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Abstract. In nonlinear regression models with constraints a linearization of the model
leads to a bias in estimators of parameters of the mean value of the observation vector.
Some criteria how to recognize whether a linearization is possible is developed. In the case
that they are not satisfied, it is necessary to decide whether some quadratic corrections can
make the estimator better. The aim of the paper is to contribute to the solution of the
problem.
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1. Introduction

How to proceed in estimation of parameters in nonlinear models with constraints is

a frequently occurring problem. Some problems without constraints are investigated

in [2], [3], [5], [6], [7], [9], [12]; models with constraints are investigated in [8].

The aim of the paper is to find out some simple rules how to proceed in the

situation when a nonlinear model is constrained by a nonlinear condition. The

quadratic approximation only is considered.

*This work was supported by the grant No. 201/99/0327 of the Grant Agency of the Czech
Republic and by the Council of the Czech Government J 14/98: 153 100011.
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2. Notation and preliminaries

The notation

(1) Y ∼ Nn(f(β),Σ), β ∈ V = {β : g(β) = 0}

means the following. The n-dimensional vector Y (observation vector) is random
with normal distribution, its mean value E(Y) is f(β) where f(·) is an n-dimensional

vector function of a known analytical form with continuous second derivatives, the

k-dimensional parameter β is unknown, its value is constrained by the condition

β ∈ {β : g(β) = 0}, where g(·) is a q-dimensional function with continuous second

derivatives. The covariance matrix var(Y) of the vector Y is given and equal to Σ.

This form of constraints, i.e. {β : g(β) = 0} is called the constraints of type I.
They frequently occur in practice. Another type of constraints (of type II) is

{(
β

κ

)
: h(β, κ) = 0

}
.

The unknown parameter κ occurs in the constraints only. A model with such type

of constraints is investigated in another paper.

A simple example of a model with constraints of type I can be

E(Yi) = β1 exp(−β2xi), xi < T (T is a given number), i = 1, . . . , n1,

E(Yj) = β3 + β4xj + β5x
2
j , xj > T, j = 1, . . . , n2,

β1 exp(−β2T ) = β3 + β4T + β5T
2 (continuity at the point T ),

−β1β2 exp(−β2T ) = β4 + 2β5T (continuity of the derivative at the point T ),

var(Yi) = var(Yj) = σ2, i = 1, . . . , n1, j = 1, . . . , n2,

cov(Yk , Yl) = 0, k 6= l.

If in the estimation of the parameters β1, . . . , β5 linearization is used, it is not clear

in advance whether this procedure does not lead to estimators with a non negligible

bias, non tolerable size of the dispersion, etc. However, the use of the nonlinear least

squares method is relatively complicated and thus it is useful to find some simple

rules which enable us to decide whether the linearization is possible or it is better to

use another procedure.
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The linearized and quadratized approximation of the model with constraints of

type I, i.e.

Y = f0 + Fδβ + ε, δβ ∈ {δβ : Gδβ = 0}(2)

and

Y = f0 + Fδβ +
1
2
κ(δβ), δβ ∈

{
δβ : Gδβ +

1
2
γ(δβ) = 0

}
,(3)

respectively, will be under consideration. Here ε is an error vector, β0 is an approx-

imate value of the actual value β∗ of the vector β and

f0 = f(β0), F = ∂f(u)/∂u′|u=β0 ,

κ(δβ) = (κ1(δβ), . . . , κn(δβ))′, κi(δβ) = δβ′Fiδβ, i = 1, . . . , n,

Fi = ∂2fi(u)/∂u∂u′|u=β0 , i = 1, . . . , n, G = ∂g(u)/∂u′|u=β0 ,

γ(δβ) = (γ1(δβ), . . . , γq(δβ))′, γi(δβ) = δβ′Giδβ, i = 1, . . . , q,

Gi = ∂2gi(u)/∂u∂u′|u=β0 , i = 1, . . . , q.

In the following we assume

r(F) = k, r(G) = q < k, Σ is positive definite.

