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NONLINEAR MODELS OF SUSPENSION BRIDGES:

DISCUSSION OF THE RESULTS*
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Abstract. In this paper we present several nonlinear models of suspension bridges; most
of them have been introduced by Lazer and McKenna. We discuss some results which were
obtained by the authors and other mathematicians for the boundary value problems and
initial boundary value problems. Our intention is to point out the character of these results
and to show which mathematical methods were used to prove them instead of giving precise
proofs and statements.

Keywords: beam equation, system of beam wave equation, initial boundary value prob-
lem, bifurcation, Fučík spectrum
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1. Introduction and historical review

Although it is probably not possible to find when the very first bridge was built, it
was surely deep in the human history. These structures have fascinated people since
that time. Bridges present technology and knowledge of the era in which they were
created. They became kind of “engineering art”.
The typical bridge is supported by pilots. It depends on the material and the type

of bridge what distance could be between two pilots but, in general, the following
statement must be satisfied: “The longer bridge we would like to build the more
pilots we will need.”
Suspension bridges were the answer to the question how to cross long distances

between two points while putting the pilots just close to the ends of the road-bed.
They offer an elegant solution to going over the bays of sea or wild deep rivers, etc.

*This work has been supported by the Grant Agency of the Czech Republic, grant
# 201/03/0671, and the Ministry of Education of the Czech Republic, Research Plan
# MSM 235200001.
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If we compare the lengths of recent suspension bridges with other types of bridges
we find out that their main spans1 are more than twice longer (see [14]).

It is really impressive that already in 1826 Menai Suspension Bridge, the first
major suspension bridge, was completed. It was designed by Thomas Telford, self-
taught Scottish engineer. The bridge has center span 176 meters long and it is maybe
interesting to mention that it was built twenty years before the steam engine was
fully developed. From that time this type of bridges holds leading in the length of
the main span.

The revolution in technology and science at the break of the nineteenth and twenti-
eth centuries let arise bridges with lengths that none could have imagined before (for
example: Brooklyn Bridge, 1883, 486 meters, or Golden Gate, 1937, 1,280 meters).
However, all kinds of bridges were constructed more or less just from the engineering
point of view. The only way how to model the behaviour of the designed bridge
were the simulations on a miniature model and application of the linear mechanical
theory.

Several collapses of suspension bridges in the past—let us mention the collapse of
the Tacoma Narrows Bridge as the most famous one—brought the problem to the
interest of theoretical scientists. It turned out that the methods of the designing and
constructing should be revisited. It was pointed out that the knowledge of the global
behaviour and of the dynamics of such monumental structures is necessary.

Let us briefly recall what happened with the first Tacoma Narrows Bridge. July 1,
1940, a suspended road-bed 854 meters long crossed the river Narrows. The elegant
deck was slim and flexible. Moreover, the deck was made from plate girders instead
of strengthening trusses. They were catching the wind from the side, unlike an open
truss construction which would let it blow through. On November 7, 1940, the bridge
went to devastating vertical, torsional and side-way oscillatory motions. After some
time, the center span was torn and felt down to the river (see Fig. 1).

This accident warned of one important aspect which arises in constructing bridges
(and other structures as well). By a model, we can catch only the main features of
the system, but we do not know much about the “inner” dynamics. This became
fatal to Tacoma Narrows Bridge.

A new bridge was built across the river Narrows. It is heavy, rigid and resists
wind forces much better than the old Tacoma Narrows Bridge. On the other hand,
the construction of the old bridge cost $6 million. The new one cost $15 million. It
is obvious that the research could spare much money and material. Moreover, this
could be more important for small bridges which are build in towns. They have to
be often light and flexible because the price is crucial.

1Main span is the distance between two principal supports of the bridge.
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Figure 1. Vertical and torsional oscillations in Tacoma Narrows Bridge.

The aspect which distinguishes suspension bridges from other ones is their fun-
damental nonlinearity. It is caused by the presence of supporting cable stays which
restrain the movement of the center span in the downward direction, but have no
influence on its behaviour in the opposite direction.

