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CUBIC SPLINES WITH MINIMAL NORM*

Jiří Kobza, Olomouc
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Abstract. Natural cubic interpolatory splines are known to have a minimal L2-norm of its
second derivative on the C2 (or W 2

2 ) class of interpolants. We consider cubic splines which
minimize some other norms (or functionals) on the class of interpolatory cubic splines only.
The cases of classical cubic splines with defect one (interpolation of function values) and of
Hermite C1 splines (interpolation of function values and first derivatives) with spline knots
different from the points of interpolation are discussed.
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1. Introduction

Let us be given an increasing spline knotset xi, i = 0(1)n+1 on the real axis with
prescribed values si, i = 0(1)n+1 at the knots xi. The cubic splines s(x) = s31(x) ∈
C2 interpolating the prescribed function values have two free parameters which can
be used for some boundary condition prescribed or to optimization purposes. The

natural cubic interpolatory spline (with BC s′′(x0) = s′′(xn+1) = 0) is known to min-
imize the L2-norm of the second derivative on the class of interpolants from C2(W 2

2 )

(see [2], [5]). We can search for cubic splines minimizing some other norms of the
spline or of the vector of the corresponding derivative values at knots (or another

functional which can give a measure of some geometric or physical properties of the
process described by the data given). When at a knot xi we are given the function

value si = s(xi) and the value mi = s′(xi) of the first derivative, then the Her-
mite local cubic interpolatory spline s32(s) ∈ C1 is determined uniquely. To obtain

*This work was supported by the Council of Czech Government, J 14/98:153100011.
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some free parameters, let us prescribe such data at some points of interpolation ti,

i = 0(1)n; xi < ti < xi+1; gi = s31(ti), pi = s′31(ti). We obtain again some free
parameters which can be used for minimization purposes. There is an open question
of the optimal position of knots with respect to the data given.

We will consider the cases of minimized functionals (spline norms squared)

Jk(s) =
∫ xn+1

x0

[s(k)(x)]2 dx, k = 0, 1, 2, 3

or the corresponding discrete analogs

Jkd(s) =
n+1∑

i=0

wi[s(k)(xi)]2, k = 0, 1, 2.

In the simplest cases (Jkd with wi = 1) we can obtain the optimal parameters

using the pseudoinverse solution of the system of continuity conditions (see [1]).
The cases when the functional Jkd(s) can be expressed as a scalar product with a

symmetric positive definite (SPD) matrix can be treated with a special least-squares
(LSQ) technique (see [6]). More generally, we can use the quadratic programming

techniques (equality constrains are given by the spline continuity conditions)—see
e.g. [4].

2. Classical cubic spline

2.1. Local representation with the second derivative.
With the prescribed knotset and function values given [{xi, si}, i = 0(1)n+1] let

us denote hi = xi+1−xi, u = (x−xi)/hi,Mi = s′′31(xi). Then the local representation
of the spline s31(x) = s(x) in the interval [xi, xi+1] can be written as

s(x) = s(xi + uhi) = (1− u)si + usi+1 − 1
6h
2
i u(1− u)(1)

× [(2− u)Mi + (1 + u)Mi+1].

The spline continuity conditions (CC) which guarantee C2-smoothness can be writ-
ten for this local representation as the recurrence (see e.g. [5])

hi−1Mi−1 + 2(hi−1 + hi)Mi + hiMi+1 = 6(hi−1 + hi)[xi−1, xi, xi+1]s,(2)

i = 1(1)n.

