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Abstract. Universal bounds for the constant in the strengthened Cauchy-Bunyakowski-
Schwarz inequality for piecewise linear-linear and piecewise quadratic-linear finite element 
spaces in 2 space dimensions are derived. The bounds hold for arbitrary shaped triangles, 
or equivalently, arbitrary matrix coefficients for both the scalar diffusion problems and the 
elasticity theory equations. 
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1. INTRODUCTION 

This paper deals with estimates of the constant 7, which appears in the strength­
ened Cauchy-Bunyakowski-Schwarz (C.B.S.) inequality 

|a(u,v)| ^ i>/a(u,u)y/a(v,v) Vu G U, vEV, 

where U, V are two (finite dimensional) linear spaces, U O V = {0} and a(-, •) is a 
symmetric positive definite or semidefinite bilinear form on a space W containing 
U and V as subspaces. It follows that 7 equals the cosine of the angle between the 
subspaces U, V in a metric defined by y/a(u,u). 

More precisely, we are interested in the cases where a comes from the variational 
formulation of an elliptic boundary value problem in a bounded domain fi C K2, 
U is a finite element space of piecewise linear functions and V is the complement 
of U in another finite element space U 0 V,, which arises by h- or p- refinement of U. 

* This work was supported by the grant INCO KIT 977006 of the European Commission 
and the grant OK 383 of the Ministry of Education of the Czech Republic. 
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In such cases the value of 7 can be estimated locally. Namely, if T is a triangulation 

of Q which is used for the definition of U, then 

7 = E J r 7 E ' 

\aE(u,v)\ ^ jEVaE{u1u)y/aE(v,v) VueUE, veVEl 

where UE and VE are linear spaces of functions which are restrictions of functions 
from U and V to E e T, and where aE denotes the restriction of the bilinear form a 

toE. 

The estimates of 7 can be used for the convergence analysis of many numerical 
procedures connected with the application of the finite element method; let us men­
tion two-level and multi-level iterative methods and preconditioners, local refinement 
composite grid methods, a posteriori error estimates etc. Therefore, much effort has 
been devoted to the estimation of 7 via local estimates; we mention here the papers 
by Axelsson [3], Axelsson and Gustafsson [6], Maitre and Musy [11], Margenov [13], 
Achchab and Maitre [2], Jung and Maitre [10], Axelsson [4], Achchab et al. [1] and 
the references therein. 

From the estimates presented in literature, it is seen that 7 generally depends on 
the bilinear form a, which includes the dependence on the problem coefficients, and 
on the type and shape of the finite elements used. We can also see that in some 
cases it is possible to have universal bounds, which do not depend on the problem 
coefficients and the shape of the finite elements. 

This paper will be devoted to the derivation of such universal bounds of the CB .S. 
constant. We will present results concerning the bilinear forms corresponding to the 
anisotropic Laplacian and to anisotropic elasticity operators. Moreover, we will 
show two ways of simple derivations of the bounds. The resulting bounds generalize 
and extend the results obtained previously in literature. Especially, a new result 
is obtained for the case of general anisotropic elasticity. This paper deals with 2D 
problems, a similar approach for 3D problems can be found in [9]. 

The paper is organized as follows. In Section 2, we describe more precisely the 
bilinear forms corresponding to the anisotropic Laplacian and the elasticity operator 
and formulate the P\-P\ and P1-P2 strengthened C.B.S. constant estimation prob­
lems. Then, in Section 3, we prove a universal bound for the P\-P\ problem in 2D. 
Another way of obtaining the universal bounds, using a relation between P\-P\ and 
P\-p2 problems, will be shown in Section 4. The paper ends with some concluding 
remarks. 
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2 . FORMULATION OF P i -P i AND P1-P2 PROBLEMS FOR THE ANISOTROPIC 
LAPLACIAN AND ANISOTROPIC ELASTICITY OPERATORS 

We shall consider two general types of bilinear forms. The first can be written in 

the form 

2 

(2.1) a(u,v) = j[ £ a У.É:!^ d x = J(Dd(u)td(v)) dx. 

Here u,v E ff1(fi), D = [a^-] is a matrix of problem coefficients, which is assumed to 
be symmetric positive definite, d(u) = (J^-, -§£-) is the gradient of u and (x,y) = 

xTy for x,y G R2. This bilinear form corresponds to an anisotropic Laplacian in U2. 