This type of nonlinearity, often called jumping or asymmetric, has given rise to
the following principle:

Systems with asymmetry and large uni-directional loading tend to have
multiple oscillatory solutions; the greater the asymmetry, the larger the
number of oscillatory solutions, the greater the loading, the larger the
amplitude of the oscillations.

The aim of our paper is to summarize several models describing the behaviour of
suspension bridges and to pick up the main results as well as open problems that
can be found in this field.

Nowadays, there exists a large amount of papers concerning these systems. Thus
we do not set as a goal to mention here all of them. Our choice is motivated by
our own research in this direction and by the limitations of our resources. See,
e.g., [1]–[34]. Joint effort of these papers is to determine under what conditions the
existence of a unique stable solution is guaranteed or, on the other hand, when some
other (possibly dangerous from the practical point of view) solutions could appear.
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2. Survey of main models and results

Going through literature, we can find two main trends in modelling suspension
bridges: the first is represented by the effort of creating the most realistic models,
whereas the other trend is to deal with models which are as simple as possible. Both
approaches have their advantages and disadvantages. If we work with simpler mod-
els, we can use finer analytical methods and obtain—in some sense—more interesting
results. However, the correspondence of these results with the real situation is con-
tentious. On the other hand, if even the simple (e.g. ordinary differential) model
exhibits the behaviour that can be considered dangerous for the bridge structure, we
can expect that the more precise model will behave in the similar—or even worse—
way. Of course, all models considered keep the fundamental asymmetric feature
which is reflected by the jumping nonlinearity terms in the particular equations—as
will be seen later.
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Figure 2. Sideview of the suspension bridge.

2.1. Single beam model.
We can start our list with the basic model introduced by Lazer and McKenna [24].

It describes the vertical oscillations of a one-dimensional beam (which represents the
center span of a road-bed) with simply supported ends, hanging on nonlinear cable-
stays (see Fig. 3). It neglects the influence of the towers and side parts and ignores
the coupling of the main cable and the road-bed. The construction holding the cable
stays is taken as a solid and immovable object.
If we consider that oscillations are measured as positive in the downward direction,

the mathematical formulation is the following (see [24]):

(SB1)

{
mutt + kuxxxx + δut + bu+ = W (x) + f(x, t),

u(0, t) = u(L, t) = uxx(0, t) = uxx(L, t) = 0.
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Figure 3. Center span hanged by fixed frame.

Here u is the displacement of the beam of length L. The first term in the equa-
tion (SB1) represents an inertial force (with constant mass m), the second term is
an elastic force (with material constant k) and the third term on the left hand side
describes a viscous damping (with the coefficient δ). The cable stays are taken as
one-sided springs, obeying Hooke’s law, with a restoring force proportional to the
displacement if they are stretched, and with no restoring force if they are compressed.
This fact is described by the fourth term bu+, where u+ = max{0, u} and b is a co-
efficient which characterizes the stiffness of the cable stays. On the right-hand side,
we have the gravitation force W (x) and the external force f(x, t), e.g. due to the
wind.
If the force f(x, t) is time periodic with a period τ > 0 then it is reasonable to

look for time periodic oscillations with the same period, i.e. we look for u satisfying
(SB1) and periodic conditions

(1) u(x, t + τ) = u(x, t), (x, t) ∈ (0, L)× # .
Then (SB1) together with periodic condition (1) forms the periodic boundary value
problem.
We can also look for another type of solution u to (SB1). Namely, if we substi-

tute (1) by

(2) u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ (0, L),

then (SB1) together with initial conditions (2) forms the initial boundary value prob-
lem. We then look for a solution on a finite interval [0, T ] with a fixed T ∈ # or
study the global behaviour of the solution u = u(x, t) for t → +∞.
As we mentioned above, this model was introduced by Lazer and McKenna and

is used as a starting point for studies of suspension bridges in most of the cited
works. It does not describe exactly the behaviour of a suspension bridge but on the
other hand it reflects the influence of the cable stays and is reasonably simple and
applicable.
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2.2. String beam model.

