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Abstract. This note deals with contact shape optimization for problems involving “float-
ing” structures. The boundedness of solutions to state problems with respect to admissible
domains, which is the basic step in the existence analysis, is a consequence of Korn’s inequal-
ity in coercive cases. In semicoercive cases (meaning that floating bodies are admitted),
the Korn inequality cannot be directly applied and one has to proceed in another way: to
use a decomposition of kinematically admissible functions and a Korn type inequality on
appropriate subspaces. In addition, one has to show that the constant appearing in this
inequality is independent with respect to a family of admissible domains.
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1. Introduction

Shape optimization is a special branch of the optimal control theory in which

control variables are related to the geometry of systems (the shape, the thickness,
e.g.). In particular, contact shape optimization deals with optimization of a struc-

ture composed of several individual deformable bodies, being in a mutual contact.
It is well-known that contact shape optimization leads to a non-smooth problem, in
general, due to the fact that the state of the system is described by a variational in-

equality (see [2], [3], [11]). A mathematical analysis including approximations of such
problems is presented in detail in [2], [3]. All problems studied there are supposed

to be coercive. The coercivness is guaranteed by appropriate Dirichlet boundary
conditions, eliminating rigid body deformations, i.e. translations and rotations. On

*This work was supported by grants No. 101/01/0538 of the Grant Agency of the Czech
Republic and No. A1075005 of the Academy of Sciences of the Czech Republic.
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the other hand, in practice we meet a lot of situations when at least to one of the

bodies of the structure is allowed to “float”. In this way we arrive at a semicoercive
case. It is well-known that semicoercive cases deserve special attention: solutions
need not exist for any applied forces and if a solution exists then it is not necessarily

unique.

The basic step of the existence analysis in shape optimization consists in proving

that solutions to state problems depend continuously on shape variations (in an ap-
propriate way). To this end, we first show that the solutions (defined on different

domains) are bounded in the respective Sobolev spaces. In the coercive case this
follows immediately from Korn’s inequality, whose constant can be chosen indepen-

dently of domains satisfying the so-called uniform ε-cone property. In semicoercive
cases, Korn’s inequality cannot be directly applied and one has to proceed in a dif-

ferent way. In this note it will be shown how the boundedness of solutions can be
obtained by using the approach from [4]. Having established the boundedness, the

existence analysis in contact shape optimization proceeds exactly step by step as
in [2], [3].

The paper is organized as follows: in Section 2 we prove that the constants appear-

ing in equivalent norms are independent with respect to a class of domains, provided
that a “basic” norm possesses the same property. This is an extension of results

from [5], [6]. In Section 3 we use a Korn type inequality on appropriate subspaces,
whose constant can be chosen independently of the admissible domains. This result

will be used in contact shape optimization.

2. Equivalent norms with constants uniform

with respect to a class of domains

We start this section by notation, definitions and auxiliary results which will be
useful in what follows.

Let h > 0, ε ∈ (0, �/2) be given numbers and ξ a unit vector in �n . The set

C(ξ, ε, h) = {x ∈ �n | (x, ξ) > ‖x‖ cos ε, ‖x‖ < h}

is a cone of angle ε and height h.

Definition 2.1. Let ε ∈ (0, �/2), h > 0, r > 0 (2r � h) be given. We say that

a domain Ω ⊂ �
n satisfies the ε-cone property if for every x ∈ ∂Ω there exists a

vector ξx ∈ �
n , ‖ξx‖ = 1 and a cone Cx := Cx(ξx, ε, h) such that ∀y ∈ B(x, r) ∩ Ω

the set y+Cx belongs to Ω, where B(x, r) denotes the ball of radius r and centered
at x.
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Definition 2.2. Let h, ε, r be as above and let D be a closed bounded domain

in �n . The system of all domains Ω ⊂ �
n , Ω ⊂ D satisfying the ε-cone property will

be denoted by Oε.

