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Abstract. The paper is devoted to solving boundary value problems for self-adjoint linear 
differential equations of 2nth order in the case that the corresponding differential operator 
is self-adjoint and positive semidefinite. The method proposed consists in transforming 
the original problem to solving several initial value problems for certain systems of first 
order ODEs. Even if this approach may be used for quite general linear boundary value 
problems, the new algorithms described here exploit the special properties of the boundary 
value problems treated in the paper. As a consequence, we obtain algorithms that are much 
more effective than similar ones used in the general case. Moreover, it is shown that the 
algorithms studied here are numerically stable. 
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1. INTRODUCTION 

The paper is concerned with the numerical solution of boundary value problems 

for self-adjoint linear differential equations of 2nth order such that the corresponding 

differential operator is self-adjoint and positive semidefinite. Our approach consists 

in transforming the boundary value problem to be solved to the solution of a sequence 

of initial value problems of a special structure. This makes it possible to employ the 

standard software for solving initial value problems to solve boundary value problems 

*This work was supported by Grant No. 201/02/0595 of the Grant Agency of the Czech 
Republic. 
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of this type. One of the possibilities how to transform the boundary value problems 
to solving initial value problems is to use the method of transfer of conditions as 
described in [6], [7] or the method of invariant imbedding [3], [5]. The principles of 
these methods could be used for the problems studied here directly, however, they 
would lead to algorithms that would be unnecessarily elaborate. 

In particular, applying the methods of the above type that were devised for general 
boundary value problems we cannot guarantee, in general, the global solvability of 
the initial value problems obtained as the result of the above mentioned transforma
tion. Therefore, to be able to obtain algorithms based on the transfer of boundary 
conditions that would be practicable and to achieve their numerical stability in the 
general case it is necessary to take certain elaborate measures [6], [7]. This is unnec
essary and even superfluous to do with the algorithms devised here for the special 
boundary value problems considered in the paper. This result is not due to that 
fact that the original methods designed for general linear boundary value problems 
would possess the required properties when applied to the special problem consid
ered. It is due to the fact that we have constructed new special methods of the 
transfer of conditions for the special boundary value problems considered that make 
use of all the additional information at our disposal here (self-adjointness, positive 
semidefiniteness). 

Hence, the present paper exploits the special form of the problem under consid
eration and the numerical method proposed is chosen in order to use the additional 
information, namely all the symmetry and some sign properties. As a consequence, 
the resulting method is very advantageous as to the effort expended and fulfils all of 
the numerical stability requirements. In particular, we prove that the initial value 
problems for the matrix Riccati differential equation that occur in our algorithms 
have a bounded solution on the whole interval of question. In fact, all the entries 
of the matrix solution are shown to lie in [0,1]. This is one of the most important 
results of the paper. To prove the properties of the transfer of conditions in the 
particular case studied here we need to prove some properties of the general transfer 
of conditions that have not yet been published and that apply to the special prob
lem considered. We also note that contrary to the invariant imbedding method the 
coefficients of the equations are not required to be smooth here. 

The structure of the paper is as follows. Section 2 contains a survey of the fun
damental results of the methods based on the idea of the transfer of conditions for 
general two-point boundary value problems for systems of first order ODEs. In Sec
tion 3, we define the boundary value problem for a self-adjoint differential equation 
of the 2nth order studied in the paper and introduce necessary notation and con
cepts. We also give necessary and sufficient conditions for the problem studied to be 
self-adjoint and positive semidefinite. These conditions were proved in [1]. Section 4 
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represents the essential part of the paper. Namely, it shows how the original bound
ary value problem is transformed to initial value problems and studies the properties 
of the resulting initial value problems. Theorems 4 and 5 contained there are the 
main results. Section 5 has an algorithmic character and describes algorithms based 
on the special transfer of boundary conditions introduced in Section 4. In Section 6, 
numerical stability of the algorithms is discussed. It is shown that all the algorithms 
of Section 5 are feasible and stable numerically. Theorem 6 of this section is another 
of the main results of the paper. Section 6 contains a short conclusion summarizing 
the results obtained. 

2. PRELIMINARIES 

For the convenience of the reader, we start with a survey of the fundamental results 
of the methods based on the idea of the transfer of conditions for a general two-point 
boundary value problem for a system of IV linear ordinary differential equations as 
discussed in [6], [7]. All the proofs of the statements quoted here may be found in [6], 
[7]. The general theory of the transfer of conditions deals with the system 

(1) x'(t) + A(t)x(t) = f(t) a.e. in (a, 6), 

where x(t) and f(t) are IV x 1 vectors, A(t) is an IV x IV matrix, and (a, 6) is a 
bounded interval. We suppose the entries of the matrix A(t) and the components 
of the vector f(t) to be Lebesgue-integrable functions. The boundary conditions are 
supposed to be separated of the form 

(2) Ux(a) = u, 

(3) Vx(b) = v, 

where U and V are in general rectangular matrices, with the number of columns 
equal to 1V. 