In the second iteration, we can take into account not only the motion of the road-
bed (represented by a vibrating beam), but also the oscillations of the main cable
which can be replaced by a vibrating string. The string is coupled with the beam by
one-sided springs (see Fig. 4). Thus we end up with the following model (see [24]):

(SB2)





m1vtt − k1vxx + δ1vt − b(u− v)+ = W1(x) + f1(x, t),

m2utt + k2uxxxx + δ2ut + b(u− v)+ = W2(x) + f2(x, t),

u(0, t) = u(L, t) = uxx(0, t) = uxx(L, t) = 0,

v(0, t) = v(L, t) = 0.
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Figure 4. Center span hanged by main cable.

Here v(x, t) measures the displacement of the vibrating string representing the
main cable and u(x, t) means—as in the previous case—the displacement of the
bending beam standing for the road-bed of the bridge. The nonlinear stays con-
necting the beam and the string pull the cable down, hence we have the minus sign
in front of b(u − v)+ in the first equation, and hold the road-bed up, therefore we
consider the plus sign in front of the same term in the second equation. The meaning
of all other data in system (SB2) is similar to the scalar model (SB1).

Similarly as before, if f1(x, t) and f2(x, t) are periodic with period τ > 0 then we
look for u and v which satisfy (SB2) and periodic conditions

u(x, t + τ) = u(x, t), v(x, t + τ) = v(x, t), x ∈ (0, L), t ∈ # .
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We thus get a periodic boundary value problem. If (3) are substituted by initial
conditions

u(x, 0) = u0(x), ut(x, 0) = u1(x),(4)

v(x, 0) = v0(x), vt(x, 0) = v1(x), x ∈ (0, L),

then (SB2) together with (4) forms an initial boundary value problem for unknown
functions u and v.

2.3. Torsional vertical model.
The two previous models considered only vertical oscillations of suspension bridges.

Now, we can choose another approach. Namely, to include also torsional oscillations,
which are certainly not quite negligible. (They are said to be one of the direct causes
of the destruction of the above mentioned Tacoma Narrows Bridge—see Fig. 1.)
Thus we obtain the following model (see [24]):

(SB3)





m1ytt + k1yxxxx + δ1yt + b[(y − l sin ϕ)+ + (y + l sin ϕ)+]

= W1(x) + f1(x, t),

m2ϕtt − k2ϕxx + δ2ϕt − bl cosϕ[(y − l sin ϕ)+ − (y + l sin ϕ)+]

= W2(x) + f2(x, t),

y(0, t) = y(L, t) = yxx(0, t) = yxx(L, t) = 0,

ϕ(0, t) = ϕ(L, t) = 0.

Here y(x, t) is the displacement measured at the centre of gravity, ϕ(x, t) measures
the deflection of the cross section from the horizontal, l is the half length of the cross
section of the road-bed—see Fig. 5. The meaning of the other parameters is analogous
to those of previous models.
Similarly as in the previous two cases, we can formulate the periodic boundary

value problem adding periodic conditions on y and ϕ under the assumption that f1

and f2 are periodic in t, or the initial boundary value problem adding the initial
conditions on y and ϕ.
In literature, we can find another variant of model (SB3): functions sin ϕ and cosϕ

are linearized and replaced by ϕ and 1, respectively. However, in many cases, this
partial linearization brings no significant advantage and, conversely, the boundedness
of functions sine and cosine can be helpful.

2.4. Complex model.
The fourth model combines all the previous aspects together. It considers vertical

oscillations y(x, t) of the road-bed, its torsional motion ϕ(x, t), and coupling with

503



((((((((((((((((((((((

((((((((((((((((((((((
?