The (n, n + 2)-matrix on the left-hand side of CC has the full row rank. The un-
known local parametersMi of the unique cubic spline which minimizes the functional
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J2d(s) = ‖M‖22 =
n+1∑
i=0

M2
i can be simply computed as the unique solution with mini-

mal norm of the underdetermined system (2) using the pseudoinverse matrix (see [1]).
For the functionals Jk(s) mentioned above we can obtain the expressions

J0(s) =
1
7560

n∑

i=0

hi[2520(s2i + sisi+1 + s2i+1)(3)

+ h4i (16M
2
i + 31MiMi+1 + 16M2

i+1)]

− 1
7560

n∑

i=0

h3i [336(siMi + si+1Mi+1) + 294(siMi+1 + si+1Mi)],

J1(s) =
n∑

i=0

1
hi

[
(si − si+1)2 +

h4i
180
(4M2

i + 7MiMi+1 + 4M2
i+1)

]
,(4)

J2(s) =
1
3

n∑

i=0

hi(M2
i +MiMi+1 +M2

i+1) =
1
6
MTR2M,(5)

J3(s) =
n∑

i=0

1
hi
(Mi+1 −Mi)2 =MTR3M.(6)

The existence of optimal solutions we search for follows from the nonnegativity

of the functionals Jk, Jkd. The matrices of the quadratic forms J0(s), J1(s), J2(s)
(with respect to the unknown parameters Mi) can be written as symmetric positive

definite (SPD) matrices, the matrix R3 in J3(s) is singular. We can use the LSQ
approach (see [6], [3]) to the CC as recurrences (difference equations) for computing

the optimal values of parameters Mi. More generally we can use algorithms of
quadratic programming with equality constrains. The positive definiteness of the

matrix of the quadratic form causes then the uniqueness of the minimizer. We can
see that in the “continuous” case of J3(s) the solution exists, but need not be unique

(there is no discrete analog). In the case of an equidistant spline knotset we can
prove the uniqueness of the minima of J3(s)—when we denote by Z the matrix of
the nullspace of the system of CC conditions (2), then the (2, 2)-matrix ZTR3Z is
SPD (the result should be valid also for slightly nonequidistant knotsets).

To discuss the discrete variant with J1d(s), we have to use another local repre-
sentation. The results obtained till now will be stated in a theorem in the next

subsection.
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2.2. Local representation with the first derivative.
We can use the unknown values of s′(xi) = mi as local parameters in the cubic

spline representation (u = (x− xi)/hi)

s(x) = (1 − u)2(1 + 2u)si + u2(3− 2u)si+1(7)

+ hiu(1− u)[(1− u)mi − umi+1].

The continuity conditions can be now written as recurrences (see [7], [5])

(8) aimi−1 + 2mi + cimi+1 = fi, i = 1(1)n

with coefficients

(9) ai =
hi

hi−1 + hi
; ci = 1− ai; fi = 3

[
ci

si+1 − si

hi
+ ai

si − si−1
hi−1

]
.

The matrix of CC has the full rank and so we can compute the local parameters mi

of the unique spline with minimal l2-norm of the vector m using the pseudoinverse
approach to the system (8).

We can compute again the expressions for functionals Jk(s) and obtaining

J0(s) =
1
210

n∑

i=0

hi[h
2
i (2m

2
i − 3mimi+1 + 2m

2
i+1)(10)

+ hi(22si + 13si+1)mi − hi(13si + 22si+1)mi+1

+ 78s2i + 54sisi+1 + 78s
2
i+1],

J1(s) =
n∑

i=0

[hi

15
(2m2i −mimi+1 + 2m2i+1)(11)

+
1
5
(si − si+1)(mi +mi+1) +

6
5hi
(si − si+1)

2
]
,

J2(s) = 4

[ n∑

i=0

1
hi
(m2i +mimi+1 +m2i+1)(12)

+
n∑

i=0

3
h2i
(mi +mi+1)(si − si+1) +

n∑

i=0

3
h3i
(si − si+1)2

]
,

J3(s) = 36
n∑

i=0

1
h5i
[2(si − si+1) + hi(mi +mi+1)]2.(13)

We can see again the positive definiteness of matrices of quadratic parts in the

functionals Jk(s), k = 0, 1, 2, which ensures the uniqueness of the minima. For the
functional J3(s) we have again positiveness only—but on the equidistant knotset we
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can prove uniqueness similarly as in the foregoing case (positive definiteness of the

projection of the matrix of the quadratic form to the nullspace of CC).