Definition 1. The following problem will be called Problem ip: A vector x(t) 

absolutely continuous on [a, b] is sought that satisfies the following requirements: 
1. x'(t) + A(t)x(t) = f(t) a.e. in (a, 6), 
2. Ux(a) = u and Vx(b) = v. 

Now we formulate theorems on the transfer of the conditions for Problem rp and 
define basic algorithms for the solution of the problem. For the sake of definiteness 
let the matrices U and V have rt\ and n2 rows, respectively, and suppose that the 
matrices U and V have the maximum rank. Typically, m +ri2 = IV, which will be 
the case applied later in the paper. 
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Theorem 1. Let D(t) be an absolutely continuous n\ x N matrix and d(t) an 

absolutely continuous vector with n\ components satisfying the equations 

(4) D'(t) = D(t)A(t) + Zx(t,D(t),d(t))D(t) a.e. in (a,b), 

(5) d'(t) = D(t)f(t) -f Zx(t,D(t),d(t))d(t) a.e. in (a,b), 

and the initial conditions 

(6) D(a)=KxU, 

(7) d(a) = KlU, 

where Z\(t, D,d) is ann\xn\ matrix such that Z\(t, D(t), d(t)) £ C(a, b) and K\ is 

a nonsingular matrix of order n\. 

Then 

(8) D(t)x(t) = d(t) for every t E [a, 6] 

for any function x(t) satisfying (1), (2), i.e., aiso for every solution of Problem tp. 

This theorem brings us to the idea of the transfer of the left boundary condition (2) 
to the whole interval [a, b\. Equation (8) is called the transferred condition (2). We 
say that the matrix D(t) and the vector d(t) realize the transfer of the condition (2). 
Analogously we can formulate the theorem on the transfer of the right boundary 
condition. 

Theorem 2. Let C(t) be an absolutely continuous n2x IV matrix and c(t) an 

absolutely continuous vector with n2 components satisfying the equations 

(9) C'(t) = C(t)A(t) + Z2(t,C(t),c(t))C(t) a.e. in (a,b), 

(10) c'(t) = C(t)f(t) + Z2(t,C(t),c(t))c(t) a.e. in (a, b), 

and the initial conditions (this time at the point b) 

(11) C(b) = K2V, 

(12) c(b) = K2v, 

where Z2(t, C, c) is an n2 x n2 matrix such that Z2(t, C(t),c(t)) G C(a, b) and K2 is 
a nonsingular matrix of order n2. 
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Then 

(13) C(t)x(t) = c(t) for every t G [a, b] 

for any function x(t) satisfying (1), (3), i.e., also for every solution of Problem </). 

The transfer of conditions is not determined uniquely. There is some arbitrariness 
in the choice of the matrices Z\(t, D(t), d(t)), Z2(t,C(t),c(t)), K\, and K2. Just this 
gives us a variety of possible transfers and a variety of methods among which we 
look for the proper ones from the point of view of their numerical realization. Let us 
pay attention to the connection between two different transfers of the left condition. 
Let the matrix D(t) and the vector d(t) fulfil the assumptions of Theorem 1. Let 
matrix °D(t) and a vector °d(t) satisfy the assumptions of Theorem 1 except that 
in (4) and (5), the matrix Z\(t,D(t),d(t)) is replaced by a generally different matrix 
0Zi(t,0F>(t),°d(£)) and in (6) and (7), the matrix Kx is replaced by a matrix 0Kr. 

Then the following lemma holds. 

Lemma 1. There exists an absolutely continuous and nonsingular matrix K(t) 
on [a,b] such that 

(14) °D(t) = K(t)D(t) for t G [a, b], 

(15) °d(t) = K(t)d(t) for t G [a, 6]. 

This lemma implies that the transferred condition (8) is equivalent to the condition 

°D(t)x(t) = °d(t). 

To be able to study the solvability of the algebraic equations resulting from the 
transfer of conditions we will use the following lemma. We denote by rank(^4) the 
rank of the matrix A. 

Lemma 2. The following statements hold on the interval [a, b]: 
1. rank(D(t)) = const. 
2. rank(D(*),d(*)) = const. 
3. rank(C(*)) = const. 
4. rank(C(t),c(t)) ---const. 