The second bilinear form corresponds to a general anisotropic elasticity operator. 
It has the form 

(2.2) í 2 

a(u,v)= Y " cijkieij(u)ekl(v) 
dx 

where u,v G [ff1(fi)]2, Cijki are elasticity moduli, which are nonnegative and possess 
the symmetries 

(2-3) Cijki = Cjiki = ckiij, 

see e.g. [12] for further details. The quantities 

/ n . / x 1 fdui duj\ 
{2A) ^u) = 2-(^-j

 + d£) 
are the small strain tensor components. From (2.3) and (2.4), it follows that the 
bilinear form can be rewritten in the form 

a(u,v) = / (Cd(u),d(v))dx (2.5) 

where 

(2 6) d(u) = (— — — du2Y 
\dx\' 8x2 ' dxi' dx2 J 

for u G [ffl (ft)]2, w = (ui, U2), and C is the matrix consisting of the elasticity moduli, 

(2.7) C = 

Clili C1112 C1121 C1122" 

C1211 C1212 C122I C1222 

02111 C2112 C2121 C2122 

LC22II C2212 C2221 C2222 
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As follows from (2.3), the matrix C is symmetric. This matrix should be also positive 

semidefinite and positive definite for vectors w = (wn,wi2,W2i,W22)T which fulfil 

the symmetry relation w\2 = w 2i, see e.g. [12], As an example, the matrix C 

corresponding to the case of plane strain with isotropic material has the form 

(2.8) C = 

Л + 2/z 0 0 Л 

0 џ џ 0 

0 џ џ 0 

Л 0 0 Л + 2LJ 

where A, /z, are the Lame moduli, which are positive numbers. 

Further, we shall assume that TH is a finite element triangulation of ft and that the 

coefficients a^ and Cijki are constant on each element in TH- NOW we can formulate 

two strengthened C.B.S. constant estimation problems. 

Pi—Pi problem: The ^-refinement gives a new division Th of ft, which arises by 

dividing each E ETH into smaller triangles. How this is done will be outlined in the 

next section. For each element E G TH we consider spaces 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

UE = {veC(E): vePi}, 

U% = {ve C(E): v\e G Pi Ve G Th, e C E}, 

VE = {v G U#: v(x) = 0 for all vertices x of E}, 

U% = UE(& VE. 

Here C(E) denotes the set of continuous functions on E. 

Then the Pi-Pi problem for the anisotropic Laplacian is to find a nontrivial bound 

for the C.B.S. constant 7^1 such that for all u G UE, v G VE 

(2.13) \aE(u,v)\ ^ 7E,1 V°>E(U,u)y/aE(v, v). 

Here, 

(2.14) aE(u,v) = / (Dd(u),d(v)). 
JE 

For the corresponding P1-P1 problem for the anisotropic elasticity problem, (2.13) 

holds with 

(2.15) 
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and u e UE, v e VE, where 

UE = {v = (vi,v2): v{ e UE for i = 1,2}, 

VE = {v = (vi,v2): Vi e VE for i = 1,2}. 

Pi-P2 problem: Consider now a p-refinement, i.e., piecewise linear and quadratic 

functions over the elements of TH- For each element E e TH we consider the spaces 

UE = {veC(E): vePi}, 

Up
E = {veC(E): veP2}, 

VE = {v e UE: v(x) = 0 for all vertices x of E}, 

up
E = uE®vE. 

The P\-P2 problem for the anisotropic Laplacian is again to find a nontrivial 

bound for the C.B.S. constant 7^,2 such that 

\aE(u,v)\ ^ 7E,2\/a>E(u,u)yJaE(v,v) 

for all u e UE, v eVE and CLE defined by (2.14). The corresponding P\-P2 problem 
for the elasticity can be defined in the same way as before. 

3. UNIVERSAL ESTIMATES FOR THE P I - P I PROBLEM 

For 2D problems, we will consider triangular elements and the A-refinement of the 
type which is illustrated in Fig. 1. It means that now each coarse triangle is divided 
into m2 smaller congruent triangles with edges which are m times shorter then the 
edges of the original coarse triangle. Moreover, each edge of the small triangle is 
parallel to some side of the original triangle. By the described division, we get from 
the original coarse triangulation with the mesh parameter H a new triangulation 
with the mesh parameter h = H/m. 

Ps 

Figure 1. Division of a triangle into m congruent ones, h = H/m, m = 3. 