It is well-known that Oε possesses some useful properties, which are listed in

Theorem 2.1 (the uniform extension property). Let h, r, ε and Oε be the

same as above. Then for all Ω ∈ Oε there exists an extension mapping pΩ ∈
L(Hm(Ω), Hm(�n )), m ∈ �, such that its operator norm ‖pΩ‖ depends solely on h,

r, ε and m but not on the particular choice of Ω ∈ Oε.

�����. For the proof see [1]. �

Consequence 2.1. Since the numbers h, r, ε are the same for all Ω ∈ Oε, the

norm pΩ can be estimated independently of Ω ∈ Oε.

The compactness of Oε with respect to the Hausdorff metric and the convergence

of the characteristic functions in the L2(D)-norm is another important property of
this class of domains. Recall that the Hausdorff distance d(A, B) of two sets A, B

in �n is defined by

d(A, B) = max
(
sup
x∈A

�(x, B), sup
x∈B

�(x, A)
)
,

where �(x, A) is the distance of a point x from A.

We say that {Ak}∞k=1 tends to A in the Hausdorff sense (and we write Ak
h→ A)

iff d(Ak, A)→ 0, k →∞. Compactness properties of Oε are summarized in

Theorem 2.2. From every sequence {Ωk}, Ωk ∈ Oε one can select a subse-

quence {Ωkj} and a domain Ω ∈ Oε such that

Ωkj

h→ Ω, j →∞,(2.1)

∂Ωkj

h→ ∂Ω, j →∞,(2.2)

χ(Ωkj )→ χ(Ω) in the L2(D)-norm,(2.3)

where χ(•) denotes the characteristic function of the set •.

�����. For the proof of (2.1), (2.3) we refer to [1], [10], (2.2) can be found

in [8]. �

������ 2.1. From the definition of the Hausdorff metric it easily follows that if

∂Ωk
h→ ∂Ω, then for any η > 0 there exists k0 := k0(η) ∈ � such that for any k � k0

the boundary ∂Ωk belongs to the η-neighbourhood of ∂Ω.
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On every Ω ∈ Oε we shall consider the Sobolev space H1(Ω,�d ), d ∈ � and its

closed subspace W (Ω). The classical norm in H1(Ω,�d ) will be denoted by ‖ · ‖1,Ω,
while the symbol | · |1,Ω stands for a seminorm. Further, let aΩ : W (Ω)×W (Ω)→ �

1

be a bilinear form satisfying

(A1) m|v|21,Ω � aΩ(v, v) � M |v|21,Ω ∀v ∈ W (Ω), ∀Ω ∈ Oε, where m, M are
positive constants which do not depend on Ω ∈ Oε;

(A2) for any decomposition of Ω ∈ Oε into two disjoint Lipschitz subdomains

Ω1, Ω2 (i.e. Ω = Ω1 ∪Ω2, Ω1 ∩Ω2 = ∅) we have

aΩ(v, v) = aΩ1(v, v) + aΩ2(v, v) ∀v ∈ W (Ω);

(A3) if Ωk
h→ Ω, where Ωk,Ω ∈ Oε are such that Ωk ⊂ Ω ∀k ∈ � then

aΩk
(v, v)→ aΩ(v, v) ∀v ∈ W (Ω);

(A4) ∃β = const > 0 such that

aΩ(v, v) + ‖v‖20,Ω � β‖v‖21,Ω ∀v ∈ W (Ω), ∀Ω ∈ Oε,

where ‖ · ‖0,Ω denotes the L2(Ω,�d)-norm.

������ 2.2. (A4) is the basic assumption in the subsequent analysis. It says
that the expression (aΩ(v, v)+‖v‖20,Ω)1/2 defines a norm inW (Ω) which is equivalent

to ‖ · ‖1,Ω and in addition, the constant β is independent of Ω ∈ Oε.

Let W(Ω) = keraΩ, i.e.