5-rank[c(t)) = const-
i(t) 

At)) ,^(~W 
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Theorems 1 and 2 imply that every solution of Problem if) satisfies the equation 

<-> (cf;,v=Q <°-M). 
Lemma 2 (in particular assertions 5 and 6) implies that system (16) has a solu

tion in the whole interval [a, b] provided it has a solution at a single point of the 
interval [a, b]. Similarly, system (16) has a unique solution in the whole interval [a, b] 
provided it has a unique solution at a single point of the interval [a, b]. Moreover, 
the following statement may be proved. 

Theorem 3. 
1. Every solution of Problem xp satisfies (16) for any t e [a, b]. 
2. System (16) has a solution at any t € [a, b] if and only if Problem ifr has a 

solution. 
3. System (16) has exactly one solution for any t G [a, b] if and only if Problem ip 

has exactly one solution. 

Provided Problem ip has a unique solution, this solution may be found at any 
t € [a, b] by solving (16). However, there are additional algorithms of the transfer 
of conditions that may be preferable in particular situations. Now we will introduce 
two algorithms to be applied later to the boundary value problem for a self-adjoint 
equation of 2nth order. At this moment, we will give a general form of these al
gorithms. In Section 4 we will present proper modifications useful and effective for 
solving the boundary value problems treated in this paper. 

A l g o r i t h m A ([6], [7]). Let Problem ifr have a solution. We choose an abso-
/D(t)\ 

lutely continuous matrix R(t) such that the matrix I 1 is nonsingular for all 

t € [a, b]. We look for a vector r(t) solving the differential equation 

(17) r'(t) = R(t)f(t) + (R'(t) - R(t)A(t)) Q j j ) (^j 

from the right to the left with the initial condition at the point 6 given as 

(18) r(b) = R(b)p, 

where p is a solution of the equation 

(?)'-(*') 
(the system (19) has a solution according to Theorem 3). 
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Then the solution x(t) of Problem t/j is found from the system 

(2°> ( S J D ^ - Q -"- , sM. 
A l g o r i t h m B ([6], [7]). Let Problem x/> have a solution. We choose an abso

lutely continuous matrix R(t) such that the matrix ( j is nonsingular for all 

t E [a, 6], We look for a vector r(t) solving the differential equation 

(21) r'(t) = R(t)f(t) + (R'(t) - R(t)A(t)) (^® ) (^ ) 

from the left to the right with the initial condition at the point a given as 

(22) r(a) = R(a)p, 

where p is a solution of the equation 

U>)-U) 
(the system (23) has a solution according to Theorem 3). 

Then the solution x(t) of Problem ip is found from the system 

( 2 4 > (cS) l ( ( ) = (c(')) -"-""••* 
In order to apply Algorithms A and B efficiently, it is requirable that the matrices 

v - l / n / i \ \ - l (D(t)\~l (R(t)Y 
\R(t)J ' \C(t)) 

in Eqs. (17), (21) be given by simple expressions (this will be the case in Algorithms 2, 
3, 5, and 6 below) or that they would not occur in the respective expressions at all 
(Algorithms 1 and 4). 
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3 . ON A SELFADJOINT BOUNDARY VALUE PROBLEM FOR 

A DIFFERENTIAL EQUATION OF 2 n t h ORDER 

Consider the boundary value problem for a self-adjoint differential equation of 
2nth order 

n 

(25) ty = $]( - l )*(Pn- i (*)yW ( . ) ) ( 0 = «(*) a-e. in (a,b), 

where the coefficients of the equation satisfy the following requirements: l/po(t) £ 

C(a, 6), pi(t) E £(a, b) for i = 1,..., n, and q(t) G C2(a, b). This last requirement that 

enables us to treat t as an operator in C2 will be weakened later as this assumption 

will not be necessary for the application of our algorithms. 

First of all let us introduce the concept of quasiderivatives in order to be able to 

formulate the boundary conditions for our problem. 

Definition 2. We say that a function y(t) has all quasiderivatives up to the 2nth 

order provided that the following 2n functions exist: 

yM(t)=yW(t) for fc = l , 2 , . . . , n - 1 , 

y[n](t)=Mt)y{n\t), 
yln+j](t) =Pj(t)y("-i)(t) - (yl^'^t))' for j = l , . . . , n . 

The last n + 1 equations are assumed to hold almost everywhere and the first 2n — 1 
quasiderivatives are assumed to be absolutely continuous. 