The optimal solutions to our problem can be computed using quadratic program-
ming algorithms. On the equidistant knotset we can use the special LSQ technique

for solutions of difference equations, described in [6]. The following theorem com-
pletes our results for the functionals Jk(s) and Jkd(s).

Theorem 1. For given spline knots x and function values s at the knots there
exists a unique cubic interpolatory spline with minimal value of J1d(s) or J2d(s). Its
local parameters mi = s′(xi) or Mi = s′′(xi) can be computed as the pseudoinverse

solution to the underdetermined system of CC (8) or (2).

There exist also unique cubic splines with minimal values of Jk(s), k = 0, 1, 2.
Their local parameters mi or Mi can be computed by quadratic programming algo-

rithms or some special LSQ algorithms as minimizers of Jk(s) under the correspond-
ing continuity conditions.

On the equidistant spline knotset there exists also unique cubic spline with minimal

value of J3(s).

������� 1. For the discrete data x = 0 : 1 : 20,

s=[15 11 3 5 0 -2 -7 -1 6 10 12 16 19 17 13 12 8 6 4 1 0]

we have computed the cubic natural spline and the cubic splines with minimal norms
of the vectors m,M. The very similar results are plotted in Fig. 1.

0 2 4 6 8 10 12 14 16 18 20
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− cubic natural spline − full
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norm(m)=17.2

norm(M)=22.3

Figure 1. Cubic spline interpolants to discrete data.
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3. Hermite cubic spline

When we are given the function value and the first derivative value at each knot xi,
then there exists a unique Hermite spline s32(x) interpolating these values—there

are no free parameters for any optimization. But we can consider the same problem
with the data ti, gi = s(ti), pi = s′(ti); i = 0(1)n with different spline knots xi,

i = 0(1)n+ 1 (the connection of neighbouring segments with possible jumps in the
second derivative will be between the points of interpolation; we can then influence

the curve shape by the choice of the knots). For the most frequently used case of
ti = (xi+xi+1)/2 we can write the spline local representation with the local variable

u = (x− xi)/hi as

s32(x) = (2u− 1)2[(1 − u)si + usi+1](14)

+ 4u(1− u)gi + 2hiu(1− u)(2u− 1)pi.

The condition of the first derivative continuity gives the spline continuity conditions

as the recurrences (i = 0(1)n− 1)

− 1
hi

si + 5
( 1

hi
+
1

hi+1

)
si+1 −

1
hi+1

si+2(15)

= 4
( 1

hi
gi +

1
hi+1

gi+1

)
+ 2(pi − pi+1).

Similarly as with classical cubic splines we have now two free parameters, which we

can use to fulfil some boundary conditions or for optimization purposes. We can see
that the matrix of CC (15) has the full rank. When we want to have the interpolant

from C2 with the same knots, then we have not to prescribe the derivatives pi, but
to compute them so that the conditions for the second derivative continuity

− 1
h2i

si + 2

(
1
h2i

− 1
h2i+1

)
si+1 +

1
h2i+1

si+2(16)

=
( 1

h2i
gi −

1
h2i+1

gi+1

)
+
3
2

( 1
hi

pi +
1

hi+1
pi+1

)

are also valid. Both systems (15), (16) of such CC form now a block system of
equations for computing the local parameters si, pi with three free parameters. Using

the pseudoinverse approach we can compute the local parameters si, pi of the spline
with minimal norm of the vector [s,p].
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From the representation (14) we can compute the values of the functionals Jk(s)—

we obtain

J0(s) =
1
105

n∑

i=0

hi[(14gi − 3hipi)si + (14gi + 3hipi)si+1(17)