W(Ω) = {v ∈ W (Ω) | aΩ(v, v) = 0} = {v ∈ W (Ω) | |v|1,Ω = 0}.

Next we shall suppose that

(A5) dimW(Ω) = κ ∈ �, where κ does not depend on Ω ∈ Oε.

If it is so, one can find a system
{
l
(i)
Ω

}κ

i=1
of linear continuous functionals onH1(Ω, Rd)

such that

v ∈ W(Ω) & l
(i)
Ω (v) = 0, i = 1, . . . , κ ⇔ v = 0 in Ω.

Next we shall suppose that the set D from Definition 2.2 is such that int D has
Lipschitz boundary.

Convention. The mapping pΩ from Theorem 2.1 will be now understood as the
extension from Ω onto D (by taking the restriction of the original pΩ to D).
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Let the system
{
l
(i)
Ω

}κ

i=1
be continuous in the following sense:

(A6)
Ωk

h→ Ω, Ωk,Ω ∈ Oε

pΩk
vk ⇀ v in H1(D, Rd),

vk ∈ H1(Ωk, Rd)




=⇒ l

(i)
Ωk
(vk)→ l

(i)
Ω (v), k →∞, i = 1, . . . , κ.

Finally we shall suppose that the following restriction property holds:

(A7) Ωk
h→ Ω, Ωk, Ω ∈ Oε

pΩk
vk ⇀ v in H1(D, Rd), vk ∈ W (Ωk)

}
=⇒ v|Ω ∈ W (Ω).

It is known (see [7]) that

[|v|]1,Ω :=
{

aΩ(v, v) +
κ∑

i=1

[l(i)Ω (v)]
2

}1/2

defines a norm on W (Ω) which is equivalent to ‖ · ‖1,Ω:

∃β̃ = const > 0 such that [|v|]1,Ω � β̃‖v‖1,Ω

holds for every v ∈ W (Ω). The constant β̃ can possibly depend on a particular choice
of Ω ∈ Oε. In what follows we shall prove that under the previous assumptions, β̃ can

be chosen independently of Ω ∈ Oε.
We start with an auxiliary result.

Lemma 2.1. Let (A1)–(A3) and (A7) be satisfied. Further let ∂Ωk
h→ ∂Ω and

pΩk
vk ⇀ v in H1(D, Rd), where Ωk,Ω ∈ Oε and vk ∈ W (Ωk). Then

lim inf
k→∞

aΩk
(vk, vk) � aΩ(v, v).

�����. Let Ω(s), s ∈ � denote the following subset of Ω:

Ω(s) = {x ∈ Ω | �(x, ∂Ω) > 1/s}.

Then Ω(s)
h→ Ω, ∂Ω(s) h→ ∂Ω as s →∞.

Let s ∈ � be fixed. There exists k0 := k0(s) ∈ � such that (see Remark 2.2)

Ωk ⊃ Ω(s) ∀k � k0. From (A1) and (A2) it follows that

aΩk
(vk, vk) = aΩ(s)(vk, vk) + aΩk\Ω(s)(vk, vk) � aΩ(s)(vk, vk)

and consequently

(2.4) lim inf
k→∞

aΩk
(vk, vk) � lim inf

k→∞
aΩ(s)(vk, vk) � aΩ(s)(v, v),

by virtue of the lower semicontinuity of the mapping aΩ(s) : v → aΩ(s)(v, v), v ∈
W (Ω(s)). Letting s → ∞ in (2.4) and using (A3) we arrive at the assertion of the
theorem. �
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The main result of this section is

Theorem 2.3. Let (A1)–(A7) be satisfied. Then there exists a constant β̃ > 0

independent of Ω ∈ Oε such that

(2.5) aΩ(v, v) +
κ∑

i=1

[l(i)Ω (v)]
2 � β̃‖v‖21,Ω ∀v ∈ W (Ω), ∀Ω ∈ Oε.

