the finite volume scheme is very similar to the 1D one. There are the following two
differences: the size of the grid faces is not uniform and one needs to consider the

solid walls due to the non-conservativity of the quasi-1D momentum equation. For
details on both the analytical and the numerical approach we refer to [7].

7.3. Two-dimensional computations.
In 2D we consider any bounded domain Ω with continuous, piecewise linear bound-

ary. Complete information on the geometry is read as input data from a grid file.
The boundary of the domain is splitted into several parts which are assigned differ-

ent indices. These indices allow the user of EULER to prescribe various boundary
conditions for different parts of the boundary. Currently, EULER uses unstruc-

tured triangular meshes in 2D but it is only a question of preprocessing to allow for
e.g. polygonal finite volumes. Up to now, triangles have been sufficient.
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7.4. Axisymmetric 3D case.
As the reader knows, axisymmetric schemes are, in general, enormously advan-

tageous for axisymmetric 3D problems in comparison with the purely 3D schemes.
In our case, for the axisymmetric problems the 3D equations are reduced to their

axisymmetric form, which is similar to the 2D one. More exactly, the left-hand
side of the axisymmetric 3D equations is identical with the left-hand side in the

2D case. There are only some additional source terms on the right-hand side in the
axisymmetric case.

In EULER, we consider the x-axis as the axis of symmetry. One uses symmetric
half of the axial cut of the 3D domain as the 2D geometry for the axisymmet-

ric 3D computation. As usual, all grid points are assumed to have nonnegative
y-coordinates. The 2D geometry is covered by an unstructured triangular grid which

is read by EULER and pre-processed (neighbouring relations, rotations, volume and
edge sizes, construction of the centers of gravity, mapping of boundary conditions

etc.) in the standard 2D way. In the axisymmetric context, finite volumes which
are represented by grid triangles are in fact 3D axisymmetric rings (created by the

rotation of the grid triangles around the x-axis). Volume sizes of the finite volumes
(stored in the variable volume of the data structure FiniteVolume) are therefore

changed to the volume sizes of these rings. Original 2D volume sizes of all grid tri-
angles are stored in a separate list because they are needed for the evaluation of the

source terms. Analogously, grid edges represent 3D axisymmetric surfaces created
by the rotation of the edges around the x-axis and the variable size of all grid faces

is changed to the size of this 3D surface. See the source code for the exact formulae
describing the 3D axisymmetric volume and surface sizes. After computing the RHS

of the system (7), (8), one has to add the source term

(24) S =




0
0

2�pV2D/V3D
0

0




to the vector variable ydot in all finite volumes. In the definition (24) of the source

terms, p has the meaning of the current value of pressure in the finite volume and
the values V2D and V3D represent the 2D volume size of the grid triangle and the

3D volume size of the corresponding axisymmetric ring, respectively.

7.5. Three-dimensional computations.
Analogously to the purely 2D case, the domain Ω is bounded and assumed to have

a continuous, piecewise linear boundary. Its geometry is defined by means of an
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input grid file. Unstructured three-dimensional grids consisting of tetrahedra have

been sufficient so far. Similarly as in the 2D case, a generalization of implemented
finite volumes to convex polyhedra is only a formal problem of preprocessing.

7.6. Published results computed by EULER.
The best possibility to view numerical results obtained by EULER is to visit

the Internet site http://www.numa.uni-linz.ac.at/Staff/solin. Most of these

results also have been published (e.g. in [3], [4], [5], [6])— a complete list of references
is present at the above Internet page.
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