The aim of this section is to prove the following theorem: 
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Theorem 3.1. Consider the bilinear forms (2.14) and (2.15) corresponding re­
spectively to a general 2D anisotropic Laplacian or a general 2D anisotropic elasticity 
operator on il. Further, let TH be a triangulation ofD, and assume that the problem 
coefficients are constant on the coarse elements E e TH- Assume also that each 
element E ETH is divided into m2 smaller congruent triangles in the described way 
Then 

(3.1) 7E, V m2 

1 

We will prove Theorem 1 in several sub-steps in the following subsections. First 
we restrict our attention to a right angle isosceles reference triangle. For illustrative 
purposes, we first prove a universal estimate in the case of the anisotropic Laplacian 
and a division of the coarse triangles into four smaller ones, i.e., for m = 2. This 
simple case is subsequently extended to ra ^ 2 and both anisotropic Laplacian and 
anisotropic elasticity. Finally, we show how to extend the estimates to the case of 
general triangles by an affine mapping of these triangles to the reference one. 

3.1. Universal es t imate of 7 for a reference triangle and m = 2. 
As an illustration of our approach, we will start with the simplest case of a reference 

triangle E with two axiparallel sides, see Fig. 2. The triangles are ordered as indicated 
in Fig. 1. We denote 

du 
(3-2) 

(3.3) Ąk) 

íi = ^ - , » = 1,2 
дxi 

дv 
ӘXІ П 

d(u) = ö = (51,52)
T foг UЄUE, 

1,2, d(v)\Tk = d(fc) = {Ąk),Ąk))T for v Є VE. 

Note that all quantities Si, d\ ' are constants. We shall exploit certain relations 

between d\ ). These relations are induced by the fact that v is zero at the vertices 

(which gives d[ ' = — d[ ' and d2 = — d2 ') and the fact that some triangles share 

an axiparallel side (which gives d[' = d[' and d2 = d2 '). These relations are 

illustrated in Fig. 2. 

x2 

Xi 

Figure 2. The reference triangle and values of -^7. 
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Now we can write 

4 4 

(3.4) aE(u,v)=Y, {D6,dW)dx = Y,(6,dW)A 
k=i ^Tk k=i 

= [^(df) -4X)+2<43)) +,$2(4
1) -4X> + 2 4 2 ) ) ] A 

= 2A(£,d) = 2A(o(J,d) < 2A||<5||D ||d||D> 

where 5 = D6 = (61,62) . Here we have used the fact that 6{ are constant on E 

due to 6 and D being constant on £7. Above, we introduced \\W\\D = y/(Dw, w) for 

itv G R2 and A denotes the area of the smaller triangles, i.e., \E\ = 4A. 

In (3.4) we have also introduced an auxiliary vector d = (d[ \dy) . Thus d = 

d^ and moreover 

(3.5) d = d™+d™+S*\ | |d | | 2
D <3^ | |d( f e ) | | 2

D . 
fc-7-3 

Thus 

(3.6) aE(v, v)=J2 \\d{k) H2DA > (l + 5) ll<*ll2A 
k=i 

(3.7) aE(u,u) = \\6fD4A. 

From (3.4), (3.6), and (3.7) we therefore get 

(3.8) aE(u,v) -$ Jjy/aE(u,u)\/aE(v,v) VueUE, veVE. 

This means that (2.13) holds with yEtl = J \ . 

This estimate is in accordance with the estimates in [11] and [4]. 

N o t e 3.L The estimate (3.8) is valid for all coefficient matrices D. For a spe­

cific D, we can of course get a better estimate. For example, for D = I, it follows 

that 

(3.9) aE(v,v) = 2 [ (a f ) ) 2 + (d(
x

3))2 + (4 X ) ) 2 + (d™)2]A > 2A||d||2D. 

From (3.4), (3.7) and (3.9) we now get 

(3.10) \aE(u,v)\ ^ J -y/aE(u,u)y/aE(v,v) Vu€UE, v£VE. 

This estimate (3.10) is in accordance with the results in [3] and [11]. 
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X2 

Xi 

2У\ 

\ l в 

т6\ т\ 
\ т 4 \ T 5 \ 

T i \ T2Ч T э \ 

Figure 3. The reference triangle and m = 3. I? = {1,2,3}, I£ = {1,6,9}, I* = {4,5,8}. 