����� (by contradiction). Let us suppose that (2.5) is not true. Then for any

k ∈ � there exists Ωk ∈ Oε and vk ∈ W (Ωk) such that

(2.6) aΩk
(vk, vk) +

κ∑

i=1

[l(i)Ωk
(vk)]2 � 1/k‖vk‖21,Ωk

.

We may suppose that ‖vk‖1,Ωk
= 1 ∀k ∈ �. In view of Theorems 2.1 and 2.2 we

may also suppose that

Ωk
h→ Ω ∈ Oε, ∂Ωk

h→ ∂Ω, k →∞(2.7)

and

pΩk
(vk)⇀ v in H1(D, Rd), v|Ω ∈ W (Ω)(2.8)

(otherwise we pass to appropriate subsequences). From (2.6) we have that

(2.9) aΩk
(vk, vk)→ 0, l

(i)
Ωk
(vk)→ 0 ∀i = 1, . . . , κ.

Lemma 2.1, together with (2.7), (2.8) and (A6) yield

aΩ(v, v) = 0⇔ v|Ω ∈ W(Ω)

and l
(i)
Ω (v) = 0 ∀i = 1, . . . , κ so that v = 0 in Ω. On the other hand,

aΩk
(vk, vk) + ‖vk‖20,Ωk

� β ∀k ∈ �

making use of (A4) so that
‖vk‖20,Ωk

� β/2

for k sufficiently large as follows from (2.9). From (2.3) and compactness of the
embedding of H1(Ω,�d ) into L2(Ω,�d ) we easily obtain that

‖v‖20,Ω = lim
k→∞

‖vk‖20,Ωk
� β/2,

which leads to a contradiction with v = 0 in Ω. �

402



Consequence 2.2. Let all the assumptions of Theorem 2.3 be satisfied and let

V (Ω) = {v ∈ W (Ω) | l(i)Ω (v) = 0 ∀i = 1, . . . , κ}.

Then (2.5) implies that

aΩ(v, v) � β̃‖v‖21,Ω ∀v ∈ V (Ω), ∀Ω ∈ Oε,

with a constant β̃ > 0 independent of Ω ∈ Oε.

Next we present several applications of Theorem 2.3 and of Consequence 2.2. Let

C0, C1 be two positive constants and let

Uad = {α ∈ C0,1([a, b]) | 0 � α(x1) � C0 ∀x1 ∈ [a, b], |α′(x1)| � C1 a.e. in (a, b)}

be the set of uniformly bounded and uniformly Lipschitz functions defined in an

interval [a, b]. With any α ∈ Uad the domain Ω(α) ⊂ �
2 will be associated:

Ω(α) = {(x1, x2) ∈ �2 | x1 ∈ (a, b), α(x1) < x2 < γ},

where γ > 0 is a given number (see Fig. 2.1); let Γ(α) be the graph of the function
α ∈ Uad.

a b

Γu(α)

Γ(α)

Ω(α)

�
Figure 2.1.

The system Oε = {Ω(α) | α ∈ Uad} satisfies the ε-cone property in the sense of
Definition 2.1 for some ε := ε(C0, C1) > 0.

	
����� 2.1. Let W (α) = H1(Ω(α)) := H1(Ω(α),�1 ), Ω(α) ∈ Oε (as above)

and aα(v, v) = |v|21,Ω(α) be the classical seminorm in H1(Ω(α)). The convergence

Ω(αk)
h→ Ω(α) in Oε reduces to uniform convergence of {αk} to α in [a, b]. Further,

W(α) = ker aα = �
1

and

dimW(α) = 1 for any α ∈ Uad.
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Let Γu(α) = {(x1, x2) | x1 = a; α(a) < x2 < γ} be the left vertical side of ∂Ω(α)

and define

(2.10) l(1)α (v) :=
∫

Γu(α)
v dx2 =

∫ γ

α(a)
v(a, x2) dx2, v ∈ W (α).