A solution of the equation Gδβ + 1
2γ(δβ) = 0 is not known in general. One

quadratic approximation of δβ can be expressed as

δβ = KGδs− 1
2
G−γ(KGδs),

where KG is such a k × (k − q) matrix that

M(KG) = {KGu : u ∈ � k−q} = Ker(G) = {s : Gs = 0}

and G− is any generalized inverse of the matrix G (in detail cf. [11]). Then the
model (2) can be rewritten with the new parameter δs as the model without con-
straints

(4) Y − f0 ∼ Nn(FKGδs,Σ)

and the BLUE (best linear unbiased estimator) of the parameter δs in this model is

(5) δŝ = (K′
GCKG)−1K′

GF′Σ−1(Y − f0).
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The quadratic version of the model (3) can be rewritten with the new parameter

δs as the model without constraints

(6) Y ∼ Nn

(
f0 + FKGδs +

1
2
[κ(KGδs)− FG−γ(KGδs)],Σ

)
.

LetMC
Ker(G) = I−PC

Ker(G) where PC
Ker(G) is the projection matrix on Ker(G) in the

norm given by the matrix C = F′Σ−1F (‖u‖ =
√

u′Cu) and PG′ = G′(GG′)−1G,
MG′ = I−P′

G. The relation (5) can be rewritten with help of

KG(K′
GCKG)−1K′

GF′Σ−1 = MG′(MG′CMG′)+MG′F′Σ−1

= [C−1 −C−1G′(GC−1G′)−1GC−1]F′Σ−1

= PC
Ker(G)C

−1F′Σ−1.

Thus

δ
ˆ̂
β =

�
KGδs = PC

Ker(G)C
−1F′Σ−1(Y − f0).

Here the notation ̂ means the estimator in the model without constraints and ˆ̂

means the estimator in the model with constraints.

The linear estimator δ
ˆ̂
β, which is the BLUE in (2) but not in (1), is the estimator

most frequently used in practice. Its quality depends on the nonlinearity of the model

and on the choice of β0. If β0 = β∗ (the actual value of the parameter β), then

δ
ˆ̂
β is unbiased independently of the nonlinearity of the model. If β0 6= β∗, then the

nonlinearity can intervene essentially. Thus the proper choice of β0 is important and

therefore let us make a comment on its choice. In the subsequent steps the influence

of the nonlinearity on the quality of the estimator δ
ˆ̂
β will be investigated.

�����������
2.1. The vector β0 is to be chosen in such a way that g(β0) = 0 (in

detail cf. [8]) and

δ
ˆ̂
β′Cδ

ˆ̂
β 6 χ2

k−q(0; 1− α),

where

δ
ˆ̂
β = [I−C−1G′(GC−1G′)−1G]δβ̂ (the BLUE in the model (2)),

δβ̂ = C−1F′Σ−1(Y − f0) (the BLUE in the model (2) without

linearized constraints).

This requirement is implied by the following fact.
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As a consequence of Proposition 2.9.1 in [10] the (1− α)-confidence region in the
model (1) is

{β : [Y − f(β)]′Σ−1PΣ−1

F (β)KG(β)[Y − f(β)] 6 χ2
k−q(0; 1− α),g(β) = 0},

where

F(β) =
∂f(u)
∂u′

∣∣∣
u=β

, M(KG(β)) = Ker[G(β)], G(β) =
∂g(u)
∂u′

∣∣∣
u=β

.

Since Fδ
ˆ̂
β = PΣ−1

FKG
(Y − f0), we have

δ
ˆ̂
β′Cδ

ˆ̂
β = (Y − f0)′Σ−1PΣ−1

FKG
(Y − f0)

and thus β0 is an element of the (1− α)-confidence region of the model (1).
Now let the influence of the nonlinearity be commented.

Lemma 2.2. The bias of the estimator δ
ˆ̂
β is

E(δ ˆ̂
β)− δβ = C−1G′(GC−1G′)−1 1

2
γ(δβ)

+ [I−C−1G′(GC−1G′)−1G]C−1F′Σ−1 1
2
κ(δβ).

�������! 
.

E(δ ˆ̂
β) = [I−C−1G′(GC−1G′)−1G]C−1F′Σ−1E(Y − f0)

= [I−C−1G′(GC−1G′)−1G]C−1F′Σ−1
[
Fδβ +

1
2
κ(δβ)

]

= δβ −C−1G′(GC−1G′)−1Gδβ

+ [I−C−1G′(GC−1G′)−1G]C−1F′Σ−1 1
2
κ(δβ)

= δβ + C−1G′(GC−1G′)−1 1
2
γ(δβ)

+ [I−C−1G′(GC−1G′)−1G]C−1F′Σ−1 1
2
κ(δβ).