6

$%

EE

EE

The vertical deflection
of the center
of gravity y(t)

2l

The deflection from horizontal ϕ(t)

Nonlinear cable-like springs

An immovable object

���������9

XXXXXXXXXz

�
�

��

Figure 5. Cross section of the suspension bridge.

two main cables—the displacement of the right cable is described by a function
u(x, t) and the displacement of the left one is described by v(x, t). Moreover, we
can generalize the description of the nonlinear cable stays and, instead of b(·)+,
assume that the interaction between the main cables and the road-bed is given by
more general nonlinear functions E1(·) and E2(·). Thus we end up with the complex
torsional-vertical model in the following form (see [31]):

(SB4)





m1ytt + k1yxxxx + δ1yt + E1(y − u− l sin ϕ)

+E2(y − v + l sin ϕ) = W1(x) + f1(x, t),

m2ϕtt − k2ϕxx + δ2ϕt − l cosϕ[E1(y − u− l sin ϕ)

−E2(y − v + l sin ϕ)] = W2(x) + f2(x, t),

m3utt − k3uxx + δ3ut −E1(y − u− l sin ϕ)

= W3(x) + f3(x, t),

m4vtt − k4vxx + δ4vt −E2(y − v + l sin ϕ)

= W4(x) + f4(x, t),

y(0, t) = y(L, t) = yxx(0, t) = yxx(L, t) = 0,

ϕ(0, t) = ϕ(L, t) = 0,

u(0, t) = u(L, t) = v(0, t) = v(L, t) = 0.

The models (SB1–4) have many similar features and all of them are in fact hidden
in the matrix scheme

(5) Mwtt + Aw + Dwt + N(w) = W(x) + F(x, t).
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Namely, in the case of model (SB4), we have w = [y, ϕ, u, v]t the vector of unknown
functions, M, D are constant diagonal matrices:

M =




m1 0
m2

m3

0 m4


 , D =




δ1 0
δ2

δ3

0 δ4


 .

The symbol A represents an operator of the second and fourth space derivatives and
W(x) + F(x, t) is the vector of the right-hand sides, i.e.

Aw = [k1yxxxx,−k2ϕxx,−k3uxx,−k4vxx]t,

W(x) = [Wi(x)]t, F(x, t) = [fi(x, t)]t, i = 1, . . . , 4.

The nonlinear terms are given by

N(w) = E1(g1(w))∇g1 + E2(g2(w))∇g2,

g1(w) = y − u− l sinϕ,

g2(w) = y − v + l sin ϕ,

where ∇g1, ∇g2 are gradients with respect to the vector w = [y, ϕ, u, v]t.
The periodic boundary value problem and the initial boundary value problem for

(SB4) are defined as in the previous cases. Let us note that the boundary conditions,
the periodic conditions and the initial conditions influence the choice of the function
spaces where the solution is looked for.
Due to this unified formulation, we can find a group of results which are valid—

with some modifications—for all previous models (SB1–4).

2.5. Results concerning periodic boundary value problems for (SB1–4).

Existence results. If we consider boundary value problems formulated in Subsec-
tions 2.1–2.4, the existence of at least one time periodic solution is guaranteed for
any periodic right-hand side and all positive values of the bridge parameters.
The proof for model (SB1) can be found in [10], for model (SB2) in [12] (here

the proofs are based on the degree theory). The existence result for model (SB2)
is also proved in [27] (but there the author uses Galerkin method of approximative
solutions).
Similar results can be obtained also for model (SB3) and for the complex model

(SB4), but here under the additional assumption in the form of some growth condi-
tions on the general nonlinearities E1, E2.

Uniqueness results. More interesting results concern the question of uniqueness of
periodic solutions. Here we can find two main approaches. The first is based on the
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direct application of the Banach contraction principle. Thus we obtain the following
assertion:

The boundary value problems (SB1−2) have unique periodic solutions for
any periodic right-hand sides if the stiffness parameter b is “sufficiently”
small.
In the case of model (SB1) this means

(6) b < m min{α2, β},

where

α2 =
& 2

4
kτ2

mL4
> 0, β =

1
2 &

δτ

m
> 0.

In the case of model (SB2) the corresponding condition has the form

(7) b <
m1m2

m1 + m2
min{α2

1, β1, α
2
2, β2},

where

α2
1 =

& 2k1τ
2

4m1L2
, α2

2 =
& 2k2τ

2

4m2L4
, βi =

δiτ

2 & mi
, i = 1, 2.