It is easy to verify that all the assumptions (A1)–(A7) are satisfied in this case so

that the assertion of Theorem 2.3 reads as follows:

(2.11) ∃β̃ = const > 0: |v|21,Ω(α) +
(∫

Γu(α)
v dx2

)2
� β̃‖v‖21,Ω(α)

holds for any v ∈ H1(Ω(α)) and any α ∈ Uad. In particular, let

V (α) = {v ∈ H1(Ω(α)) | v = 0 on Γu(α)}.

Then

(2.12) |v|21,Ω(α) � β̃‖v‖21,Ω(α) ∀v ∈ V (α), ∀α ∈ Uad

is the generalized Friedrichs inequality uniform with respect to α ∈ Uad. Another
choice of l(1)α satisfying the previous assumptions is:

l(1)α (v) =
∫

Ω(α)
v dx1 dx2

leading to the well-known Poincaré inequality uniform with respect to α ∈ Uad.

	
����� 2.2. Let Uad, Ω(α), Γu(α) be the same as in the previous example and

W (α) = {v = (v1, v2) ∈ H1(Ω(α);�2 ) | v1 = 0 on Γu(α)},

aα(u, v) =
∫

Ω(α)
εij(u)εij(v) dx1 dx2, v ∈ W (α),

where εij(v) = 1
2 (∂vi/∂xj+∂vj/∂xi), i, j = 1, 2 is the linearized strain tenzor. Then

W(α) = ker aα = {v : Ω(α)→ �
2 | v = (0, a), a ∈ �1}.

A non-trivial result says (see [9]) that the so-called second Korn inequality

aα(v, v) + ‖v‖20,Ω(α) � β‖v‖21,Ω(α) ∀v ∈ W (α)
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is satisfied with a constant β > 0 which does not depend on α ∈ Uad. A possible
choice of l(1)α recognizing the zero element of W(α) is

(2.13) l(1)α (v) =
∫

Γu(α)
v2 dx2.

From Theorem 2.3 it follows that

aα(v, v) +

(∫

Γu(α)
v2 dx2

)2
� β̃‖v‖21,Ω(α) ∀v ∈ W (α), ∀α ∈ Uad,

and β̃ > 0 is independent of α ∈ Uad. Let

(2.14) V (α) = {v ∈ W (α) | l(1)α (v) = 0}.

Then

(2.15) aα(v, v) � β̃‖v‖21,Ω(α) ∀v ∈ V (α), ∀α ∈ Uad.

An alternative choice of l(1)α satisfying especially (A6) is

(2.16) l(1)α (v) =
∫ b

a

v2(x1, α(x1)) dx1, v ∈ W (α)

(for the proof see [2], [3]) so that (2.15) holds true with l
(1)
α defined by (2.16). This

result will be used in the next section.

3. Contact shape optimization
with semicoercive state problems

In this section we will study an optimization problem for a system of elastic bodies
whose shapes are as in Fig. 2.1. In particular the symbols Uad, Ω(α), Γu(α) and Γ(α)
have the same meaning as at the end of Section 2. We suppose that the bodies are
unilaterally supported along Γ(α) by a rigid, frictionless foundation �2− = {(x1, x2) ∈
�
2 | x2 � 0}, i.e. the following unilateral conditions are prescribed on Γ(α):

(3.1)





u2(x1, α(x1)) � −α(x1) ∀x1 ∈ (a, b),

T2(u) := σ2j(u)νj � 0, T2(u)(u2 + α) = 0,

T1(u) := σ1j(u)νj = 0,
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where ν = (ν1, ν2) denotes the unit outward normal vector to ∂Ω, the matrix σ(u) =

{σij(u)}2i,j=1 stands for the stress tensor which is related to the strain tensor ε(u) =
{εij(u)}2i,j=1 by means of a linear Hooke law

(3.2) σij(u) = cijklεkl(u).