3.2. Universal es t imates of 7 for a reference triangle and m ^ 2. 
The estimate obtained in Subsection 3.1 can be simply generalized to denser grid 

refinements. Let us consider the reference triangle and its division into m2 triangles 
in the way which is illustrated in Fig. 3. 

We shall again consider the derivatives of the functions u G UE and v E VE- By 
considering the x\-parallel sides of the small triangles, we can see that 

• there are m triangles Tfc, k G If which do not share this side with other triangles. 
Because v G V# is zero at the vertices, we get J2 <H — 0; 

kei? 
• the remaining triangles can be divided into pairs which share one x\-parallel 

side. Let I* be the set of indices of the lower triangles from each pair. 

For the .^-parallel sides of the small triangles, we observe a similar structure: 

• there are m triangles I*., k G I2 which do not share this side with other triangles. 
Because v G VH is zero at the vertices, we get ]£ d^ — 0; 

keiS 
• the remaining triangles can be divided into pairs which share one .r2-parallel 

side. The set I* introduced above now gives the indices of the left triangles 
from each pair. 

For u G UE and v G VE we can now write 

2 2 
771 ., m 

(3.11) aE(u,v) = E / (DS^{k))dx = ^2(6,Sk))A 
fc=i ^ r* k~i 

= 2A(S,d) = 2A(D6,a) ^ 2A\\6\\D \\d\\D 

where the meaning of 6, A is the same as in Subsection 3.1, J is constant on E and 

(3.12) 
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Thus, 

(3.13) d=Y^d(k) and also d= ] T dw, 
kei* ke(i*)c 

where (I*)c = {1, . . . ,m2} \ I* is the complementary set to I*. 

Noting that the sets I* and (I*)c contain (m2 - m)/2 and (m2 -F m)/2 indices, 
respectively, we obtain the estimates 

(3-14) IMII^^^Ell^lli, 
k£l* 

(3-15) Ä < ^ 1 £ ||̂ )||2D. 
2 

ke(i*)c 

Thus, 

(3.16) „ ( . , . ) = g HWfiA » [ j j g ^ + ^ ^ 

(3.17) as(w,u) = ||i|||,m2A. 

l|d||2DA, 

From (3.11), (3.16), and (3.17), we get 

(3.18) aE(u,v) ^ J — y/aE(u,u)y/aE(v,v), 

which implies the general result ysti ^ y/(m2 - l ) /m 2 . 

3.3. Universal estimate of 7 for the elasticity operator. 
In this subsection the reference triangle and its division will be the same as in 

the previous subsection but we will consider the bilinear form and spaces corre­
sponding to the elasticity operator. The expression of the elasticity bilinear form in 
formula (2.5) allows us to readily extend the previous results. 

Let us denote 

(3.19) 5 = d(u) = (511,S12,S21,S22)
T, Sa = ̂  for u e UB, 

(3.20) <*<*> = d(V)\n = ( 4 i \ 4 f c
2 \ 4 i \ 4 2 ) ) T , 

,(fc) 9Vi I y 
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Then all quantities Sij, d\j
) are constants and for i,j = 1,2 the same relations hold 

between the derivatives dr. J as in Subsection 3.2. Thus 

m 2 . m 2 

(3.21) aB(u,v) = £ / (C6,dW)dx = £<M(fc))A 
fc=i -l7* fc=i 

i , i= i fee/* 

= 2A(<5, d) = 2A(C*,d> ^ 2A||<5||C ||d||c, 

where 5 = C5 is again constant on E due to 5 and C being constant, ||z||c = y/(Cz, z) 

is the seminorm induced by C and 

(3.22) d=Y^d{k) and also d = ^ d{k). 
kei* ke(i*)c 

The above expressions for d lead to the estimates 

(3.23) i i ^ ^ ! ! ! ^ ^ ^ ) ^ 
kei* 

(3.24) N I U ^ ^ E ll̂ llc-
fc€(/*)c 

Thus, 

m 2 

(3.25) aE(v,v)=Y,\\d{k)\\cA> 
k=i 

(3.26) aE(u,u) = ||á|&m2A. 

m(m + l) m(m —1)J llďlPcA, 

From (3.21), (3.25) and (3.26), we conclude again that IE,I < \/(m 2 — l )/m 2 . 