For the proofs see [34]. In the same way we can proceed also in the other two cases
and obtain similar conditions (under suitable assumptions about E1 and E2).
The second approach to the uniqueness problem is a little bit different. It works

with the right-hand side in the form of a constant weight and a sufficiently small
periodic perturbation. On the other hand, the bridge parameters can be arbitrary
positive real numbers.
In the case of the single beam model (SB1), the constant weight leads to the

strictly positive equilibrium. Sufficiently “small” periodic perturbations of the right-
hand side result in a periodic solution which corresponds to small periodic oscillations
around this equilibrium and still stays positive. Thus the problem is in fact linear
and uniqueness is guaranteed. For details see [3].
The open problem is to give a precise meaning to the formulation “sufficiently

small” and to determine the allowed magnitude of the perturbation.
In the case of the string beam model (SB2), the situation is more complicated.

If we want to proceed in the same way as in the previous case, we have to ensure
the existence of a strictly positive equilibrium which here means that the difference
(u − v) is strictly positive. This is not true for any constant right-hand side and
thus another assumption must be added. In the simplest way, it can be written as
W1 � W2. Then we can continue with the same arguments and again obtain the
uniqueness result. The precise proof can be found in [12].
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As for the models (SB3–4), we can expect similar results under similar assumptions
(and with some restrictive conditions on general nonlinearities E1, E2).

2.6. Results concerning initial boundary value problems for (SB1–4).
Methods for initial boundary value problems for partial differential equations (es-

pecially in one space dimension) make it possible to study models of suspension
bridges in their whole complexity. The Faedo-Galerkin method is the main tool used
to obtain the existence, regularity and uniqueness results.

One of the most important questions concerning the qualitative behaviour of a
solution is its boundedness. Quite a standard tool for obtaining a priori estimates
of solutions is the Gronwall lemma. This technique enables us to find a solution
bounded on any finite interval (which may be possibly unbounded on an infinite
time interval). Wide spectrum of systems of partial differential equations have been
studied in this way e.g. in [1], [28], [29], [30].

The authors of [17] study the initial boundary value problem for (SB3) where
b(·)+ is replaced by more general nonlinear functions E1(·) and E2(·) describing
the influence of the coupling of the road-bed and the fixed frame. More restrictive
assumptions on the right-hand side allow them to avoid the use of the Gronwall
lemma and to get a globally bounded solution. On the other hand, the nonlinear
terms E1 and E2 can be rather general.

The results of [17] could be formulated in the following way:

We assume that nonlinear functions E1, E2 are Lipschitz continuous and
their primitive functions are bounded from below by a linear function.
Moreover, let E1, E2 have a polynomial growth at infinity (with an arbi-
trarily large power) and let the right-hand side be uniformly bounded and
time independent. Then for any initial conditions there exists a unique
(weak) solution which is bounded on every finite time interval (0, T ) by
a constant independent of T (i.e. the solution is bounded on the whole
positive real line).

In contrast to periodic boundary value problems, here the open questions concern
the global properties and asymptotic behaviour of solutions. However, one problem
is common. It arises when we want to consider arbitrary time dependent right-hand
sides. Most of the results for both types of boundary value problems deal with
the right-hand sides in the form of a constant weight and a small time dependent
perturbation. The relation between the magnitude of this perturbation and the
qualitative properties of the solution is a very interesting but difficult open problem.
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3. Simplified models

3.1. Periodic symmetric model.
In order to obtain other—perhaps more detailed—results, we come back to the

model (SB1). If we neglect the damping term, i.e. we put δ = 0, add symmetry
conditions with respect to both the variables x and t, and “normalize” the problem
in some sense, we obtain the boundary value problem

(SB5)





utt + uxxxx + bu+ = W (x) + f(x, t) in
(
− '2 , '2

)
× # ,

u
(
± '2 , t

)
= uxx

(
± '2 , t

)
= 0,

u(x, t) = u(−x, t) = u(x,−t) = u(x, t + & ).
Many variants of this model assume W (x) ≡ 1 in