Elasticity coefficients cijkl ∈ L∞(Ω̂) satisfy the classical symmetry and ellipticity

conditions

(3.3)





cijkl = cjikl = cklij a.e. in D

cijklξijξkl � mξijξij ∀ξij = ξji ∈ �1

for a.a. x ∈ D,

where m > 0 is a positive constant and D = (a, b)×(0, γ). On Γu(α) (the left vertical
side of ∂Ω(α)) the zero displacement in the x1-direction will be prescribed:

(3.4) u1 = 0 on Γu(α).

On the remaining part ΓP (α) ⊂ ∂Ω(α), surface tractions P ∈ L2(∂D;�2 ) are applied

(notice that ΓP (α) ⊂ ∂D ∀α ∈ Uad):

(3.5) σij(u)νj = Pi, i = 1, 2 on ΓP (α).

Finally, the body is subject to body forces F ∈ L2(D,�2 ).

By the classical solution of the Signorini problem we mean a displacement field
u = (u1, u2) satisfying (3.1), (3.2), (3.4), (3.5) and the equilibrium equations

(3.6)
∂σij(u)

∂xj
+ Fi = 0, i = 1, 2 in Ω(α).

In order to give the variational formulation, we introduce the following set of kine-
matically admissible displacements

K(α) = {v = (v1, v2) ∈ W (α) | v2(x1, α(x1)) � −α(x1) for a.a. x1 ∈ (a, b)},

where W (α) is the space from Example 2.2 on Ω := Ω(α).

The variational formulation of our problem reads as follows:

Find u := u(α) ∈ K(α) : Jα(u) � Jα(v) ∀v ∈ K(α)(P(α))

or equivalently:

Find u := u(α) ∈ K(α) : aα(u, v − u) � Lα(v − u) ∀v ∈ K(α),(P(α))′
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where

Jα(v) =
1
2
aα(v, v) − Lα(v),

aα(v, v) =
∫

Ω(α)
σij(v)εij(v) dx1 dx2,

Lα(v) =
∫

Ω(α)
Fivi dx1 dx2 +

∫

ΓP (α)
Pivi ds.

Since the bilinear form aα is only semicoercive on W (α) (see Example 2.2), the

existence of solutions to (P(α)) will be guaranteed under an additional assumption
on the resultant of applied forces.

Theorem 3.1. Let α ∈ Uad be fixed and suppose that

(3.7) rα :=
∫

Ω(α)
F2 dx1 dx2 +

∫

ΓP (α)
P2 ds < 0.

Then (P(α)) (or (P(α))′) has a unique solution.

�����. For the proof we refer to [4]. �

Next we introduce a cost functional I : (α, y) → �
1 , α ∈ Uad, y ∈ W (α), and

define an optimal shape design problem:

(�) Find α∗ ∈ Uad such that I(α∗, u(α∗)) � I(α, u(α)) ∀α ∈ Uad,

with u(α) ∈ K(α) being a solution to the semicoercive (P(α)).
The basic step in the existence analysis for (�) consists in showing that solutions

of (P(α)) depend continuously on shape variations. In our particular case, the con-
tinuous dependence reads as follows: if αk ⇒ α (uniformly) in [a, b], αk, α ∈ Uad and
uk := u(αk) are solutions to (P(αk)) then there exists ũ ∈ H1(D,�2 ) such that

(3.8) pαk
uk ⇀ ũ in H1(D,�2 ), k →∞

and u := ũ|Ω(α) solves (P(α)). The symbol pαk
stands for the uniform extension of

functions from Ω(αk) onto D, introduced in Section 2.

The first step for proving (3.8) is to show that the sequence {uk} is bounded:

(3.9) ∃C := const > 0: ‖uk‖1,Ω(αk) � C ∀k ∈ �.