3.4. Universal estimate of 7 for a general triangle. 
Now, we shall consider a general triangle E and its division to m 2 congruent 

smaller triangles with each side parallel to some side of the original triangle, as well 
as the reference triangle E with vertices (0,0), (1,0), (0,1) and its division in the same 
way. It is important to note that it is possible to find an affme mapping F: E -> E. 
This mapping will also map each smaller triangle from the division of E into the 
corresponding smaller triangle from the division of E, see Fig. 4. 
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Figure 4. Mapping the reference triangle E to a general triangle E. 

Let pi = (pii,Pi2) be the vertices of E. Then the mapping F: x —> x can be 

described analytically by the relations 

Xl =Pll + (P21 -Pll)xi + (P31 - P l l ) ^ 2 , 

X2 = Pl2 + (P22 - Pl2)^l + (P32 - Pl2)-^2. 

Now, let us consider u € UE, v E VE. Then u = uo F e U# and v = v o F € V^. 

Moreover, aE(u,u), aE(v,v) and aE(u,v) can be transformed to a^(u,u), a^(v,v) 

and a.g(u,v), see also [4]. The transformation a -> a starts with the transformation 

of the derivatives. If u = u o F then 

w^ = d^{x)(Pj+1^ -pi'i] + a^wfe+-.- - ^ ) -
This yields d(«) = GTd(u), where G is the Jacobian matrix of F , 

P21 - P н Pзi - P н 
P22-P12 P32~Pl2 

Now, we can write 

aE(u,u)= J (Dd(u),d(u))dx= f (DG~Td(u),G-Td(u))\det(G)\dx 
JE JE 

= (Dd(u),d(u))dx = a,g(u,u), u = uoF, 
JE 

where D = |det(G) |G~ 1 DG~ T is the transformed coefficient matrix, which is sym­

metric and positive definite, and 

(3.27) a^(u,v) = J (Dd(u),d(v)) dx Vfi € U£, v € V&. 
JE 
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Similarly, we can show that 

Q>E(V, V) = aE(v, v) and aE(u, v) = a^(u, v). 

For u £ UE, v € VE we get u E U# and v €Vg. Using now the universal estimate 

of 7, which has been proved for the case of the reference triangle and an arbitrary 

symmetric positive definite coefficient matrix, we get 

\aE(u,v)\ = \CLE(U,V)\ 

^ V m 2 ^E(^^)\/^E(V^) 

= ү —ҳ/aE(u, u)y/aE(v, v). 

The extension of this transformation technique to the case of general elasticity 

with the bilinear form (2.5) is straightforward. The transformed matrix C will be in 

the form C = |det(G)|G^"1CG r^T, where G2 is a block diagonal 4 x 4 matrix with 

the diagonal blocks equal to G. 

R e m a r k 3.1. The universal estimates of the C.B.S. constant have been proven 

for a special grid refinement. For other types of division of triangles, it may be 

impossible to derive a nontrivial universal estimate of the C.B.S. inequality. For 

example, for the division of triangles illustrated in Fig. 5 and 2D elasticity (plane 

strain), we do not get a nontrivial estimate, as the C.B.S. constant 7 depends on the 

Poisson ratio v and 7 tends to unity as v goes to 1/2, see [8], [10]. 

x2 

Xi 

Figure 5. A different type of division of the triangle. 

The technique of derivation of universal estimates of the C.B.S. constant exploited 

in this section can be also used for analysis of the 3D anisotropic Laplacian and 

3D elasticity assuming that the linear tetrahedral finite elements are used, see [9]. 
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4. AN ALGEBRAIC APPROACH TO THE DERIVATION THE P1-P2 C.B.S. CONSTANT 

Given a triangular element E with angles a, j3, 7 which has been regularly refined 

in four subtriangles, the local assembled Pi and P^ matrices have the form (see 

e.g. [5]) 

ЛH/2 ~ o 

which is the matrix assembled from the element matrix for the four subtriangles 

corresponding to piece wise linear basis functions, and 

4 ( 2 ) 