�
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3. Simple quadratic estimator

The simplest way how to correct the bias of the estimator δ ˆ̂
β is to use the estimator

δ
˜̃
β = δ

ˆ̂
β − 1

2
[I−C−1G′(GC−1G′)−1G]C−1F′Σ−1κ(δ ˆ̂

β)(7)

− 1
2
C−1G′(GC−1G′)−1γ(δ ˆ̂

β)

+
1
2
[I−C−1G′(GC−1G′)−1G]C−1F′Σ−1




Tr[F1 var(δ ˆ̂
β)]

...

Tr[Fn var(δ ˆ̂
β)]




+
1
2
C−1G′(GC−1G′)−1




Tr[G1 var(δ ˆ̂
β)]

...

Tr[Gq var(δ ˆ̂
β)]


 .

Since

Gδ ˜̃β +
1
2
γ(δ ˜̃β) = − 1

2
γ(δ ˆ̂

β) +
1
2




Tr[G1 var(δ ˆ̂
β)]

...

Tr[Gq var(δ ˆ̂
β)]


 +

1
2
γ(δ ˜̃β)(8)

=
1
2




Tr[G1 var(δ ˆ̂
β)]

...
Tr[Gq var(δ ˆ̂

β)]


 + terms of the 3rd and higher orders,

the estimator δ ˜̃β does not satisfy the constraints as far as the second order terms
are concerned. (It is to be said that the mean value of the estimator δ ˜̃β from (7)
satisfies the constraints Gδβ + 1

2γ(δβ) = 0.)

There are two possibilities. Either the term

1
2
(Tr[G1 var(δ ˆ̂

β)], . . . , Tr[Gq var(δ ˆ̂
β)])′

in the estimator δ ˜̃β will cancel, or the constraints will not be satisfied, however the
bias will be of the third and higher orders only.
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If a function h(·), i.e. h(β) = h′β, is under consideration, the following notation

will be used:

Fh(·) =
1
2

n∑

i=1

{h′PC
KerC

−1F′Σ−1}iFi, h ∈ � k ,

Gh(·) =
1
2

q∑

i=1

{h′C−1G′(GC−1G′)−1}iGi, h ∈ � q ,

b = E(δ ˆ̂
β)− δβ

=
1
2
PKer(G)C

−1F′Σ−1κ(KGδs)

+
1
2
C−1G′(GC−1G′)−1γ(KGδs)

= (δβ′(Fe1(·) + Ge1(·))δβ, . . . , δβ′(Fek(·) + Gek(·))δβ)′.

Here ei ∈ � k and {ei}j = δi,j (the Kronecker delta). Thus ei(β) = e′iβ = βi,

i = 1, . . . , k.

From the viewpoint of practice it seems that it is more natural to prefer the

constraints to the bias. Thus in the sequel we will analyze the estimator

h′δβ = h′
{

δ
ˆ̂
β − 1

2
[I−C−1G′(GC−1G′)−1G]C−1F′Σ−1κ(δ ˆ̂

β)(9)

− 1
2
C−1G′(GC−1G′)−1γ(δ ˆ̂

β)

+
1
2
[I−C−1G′(GC−1G′)−1G]C−1F′Σ−1




Tr[F1 var(δ ˆ̂
β)]

...
Tr[Fn var(δ ˆ̂

β)]




}

= h′δ ˆ̂
β − δ

ˆ̂
β′(Fh(·) + Gh(·))δ

ˆ̂
β + Tr[var(δ ˆ̂

β)Fh(·)].

If the ratio (cf. the relationship (8))

(10) Tr[Gh(·) var(δ ˆ̂
β)]/

√
h′[C−1 −C−1G′(GC−1G′)−1GC−1]h

is sufficiently small by the opinion of the user, then it is possible to tolerate the bias

of the second order, i.e. to use the estimator δβ.

Under the given notation we can write (cf. (9))

E(h′δβ) = h′δβ − Tr[Gh(·) var(δ ˆ̂
β)]− 2b′(Fh(·) + Gh(·))δβ(11)

− b′(Fh(·) + Gh(·))b.
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Thus the bias of the linearized estimator of a linear function h(·) and of the quadratic
estimator, respectively, is

|E(h′δ ˆ̂
β)− h′δβ| = |δβ′(Fh(·) + Gh(·))δβ|,

|E(h′δβ)− h′δβ| = |Tr[Gh(·) var(δ ˆ̂
β)] + 2b′(Fh(·) + Gh(·))δβ

+ b′(Fh(·) + Gh(·))b|.