(
− '2 , '2

)
. This description of

a suspension bridge was used e.g. in [33]. The authors showed that if the parameter b
crosses a certain eigenvalue of a related eigenvalue problem, an additional solution
appears. In particular, they proved that for −1 < b < 3, the problem (SB5) has a
unique solution, however for 3 < b < 15 and f small enough in some sense another
solution exists.
This result was extended first in [8] where the existence of at least three solutions

for 3 < b < 15 by a variational reduction method is proved, and then in [19] where
the authors showed that for 15 < b < 15 + ε, ε > 0, at least four solutions exist.
Moreover, the additional solutions tend to have large amplitudes.
These results hint that the number of solutions could increase with respect to the

number of crossed eigenvalues. That is why the authors in [11] decided to formulate
the problem (SB5) “in the language of the bifurcation theory” and to explain this
phenomenon from this point of view. In their considerations they assumed f(x, t) ≡
0, proved that the problem (SB5) with f ≡ 0 possesses multiple solutions for b >
3 and provided also some qualitative information about the solution set of (SB5)
(see [11]). Moreover, they in fact showed that the multiple solutions of (SB5) exist
not because of the perturbation term f(x, t), but because of the absence of the
damping term δut.

3.2. Vertical ordinary differential model.
Actually, the bifurcation results for the problem (SB5) were inspired by a similar

multiplicity result for another, more simplified model.
In fact, the authors of [24] suggested to consider the right-hand side in (SB5)

of a special form W (x) + f(x, t) = cosx + f(t) cosx and to expect the solution
to have a similar character u(x, t) = y(t) cosx. If we put these relations into the
problem (SB5), we obtain the ordinary differential model

(SB6)

{
y′′(t) + y(t) + by+(t) = 1 + f(t) in # ,
y(t) = y(−t) = y(t + & ).
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In [24] we can find a theorem which in fact says that the number of solutions increases
as b crosses the eigenvalues corresponding to the linear part of the equation (SB6).
The authors of [11] specify this phenomenon and show that there is a sequence
bm = 4m2 − 1, m ∈ ( ∪ {0}, such that (SB6) with f(t) ≡ 0 has exactly 2m + 1
solutions if b ∈ (bm, bm+1). Moreover, the set of all solutions is described in a rather
explicit form (for illustration see Fig. 6).

-
b−1 3 15 35

6‖w‖

Figure 6. Bifurcation diagram of model (SB6). Here the equilibrium solution
1

b+1 is shifted
to the zero.

New and in some sense surprising results were obtained in [13]. Here the authors
realized that the model (SB6) is in fact only a very specific case and that the time
period plays an important role.

They consider the problem (SB6) with f(t) ≡ 0 and solutions that are even and
T -periodic in time. Then the model (SB6) reads

(8)

{
y′′(t) + y(t) + by+(t) = 1 in # ,
y(t) = y(−t) = y(t + T ).

The solutions are all uniformly bounded if T ∈ (0, & ), there are solutions with arbi-
trarily large amplitude if T > & and there are “blow up points” if T > & in the sense
that for bounded values of b there exist nonstationary solutions of (8) with the am-
plitude approaching infinity. In Fig. 7, the horizontal axis represents the parameter
b ∈ # and the vertical axis the space of nonstationary solutions of (8) that form two
branches. The pattern of the bifurcation diagram is richer in the case T > & and
more blow up points appear when T is crossing the values k & , k = 1, 2, . . ..
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It is worth mentioning that the problem (8) is closely connected to the Fučík
spectrum of

y′′(t) + αy+(t)− βy−(t) = 0 in # ,
y(t) = y(−t) = y(t + T )

(see Fig. 8). For a fixed period T , the point b will be the “blow up point” if and only
if (b + 1, 1) belongs to the Fučík spectrum.
The structure of the set of the blow up points depends on the value of & /T and

can be summarized as follows:

& /T > 1, no blow up point,& /T ∈
(

1
2 , 1

)
, exactly one blow up point b1 > 0,& /T ∈

(
1
3 , 1

2

)
, exactly two blow up points b1 < 0, b2 > 0,& /T ∈

(
1
4 , 1

3

)
, exactly three blow up points b1 < 0, b2 > 0, b3 > 0,& /T ∈

(
1
5 , 1

4

)
, exactly four blow up points b1 < 0, b2 < 0, b3 > 0, b4 > 0,

...
...

...