In coercive cases, (3.9) is a consequence of Korn’s inequality which is valid in the

space of virtual displacements. Unfortunately, Korn’s inequality is no longer true
in W (α). To prove (3.9) we use the approach from [4].
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We start with

Lemma 3.1. Let there exist a negative r such that

(3.10) rα � r ∀α ∈ Uad,

where rα is defined by (3.7). Further, let vk ∈ K(αk), αk ∈ Uad be such that
‖vk‖1,Ω(αk) →∞, k →∞. Then

(3.11) lim
k→∞

Jαk
(vk)→∞, k →∞.

�����. Recall that

W (α) = {v ∈ H1(Ω(α);�2 ) | v1 = 0 on Γu(α)};
W(α) = {v : Ω(α)→ �

2 | v = (0, a), a ∈ �1}

and define l
(1)
α by means of (2.16). As we already know there exists a constant β̃ > 0

independent of α ∈ Uad such that

(3.12) aα(v, v) � β̃‖v‖21,Ω(α) ∀v ∈ V (α), ∀α ∈ Uad,

where

V (α) =

{
v ∈ W (α)

∣∣∣∣
∫ b

a

v2(x1, α(x1)) dx2 = 0

}
.

Any function v ∈ W (α) can be decomposed and written as the sum

v = Pαv + yα,

where Pαv ∈ V (α) and yα ∈ W(α). Indeed, taking yα = (0, cα) ∈ W(α), where
cα = l

(1)
α (v)(b− a)−1, we see that Pαv := v − yα belongs to V (α). Applying this

decomposition to {vk}, vk ∈ V (αk) and using (3.12) we have (yk := yαk
)

Jαk
(vk) = Jαk

(Pαk
vk + yk) = 1

2 aαk
(Pαk

vk, Pαk
vk)− Lαk

(Pαk
vk)− Lαk

(yk)(3.13)

� β̃/2‖Pαk
vk‖21,Ω(αk) − c‖Pαk

vk‖1,Ω(αk) − Lαk
(yk),

where c is a positive constant which also does not depend on αk ∈ Uad. Since
Lαk
(yk) = cαk

rαk
, we have

(3.14) Jαk
(vk) � β̃/2‖Pαk

vk‖21,Ω(αk) − c‖Pαk
vk‖1,Ω(αk) − cαk

rαk
.
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Let ‖vk‖1,Ω(αk) → ∞. Then either ‖Pαk
vk‖1,Ω(αk) → ∞ or ‖yk‖1,Ω(αk) → ∞. A

direct calculation shows that

(3.15) ‖yk‖1,Ω(αk) = |cαk
| (measΩ(αk))1/2 =

|l(1)αk (vk)|
b− a

(measΩ(αk))1/2.

Considering vk ∈ K(αk) we see that

(3.16) l(1)αk
(vk) =

∫ b

a

vk(x1, αk(x1)) dx1 � −
∫ b

a

αk(x1) dx1 � −(b− a)γ,

i.e.
{
l
(1)
αk (vk)

}∞
k=1
is bounded from below.

Let ‖yk‖1,Ω(αk) → ∞. Then from (3.15) and (3.16) it follows that cαk
→ ∞,

k → ∞. From this, (3.10) and (3.14) we conclude that Jαk
(vk) → ∞ as k → ∞.

The same property holds if ‖Pkvk‖1,Ω(αk) →∞ and {‖yk‖1,Ω(αk)} is bounded. This
is a trivial consequence of (3.14). �

The main result of this section is

Theorem 3.2. Let (3.10) be satisfied. Then there exists a constant c > 0 which

does not depend on α ∈ Uad and such that

(3.17) ‖u(α)‖1,Ω(α) � c ∀α ∈ Uad,

where u(α) ∈ K(α) is the solution of (P(α)).

�����. The definition of u(α) yields

Jα(u(α)) � Jα(θ) = 0 ∀α ∈ Uad,

where θ = (0, 0) is the zero element of W (α), which belongs to K(α) for every α ∈
Uad. Therefore {Jα(u(α))}α∈Uad is bounded from above. From this and Lemma 3.1,

the assertion of the theorem follows. �
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