In [8] it is described how to recognize whether the bias of the linearized estimator

h′δ ˆ̂
β is smaller than c

√
h′ var(δ ˆ̂

β)h, where c is a constant chosen by users.

The following statement is proved there (Theorem 2.2.8 in [8]). If

δβ′Cδβ 6 2c

C
(par)
I,δβ

(β0), Gδβ = 0,

then

∀{h ∈ � k}
∣∣h′[E(δ ˆ̂

β)− δβ]
∣∣ 6 c

√
h′C−1h.

The quantity C
(par)
I,δβ (β0) will be defined in below in (14).

It is necessary to know with practical certainty that a shift δβ is in a linearization

region for the bias, i.e. the confidence region of δβ for a sufficiently high confidence

level 1− α is included into the linearization region. If this condition is not satisfied,

then it is necessary to compare the bias of δ ˆ̂
β and δβ. However, the bias and also the

variance of the estimator depend on the possible shift δβ = β∗ − β0 (β∗ means the

actual value of the parameter β). If the dimension k is large, then an investigation

of the bias and the variance in different directions of the shift δβ is tedious. Thus

some knowledge of upper bounds independent of directions can be useful in practice.

4. Upper bounds for the bias and variance of the linear and

quadratic estimators

The MSE (mean square error) of the estimator h′δ ˆ̂
β is

(12) MSE(h′δ ˆ̂
β) = h′ var(δ ˆ̂

β)h + [δβ′(Fh(·) + Gh(·))δβ]2.

The MSE (mean square error) of the estimator h′δβ is

MSE(h′δβ) = h′ var(δβ)h + {Tr[Gh(·) var( ˆ̂
β)] + 2b′(Fh(·) + Gh(·))δβ(13)

+ b′(Fh(·) + Gh(·))b}2.
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We have

h′ var(δβ)h = h′ var(δ ˆ̂
β)h + 2 Tr{[(Fh(·) + Gh(·)) var(δ ˆ̂

β)]2}

− 4h′ var(δ ˆ̂
β)(Fh(·) + Gh(·))δβ − 4h′ var(δ ˆ̂

β)(Fh(·) + Gh(·))b

+ 4δβ′(Fh(·) + Gh(·)) var(δ ˆ̂
β)(Fh(·) + Gh(·))δβ

+ 8b′(Fh(·) + Gh(·)) var(δ ˆ̂
β)(Fh(·) + Gh(·))δβ

+ 4b′(Fh(·) + Gh(·)) var(δ ˆ̂
β)(Fh(·) + Gh(·))b,

bias2(h′δβ) = {Tr[Gh(·) var( ˆ̂
β)] + 2b′(Fh(·) + Gh(·))δβ + b′(Fh(·) + Gh(·))b}2

= 4[b′(Fh(·) + Gh(·))δβ]2

+ 4b′(Fh(·) + Gh(·))δβb′(Fh(·) + Gh(·))b

+ [b′(Fh(·) + Gh(·))b]2 + 4 Tr[Gh(·) var(δ ˆ̂
β)]b′(Fh(·) + Gh(·))δβ

+ 2 Tr[Gh(·) var(δ ˆ̂
β)]b′(Fh(·) + Gh(·))b + {Tr[Gh(·) var(δ ˆ̂

β)]}2.

In order to find an upper bound for the individual terms of the variance and

the bias, it is necessary to go back to the definition of the parametric measure of

nonlinearity [1] and its generalization.

The Bates and Watts parametric measure of nonlinearity [1] in the model (6) with

respect to the new parameter δs is

K
(par)
I,δs (β0) = sup

{ √
A

δs′K′
GCKGδs

: δs ∈ � k−q

}
,

where

A = [κ(KGδs)− FG−γ(KGδs)]′Σ−1PΣ−1

FKG
[κ(KGδs)− FG−γ(KGδs)]

= [κ(KGδs)]′Σ−1PΣ−1

FKG
[κ(KGδs)],

since

PΣ−1

FKG
FG−γ(KGδs)

= F[C−1 −C−1G′(GC−1G′)−1GC−1]F′Σ−1FG−γ(KGδs)

= F[G− −C−1G′(GC−1G′)]γ(KGδs) = 0

when a choice G− = G−
m(C) = C−1G′(GC−1G′)−1 is realized. The quantity gives

information on the bias of the linear estimator of δs, but not on the bias of the
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linear estimator of the parameter δβ. Thus (in detail cf. [8]) a generalization of the

quantity K
(par)
I,δs (β0) given by the definition

(14) C
(par)
I,δβ (β0) = sup

{ √
B

δs′K′
GCKGδs

: δs ∈ � k−q

}
,

where

B = A + γ′(KGδs)(GC−1G′)−1γ(KGδs),

seems to be more suitable.