2d -2c -2b 0 —a —a 

-2c 2d -2a - 6 0 -b 

-2b -2a 2d —C —c 0 

0 -b —c b + c 0 0 

—a 0 —c 0 a + c 0 

—a -b 0 0 0 a + b 

• 8d -8c -86 0 - 4 a - 4 a 

-8c 8d - 8 a -46 0 -46 

1 -86 - 8 a 8d -4c -4c 0 

6 0 -46 -4c 3(6+ c) c 6 

- 4 a 0 -4c c 3(a + c) a 

. - 4 a -46 0 6 a 3(a + 6) 

which is the local finite element matrix corresponding to quadratic basis functions 

on E. Here a = cot a, b — cot /3, c — cot 7 and d — a + b + c. These matrices yield 

the relation 

(4.28) 

where 

(4.29) 

and 

1(2) _ 1 л(l) 
*Я - З^Я/2 _ Iл^) _ ЛJ 

— o Л Я / 2 І V > 

_V = 
0 0 
0 A 

-*_> = £ 
'(b + c) -c 

—c (a+c) 

—b —a 

the latter being the local finite element matrix for the vertex nodes of E, correspond­

ing to linear basis functions. 

- 6 
—a 

(a + 6)J 

R e m a г k 4.1. The гelation 

AH - Л Я / 2 " Ail) 
лн 
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could have been derived in an alternate way, using one step of the classical Richardson 

H-extrapolation to derive a locally third order accurate scheme (-4# ) from the two 

locally second order accurate schemes (A^H\2 and -4# ), by elimination of the 0(H2) 

error components. 

Now relation (4.28) can be used to derive a relation between the C.B.S. constants 

for the P1-P2 and Pi-Pi hierarchical finite element spaces combinations. 

Theorem 4.1. For any finite element mesh regularly refined into congruent ele­

ments, for which (4.28) holds, one has 

(4-30) 7 | = l^i 

where 71, 72 are the C.B.S. constants for piecewise linear and piecewise quadratic 

finite elements, respectively. 

P r o o f . Since all block parts of the first two matrices in (4.28) except the lower 

right block are equal we can take Schur complements, and (4.29) shows that 

5(2) _. 4 s ( i ) _ l ^ U ) 

Hence 

3 - з 1 " 

vJS^x2 4xTS^x2 1 

I.Є., 

xZA$z2 IxlA^x* 3' 

л 2 . xJS&x2 4 . a£S<->_2 1 
1 - 72 = mm = - шш ( ) -• 

-з xlA(ң'x2 3 x2 _ ľ л ( ^ _ 2

 3 

4/, 2\ 1 •• 4 , 
= 3 ( 1 - 7 ? ) - 3 = 1 - 3 - 7 ? . 

D 

R e m a r k 4.2. The relation (4.30) was shown previously in [11], [4] using a more 

involved derivation. Using the already derived expressions for 71 in Section 3, we have 

then also a general expression for 72 = -75 7i- We note that 72 can take values arbi­

trarily close to one for degenerate triangles, or equivalently, for certain anisotropics 

of the coefficients in the differential operator. On the other hand, (4.30) implies 

again the universal bound for 71. 
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by its block-diagonal part, 

5. CONCLUDING REMARKS 

The matrices of triangular finite elements derived from the two-level methods can 
be partitioned into a two-by-two block matrix form [^ij]^j=i, where An corresponds 
to the node points added in the refinement process, A22 corresponds to the origi­
nal vertex nodes and A12 (A2i) corresponds to the coupling between the two finite 
element subspaces used. 

The following matrix relation holds: 

u1A12V ^ j{uTAnuvTA22v}*, 

where u = (ai ,a2 ,0-3,0,0,0)T , v = (0,0,0,/3i,/32,/?3)T are the corresponding or­

thogonal vectors. 

Using the hierarchical form of the matrices one can precondition the block matrix 

, in which case the condition number becomes 
0 A22] 

(1 + 7 ) / ( l —7). Alternatively, one can precondition the reduced (Schur complement) 

system, A22 — A2\A^l A\2 with A22, in which case the condition number becomes 
1/(1 — 72) . Here it should be noted that the Schur complements will be the same as 
for the hierarchical basis even if the reduction takes place from the standard basis 
function matrix (i.e., from A^' or A^,). For further details, see e.g. [5]. Systems 
with the matrix .A22 which occur in this preconditioning can be solved using the 
same method recursively, unless one finds that the matrix A\± is already sufficiently 
coarse to use a direct solution method or a simpler iterative method. 

Matrix An is frequently well-conditioned and systems with it can be solved effi­
ciently by some simple iteration method. However, for nearly degenerate triangles 
or, equivalently, strongly anisotropic coefficients it becomes very ill-conditioned and 
requires some special element by element preconditioner, see e.g. [7] for details. 
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