+ 9s2i + 3sisi+1 + 9s2i+1 + 56g
2
i + 2h

2
i p
2
i ],

J1(s) =
1
15

n∑

i=0

1
hi
[−(80gi − 24hipi)si − (80gi + 24hipi)si+1(18)

+ 47s2i − 14sisi+1 + 47s2i+1 + 80g
2
i + 12h

2
i p
2
i ],

J2(s) = 16
n∑

i=0

1
h3i
[−(4gi − 6hipi)si − (4gi + 6hipi)si+1(19)

+ 4s2i − 4sisi+1 + 4s2i+1 + 4g
2
i + 3h

2
i p
2
i ],

J3(s) = 576
n∑

i=0

1
h5i
[si+1 − si − hipi]

2.(20)

We can see here the positive definiteness of the matrices of the quadratic forms Jk(s),

k = 0, 1, 2 and together with the full rank of the matrices in CC (15) we can so prove
the uniqueness of their minima. The matrix of the quadratic form J3(s) is singular.

Contrary to the case of cubic splines s31(x) there is not a unique minimum. To
the given input data {gi, pi} we can find such a constant p that the Hermite spline

with input data {gi, pi + p} gives the same value to the functional J3(s). A simpler
construction of such counterexample will be given in the next section. We summarize

the results of this section in the following theorem.

Theorem 2. On the spline knotset with points of interpolation at the midpoints
of intervals there exist unique Hermite interpolatory splines which have minimal

values of Jk(s), k = 0, 1, 2 and J0d(s) for the data [xi, gi, pi] given.

�����	. We can expect similar results in the case of slightly shifted knots xi.
When we denote u = (x − xi)/hi, di = (ti − xi)/hi, we can obtain the spline local

representation for such a general knotset as

s(x) =
1
d2i
[d2i + di(1− di)u+ (1 + 2di)u2 − u3]si

+
1

(1− di)2
u(u+ d)2si+1

+
u

d2i (1− di)2
[di(2− 3di) + (3d

2
i − 1)u+ (1− 2di)u

2]gi

+
hiu

di(di − 1)
[di − (1 + di)u+ u2]pi.
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The first derivative CC can be written in such a general case as

1
hi

(di − 1
di

)2
si +

[ 1
hi

di − 3
di − 1

+
1

hi+1

di+1 + 2
di+1

]
si+1 −

1
hi+1

( di+1

di+1 − 1
)2

si+2(21)

=
1
hi

3di − 1
d2i (di − 1)

gi +
1

hi+1

2− 3di+1

di+1(di+1 − 1)2
gi+1

+
1
di

pi +
1

di+1 − 1
pi+1.

To write down the expressions for functionals considered and to discuss the unique-
ness of the optimal solution is more involved now.

4. First derivative as the local parameter

With the given data [ti, gi, pi] from the foregoing section we can choose the values

[mi, mi+1], mj = s′(xj) of the Birkhoff interpolation problem as completing local
parameters. The corresponding local representation in the simpler case of ti =

(xi + xi+1)/2 (di = 1/2) is

s(x) = gi + hi

[(2
3
u3 − 3

2
u2 + u− 5

24

)
mi(22)

−
(4
3
u3 − 2u2 + 1

3

)
pi +

(2
3
u3 − 1

2
u2 +

1
24

)
mi+1

]
.

The spline continuity conditions for s(x) ∈ C1 are now (i = 0(1)n− 1)

−himi + 5(hi + hi+1)mi+1 − hi+1mi+2(23)

= 24
[
gi+1 − gi −

1
3
(hipi + hi+1pi+1)

]
.

The matrix on the left-hand side of these CC has full rank. With help of the pseudoin-

verse we can compute from this system of n equations with n+ 2 unknown parame-
ters mi the solution with the minimal value of J1d(s). When we do not prescribe the

values pi, we can compute them so as to obtain s(x) ∈ C2 which obeys the CC (23)
and the following C2 conditions:

(24)
1
hi

mi + 3
( 1

hi
+
1

hi+1

)
mi+1 +

1
hi+1

mi+2 = 4
( 1

hi
pi +

1
hi+1

pi+1

)
.