The second term in the last equality occurs in an intrinsic measure of curvature

of the constraints (in detail cf. Definition 2.2.7 and Theorem 2.2.8 in [8]).

Lemma 4.1. The inequality

b′Cb 6 1
4
[C(par)

I,δβ ]2(δs′K′
GCKGδs)2 + terms of the 5th order

is valid.

�������! 
. When the terms of the fifth order are neglected, then

b′Cb =
1
4
[PKer(G)C−1F′Σ−1κ(KGδs)

+ C−1G′(GC−1G′)−1γ(KGδs)]′C

× [PKer(G)C
−1F′Σ−1κ(KGδs)

+ C−1G′(GC−1G′)−1γ(KGδs)]

=
1
4
(κ′(KGδs)Σ−1PΣ−1

FK+Gκ(KGδs)

+ γ′(KGδs)(GC−1G′)−1γ(KGδs))

and thus
√

4b′Cb
δs′K′

GCKGδs
6 C

(par)
I,δβ ,

which implies the proof. �

90



Theorem 4.2. For the sake of simplicity, let Ah(·) = Fh(·) + Gh(·). We have (in

the term b′Cb the terms of the fifth order are neglected)

δβ′Ah(·)δβ 6
√

Tr[(Ah(·)C−1)2]δβ′Cδβ,

|− 4h′ var(δ ˆ̂
β)Ah(·)δβ| 6 4σh

√
Tr[(Ah(·)C−1)2]

√
δβ′Cδβ,

|4δβ′Ah(·) var(δ ˆ̂
β)Ah(·)δβ| 6 4(k − q)1/4{Tr[(Ah(·)C

−1)8]}1/4δβ′Cδβ,

|− 4h′ var(δ ˆ̂
β)Ah(·)b| 6 2σh

√
Tr[(Ah(·)C−1)2]C(par)

I,δβ (β0)δβ′Cδβ,

|8b′Ah(·) var(δ ˆ̂
β)Ah(·)δβ| 6 4(k − q)1/4{Tr[(Ah(·)C

−1)8]}1/4

× C
(par)
I,δβ (β0)(δβ′Cδβ)3/2,

|4 Tr[Gh(·) var(δ ˆ̂
β)]b′Ah(·)δβ| 6 2 Tr[Gh(·) var(δ ˆ̂

β)]
√

Tr[(Ah(·)C−1)2]

× C
(par)
I,δβ (β0)(δβ′Cδβ)3/2,

|4b′Ah(·) var(δ ˆ̂
β)Ah(·)b| 6 (k − q)1/4

√
Tr[(Ah(·)C−1)4]

× [C(par)
I,δβ (β0)]2(δβ′Cδβ)2,

|2 Tr[Gh(·) var(δ ˆ̂
β)]b′Ah(·)b| 6

1
2

Tr[Gh(·) var(δ ˆ̂
β)]

√
Tr[(Ah(·)C−1)2]

× [C(par)
I,δβ (β0)]2(δβ′Cδβ)2,

|4(b′Ah(·)δβ)2| 6 Tr[(Ah(·)C−1)2][C(par)
I,δβ (β0)]2(δβCδβ)3,

|4b′Ah(·)δβb′Ah(·)b| 6
1
2

Tr[(Ah(·)C
−1)2][C(par)

I,δβ (β0)]3(δβ′Cδβ)7/2,

(b′Ah(·)b)2 6 1
16

Tr[(Ah(·)C−1)2][C(par)
I,δβ (β0)]4(δβ′Cδβ)4.

Here σh =
√

h′ var(δ ˆ̂
β)h.

�������! 
. For the sake of simplicity only some of the given inequalities are proved.

The other can be proved analogously.