Roughly speaking, as T increases to +∞ (i.e. & /T ↘ 0+) the number of blow up
points increases. They are “travelling” to the left and crossing zero. For a given T ,
all blow up points (if there are any) are greater than or equal to ( & /T )2 − 1. Fig. 8
depicts a special case for T = 16 & /5 with two blow up points b1 and b2.

For the right-hand side in (SB6) in the form 1+ εf(t) with f even and T -periodic,
the authors in [13] prove that the structure of the solution set of this perturbed
problem is determined for ε small enough just by the structure of the solution set
of the unperturbed problem (8). This can be done due to the precise description
of the structure of the set of all solutions of problem (8), the main tools being the
homotopy invariance property of the Leray-Schauder degree and the Leray-Schauder
index formula.
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3.3. Torsional ordinary differential model.
If we consider the periodic boundary value problem for the torsional vertical

model (SB3) and assume the terms y ± l sinϕ stay positive, we obtain two sepa-
rate equations

(9)

{
m1ytt + k1yxxxx + δ1yt + 2by = W1(x) + f1(x, t),

m2ϕtt − k2ϕxx + δ2ϕt + bl2 sin 2ϕ = W2(x) + f2(x, t).

The first equation for the vertical displacement y is linear, however the second for
the torsion ϕ is nonlinear.
This is, in fact, a damped and forced sine-Gordon equation and its solution set

is not mapped even in the case of zero damping δ2 = 0 and zero right-hand side.
Nonetheless, we can do the following simplification: if we deal with a long bridge and
the behaviour in the middle of the center span is more interesting for us than the
situation near the end points, we can assume the solution ϕ to be space independent.
Thus we end up with the ordinary differential model which can be written, e.g., in the
following form (here we consider zero damping and additional symmetry condition
on the solution):

(10)

{
ϕ′′(t) + b sin 2ϕ(t) = 0,

ϕ(t) = ϕ(−t) = ϕ(t + 2 & ).
Here, the situation is completely described:
Every point 2b = k2, k ∈ ( , is a bifurcation point and there exist just

two branches emanating from these points. Each branch preserves the nodal
properties of the corresponding eigenfunction, is unbounded, has no blow up
points, and is described by the strictly monotone function

f(b) = arcsin
v√
2b

,

where v satisfies &
2k

=
∫ 1

0

dy√
1− y2

√
2b− (vy)2

.

Thus we can conclude that for any b ∈ (k2/2, (k + 1)2/2) there exist exactly
2k + 1 solutions of the problem (10) (see Fig. 9).
This result remains true even for an arbitrary time period T—only the bifurcation

points will be shifted. This is different from the case of model (SB6), where the
situation was more complicated.
Quite interesting open problems arise in the case of the partial differential sine-

Gordon equation, or for the systems of ordinary differential equations with nonlinear
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Figure 8. Bifurcation diagram of model (10).

coupling. Here we have several possibilities how to formulate the problem. We
can assume as above that our solutions are space independent. Then the original
torsional model (SB3) (without damping) becomes

(11)

{
m1y

′′ + b[(y − l sin ϕ)+ + (y + l sin ϕ)+] = W1 + f1(t),

m2ϕ
′′ − bl cosϕ[(y − l sin ϕ)+ − (y + l sin ϕ)+] = W2 + f2(t).

Another possibility is to replace sinϕ by ϕ and cosϕ by 1 and assume that both
the right-hand sides as well as the solutions y, ϕ of (SB3) have the form of cosx

multiplied by time dependent functions. Then we obtain the system

(12)

{
m1y

′′ + k1y + b[(y − lϕ)+ + (y + lϕ)+] = W1 + f1(t),

m2ϕ
′′ + k2ϕ− bl[(y − lϕ)+ − (y + lϕ)+] = W2 + f2(t).

In both models (11), (12), there are still many open questions even for the simple
case W2 ≡ f1(t) ≡ f2(t) ≡ 0.

3.4. Numerical results.
To complete the survey of known results concerning our models, we should mention

several numerical experiments done in this field. Let us recall at least papers [6], [9],
[15], [16], [18], [20], [32], [24] and [5].
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