We have again three free parameters in a block system of equations. We can also

use these relations in the derivative interpolation problem, where only the values pi

are given. We can now find the pseudoinverse solution m from (24), to choose the
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value g0 and then compute recursively the remaining values gi from the first part

of CC (23).

We can compute the expressions for the functionals Jk(s) in such a representa-

tion—we obtain

J0(s) =
1
20160

n∑

i=0

[hi(256hipi − 1680gi) + hi(256hipi + 1680gi)mi+1(25)

+ h2i (83m
2
i − 86mimi+1 + 83m

2
i+1) + 20160g

2
i + 1088h

2
ip
2
i ],

J1(s) =
1
15

n∑

i=0

[2pi(mi +mi+1) + 2m2i −mimi+1 + 2m2i+1 + 8p
2
i ],(26)

J2(s) =
1
3

n∑

i=0

1
h3i
[7m2i + 2mimi+1 + 7m

2
i+1 − 16pi(mi +mi+1) + 16p

2
i ],(27)

J3(s) = 16
n∑

i=0

1
h5i
(mi +mi+1 − 2pi)2.(28)

We can establish again the positive definiteness of the matrices of the quadratic forms

for k = 0, 1, 2, which—together with the full rank of the matrix in CC—ensures the
uniqueness of the optimal spline, as stated above in Theorem 2. The matrix in J3(s)

is again singular. Now it is easier to see that the two different splines determined by
the data [gi, pi] and [gi+g, pi] with an arbitrary constant g correspond to splines with

equal values mi (see (23)) and an equal value of the functional. We can complete
our results now as follows.

Theorem 3. For a given spline knotset [xi] and data [ti, gi, pi] with ti =
1
2 (xi + xi+1) there exists a unique Hermite interpolatory spline with a minimal
value of J1d(s). We can compute its parameters m as the pseudoinverse solution to
the system (23).

There is no unique Hermite spline with a minimal value of J3(s).

Given the data [xi], [pi = s′(ti)], ti = 1
2 (xi + xi+1), i = 0(1)n only, then the

spline s31(x) interpolating the derivative values pi with a minimal value of J1d(s) is

determined uniquely up to an additive constant (initial condition).

�����	. For the general position of the points of interpolation ti between the
knots xi, xi+1—described by the parameters di = (ti − xi)/hi—the local Hermite
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spline representation can be written as

s32(u) = gi +
hi

6di
[d2i (di − 3) + 6diu− 3(1 + di) + 2u3]mi(29)

+
hi

6(1− di)
[d3i − 3diu

2 + 2u3]mi+1

− hi

6di(1 − di)

[
d2i (3− 2di)− 3u2 + 2u3]pi.

The continuity conditions for the first derivatives are now

−hi

di
(1− di)

3mi + [hi(1 + di − d2i ) + hi+1di+1(3− di+1]mi+1 −
hi+1

1− di+1
d3i+1mi+2

= 6(gi+1 − gi)−
hi

di
(1 − di)(2di + 1)pi −

hi+1

1− di+1
di+1(3 − 2di+1)pi+1.

The expressions for the values of the functionals Jk(s) are too lengthy to be written
here.

�����	. It would be possible to consider also the problem of the mean value

interpolation (histopolation) with cubic splines. In such a case we could not use the
function value at the midpoint as the local parameter.

������� 2. For x = −1 : 2 : 11; t = 0 : 2 : 10 and the values of the function
f(u) = (5 − u) cos(u) and its derivative we have computed the natural cubic spline

with knots and values at the knots xi, the cubic spline with a minimal norm of the
vectorm and Hermite interpolants with points of interpolation ti and minimal norms

of vectors s,m. The results obtained are plotted in Fig. 2.
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Figure 2. Hermite spline interpolants.
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