δβ′Ah(·)δβ = δβ′C1/2C−1/2Ah(·)C−1/2C1/2δβ

= Tr[C−1/2Ah(·)C−1/2C1/2δβδβ′C1/2]

6
√

Tr[C−1/2Ah(·)C−1/2C−1/2Ah(·)C−1/2]

×
√

Tr[C1/2δβδβ′C1/2C1/2δβδβ′C1/2]

=
√

Tr[(Ah(·)C−1)2]δβ′Cδβ,
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|− 4h′ var(δ ˆ̂
β)Ah(·)δβ| = 4|Tr[h′ var(δ ˆ̂

β)C1/2C−1/2Ah(·)C−1/2C1/2δβ|

= 4|Tr[C−1/2Ah(·)C
−1/2C1/2δβh′ var(δ ˆ̂

β)C1/2]

6 4σh

√
Tr[(Ah(·)C−1)2]

√
δβ′Cδβ,

since var(δ ˆ̂
β)C var(δ ˆ̂

β) = var(δ ˆ̂
β),

|− 4h′ var(δ ˆ̂
β)Ah(·)b| = 4|Tr[C−1/2Ah(·)C−1/2C1/2bh′ var(δ ˆ̂

β)C1/2]|

6 4σh

√
Tr[(Ah(·)C−1)2]

√
b′Cb

6 2σh

√
Tr[(Ah(·)C−1)2]C(par)

I,δβ (β0)δβ′Cδβ

by virtue of Lemma 4.1,

4δβ′Ah(·) var(δ ˆ̂
β)Ah(·)δβ = 4 Tr(C−1/2Ah(·) var(δ ˆ̂

β)Ah(·)C−1/2C1/2δβδβ′C1/2)

6 4
√

Tr[(Ah(·) var(δ ˆ̂
β)Ah(·)C−1)2]δβ′Cδβ

= 4{Tr[(C−1/2Ah(·)C−1/2C1/2 var(δ ˆ̂
β)C1/2

×C−1/2Ah(·)C−1/2)2]}1/2δβ′Cδβ

6 4{Tr[(C−1/2Ah(·)C−1/2)8]}1/4

× {Tr[(var(δ ˆ̂
β)C]}1/4δβ′Cδβ

= 4(k − q)1/4{Tr[(C−1/2Ah(·)C−1/2)8]}1/4

× δβ′Cδβ since Tr[var(δ ˆ̂
β)C] = k − q.

We can complete the proof in an analogous way. �

In practice the terms of orders higher than fourth are of small importance. If they

are inadmissibly large, then the quadratic theory cannot be used and we have to

study the problem from the viewpoint of the general theory given in [10].

Now some simple rules for a decision on the linearization will be given in the next

section.

5. Conclusion

In the preceding sections linear and quadratic estimators have been studied. In

the expressions for the variance and the bias the terms with higher powers (in δβ)

are given and this seems to be superfluous for the linear and quadratic estimators.

Several presented terms are of higher powers than the neglected terms in the Taylor

series of the model. A reason for it is an endeavour to investigate in the first step

the behaviour of the quadratic estimators only, since the estimators of orders higher
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than two have a small chance to be used in practice because of the complexity of

their statistical properties. Even in the case of quadratic estimators the power of

a single term in the MSE can attain the value eight and of course in practice it

is of no sense. Nevertheless, they are presented to ensure the completeness of the

theory of quadratic estimators. Results given in the paper form only a small part

of knowledge necessary for an efficient application of quadratic estimators. Further

research is necessary.

A procedure, based on partial results obtained in the paper, how to deal with

models with constraints of type I can be described as follows.

(i) The value β0 is chosen in the sense of Remark 2.1.

(ii) The value of the quantity C
(par)
I,δβ is determined at the point β0 and the region

Lb =
{

δβ : δβ′Cδβ 6 2c

C
(par)
I,δβ

}
is determined. If Lb ⊃ E , where

E = {δβ : δβ′Cδβ 6 χ2
k−q(0; 1− α)}

for a sufficiently small value α, then the estimator δ
ˆ̂
β can be used.

(iii) If Lb 6⊃ E , then it is useful to investige a possibility to make variances of the
observation vectorY smaller and thus attain the inclusion E ⊂ Lb. If this way cannot

be realized, then it is reasonable to construct the estimator δβ and to compare the

values UBMSE(h′δ ˆ̂
β) and UBMSE(h′δβ) for different important functions h(·). If,

e.g., UBMSE(h′δβ) 6UBMSE(h′δ ˆ̂
β) and the value UBMSE(h′δβ) is acceptable, the

estimator δβ can be used.

(iv) For a more detailed investigation of the situation it is useful to use the re-

lationships (12) and (13). This procedure is time consuming and it will be used

probably in special cases only.

Some more detailed comments follow.

If we want to compare the estimators δ
ˆ̂
β and δβ, we have several possibilities.

If we are interested in the bias only, then we can compare the bias in different

directions of the shift δβ or we can compare the upper bounds for |h′[E(δ ˆ̂
β) − δβ|

and |h′[E(δβ) − δβ| with help of Theorem 4.2. However, in models with a weak
nonlinearity the bias of the quadratic estimator is essentially smaller than the bias

of the linear estimator.

If we are intersted in the MSE, then we find out such a shift δβ in a given direction

which gives the equality MSE(h′δ ˆ̂
β) =MSE(h′δβ). For a larger shift the linear

estimator cannot be used. If this distance is out of the confidence ellipsoid we prefer

the linear estimator to the quadratic one. However, for a large dimension k of the

parameter β this procedure is not suitable.
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We find out the Mahalanobis distance d =
√

δβ′Cδβ which gives the equality

UBMSE(h′δ ˆ̂
β) =UBMSE(h′δβ) (UBMSE= upper bound of the mean square error).

For the first orientation the following rule can be also used. In a small neigh-

bourhood of the point β0 the most dangerous term is −4h′ var(δ ˆ̂
β)(Fh(·) +Gh(·))δβ,

i.e. δβ is proportional to the vector (Fh(·) + Gh(·)) var(δ ˆ̂
β)h. Let us find such a

number t that

h′ var(δ ˆ̂
β)h + t4[h′ var(δ ˆ̂

β)(Fh(·) + Gh(·))3 var(δ ˆ̂
β)h]2

= h′ var(δ ˆ̂
β)h + 2 Tr{[(Fh(·) + Gh(·)) var(δ ˆ̂

β)]2}

+ {Tr[Gh(·) var(δ ˆ̂
β)]}2

+ 4th′ var(δ ˆ̂
β)(Fh(·) + Gh(·))2 var(δ ˆ̂

β)h.

The smallest positive solution tcrit of this equation gives the vector tcrit(Fh(·) +

Gh(·)) var(δ ˆ̂
β)h with the Mahalanobis distance equal to

d2
crit = t2crith

′ var(δ ˆ̂
β)(Fh(·) + Gh(·))C(Fh(·) + Gh(·)) var(δ ˆ̂

β)h.

If d2
crit > χ2

k−q(0; 1 − α) for a sufficiently small α, the linear estimator is to be

preferred.

In what follows several remarks to the utilization of the term b′Cb are necessary.
If no constraints are under consideration, then the term b′Cb is obviously suitable

for a decision whether the bias is or is not acceptable. If constraints are under con-

sideration, then the covariance matrix var(δ ˆ̂
β) = C−1 −C−1G′(GC−1G′)−1GC−1

is singular and thus its inverse does not exist. The term b′[var(δ ˆ̂
β)]−b is not de-

termined unambiguously, since the relation b ∈ M(var(δ ˆ̂
β)) need not be valid.

However, one version of [var(δ ˆ̂
β)]− is C which is positive definite and thus the term

b′Cb for b ∈ M(var(δ ˆ̂
β)) is equal to b′[var(δ ˆ̂

β)]−b. If

b 6∈ M(var(δ ˆ̂
β)),

then another reason exists for a utilization of the term b′Cb. Let us investigate the
projection PE of the ellipsoid E = {x : x′Cx 6 t2} in the Mahalanobis norm on
Ker(G). We have

PE = {PC
Ker(G)x : x′(PC

Ker(G))
′CPC

Ker(G)x + x′(MC
Ker(G))

′CMC
Ker(G)x 6 t2}

= {PC
Ker(G)x : x′[C−G′(GC−1G′)−1G]x 6 t2},

since (MC
Ker(G))

′CPC
Ker(G) = 0.
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If x ∈ Ker(G), then

x′[C−G′(GC−1G′)−1G]x = x′Cx,

and thus the projection is the section of the ellipsoid E by the subspace Ker(G).
Further,

[δ ˆ̂
β −E(δ ˆ̂

β)]′[C−1 −C−1G′(GC−1G′)−1GC−1]−[δ ˆ̂
β −E(δ ˆ̂

β)]

= [δ ˆ̂
β −E(δ ˆ̂

β)]′C[δ ˆ̂
β −E(δ ˆ̂

β)] ∼ χ2
k−q

and thus the term b′Cb is suitable for a decision whether the bias b is or is not
acceptable.
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