In addition, we define y^(t) = y(t) and put X{(t) = j/^""1 '^) for i = 1 , . . . , 2n. Let 
us introduce the vector x(t) = (a;i(t), . . . , %2n(t))T. Consider the boundary condition 
for the differential equation (25) in the form 

(26) W1x(a) + W2x(b)=w, 

where W\ and W2 are square matrices of order 2n and the vector w has 2n com
ponents. Let S be the set of all functions y(t) whose quasiderivatives y^(£), k = 
0,1, . . . , 2n — 1, are absolutely continuous and y[2n\t) € C2. Then S obviously is the 
largest linear set for which the operation ty has a natural sense and the operator t 
can be considered as an operator in C2. The matrices W\ and W^ have to satisfy cer
tain conditions in order that the boundary problem be self-adjoint. Let us formulate 
these conditions. For that reason we divide the matrices W\ and W<i into blocks: 

W1 = (BUB2), W2 = (B3,B4), 
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where the matrices B% (i = 1,. •., 4) have n columns. Let T be the square matrix of 

order n defined as 

т = 

'0 0 . . 0 1" 

0 0 . . 1 0 

0 1 . . 0 0 

.1 0 . .. 0 0. 
__ 1 -1 ł _ 

for n>2 

and T = 1 for n = 1 (i.e., the matrix has Ts on the adjoint diagonal and zeros 
everywhere else). 

Now we can formulate two known lemmas (see [1]). 

Lemma 3. A necessary and sufficient condition for problem (25), (26) to be 

self-adjoint is 

(27) BiTBj - B2TBf = вгтв\ - BATBj 

ала rank(Wi,W_) = 2n. 

Lemma 4. Let pi(t) ^ 0 a.e. in (a, b) for i = 0, . . . , n. A necessary and sufficient 

condition for the self-adjoint problem (25), (26) to be positive semidefinite is that 

the matrix 

BiTBj - BзTBj 

is negative semidefinite. 

In the following we will consider only boundary value problems with separated 

conditions, i.e., we will assume that the boundary conditions are of the form 

(28) 

(29) 

Ux(d) = u, 

Vx(b) = v, 

where U and V are n x 2n matrices and the vectors u and v have n components. Let 

us divide the matrices U and V into blocks 

U = (UUU2), V = (VUV2), 

where Ui, U2, Vi, and V2 are square matrices. 

Condition (27) of Lemma 3 turns into two equations 

(30) 

(31) 

UxTUJ = UiTUf, 

ViTV? = V2TV? 
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and the requirement that rank(U) = rank(V) = n. The condition of Lemma 4 
turns into the conditions that the matrix U\TU% is negative semidefinite and the 
matrix V\TV% is positive semidefinite. 

4 . TRANSFER OF THE CONDITIONS FOR A SELFADJOINT 

POSITIVE SEMIDEFINITE BOUNDARY VALUE PROBLEM 

Throughout the remainder of the paper we suppose only (because of the techniques 
of the transfer of conditions used): 

1. l/po(t),q(t),Pi(t) G £(a, 6), i = 1 , . . . ,n. (Note that we do not need to assume 
q(t) € C2 in what follows.) 

2. pi(t) ^ 0 a.e. in (a, b) for i = 0 , 1 , . . . , n. 

3. The matrix U\TU% is symmetric and negative semidefinite. 

The matrix VxTV^ is symmetric and positive semidefinite. 

4. The ranks of the matrices U and V equal n. 

First we will replace the equation of the 2nth order by the system of 2n equations 
of the first order in a standard way. The definition of quasiderivatives implies that 
the introduced vector x(t) satisfies the differential equation 

(32) x'(t) + 

0 - 1 0 .. . 0 0 0 0 0 
0 0 - 1 . . . 0 0 0 0 0 

0 0 0 .. . 0 - 1 0 0 0 
0 0 0 . . . 0 0 -1/po 0 0 
0 0 0 . . . 0 - P l 0 1 0 
0 0 0 . . • ~P2 0 0 0 1 

0 - P n - 1 0 .. . 0 0 0 0 0 

•Pn 0 0 . . . 0 0 0 0 0 

0 
0 

0 

-q(t) 

. . 0 o-

. . 0 0 

. . 0 0 

. . 0 0 
. . 0 0 
.. 0 0 

. . 0 1 

.. 0 0 . 

x(t) 

a.e. in (a, 6). 
Now we will treat problem (25), (28), (29) as Problem ip, where equation (32) 

corresponds to the differential equation (1) and conditions (28) and (29) correspond 
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to the boundary conditions. That also defines the class in which we seek the so

lution of our problem: we demand that the vector x(t) be absolutely continuous, 

i.e., we seek such a function y(t) that it is absolutely continuous, together with all its 

quasiderivatives up to the order 2n — 1, and such that the 2n quasiderivative satisfies 

the equation 

(33) У[2n](t) = q(t) a.e. in (a,b), 

where owing to Definition 2 we have 

(34) »I2nl(*) = Ë(-1) ł(p»-.(*)»w(*)) (0 
i = l 

Definition 3. Let the above assumptions 1 to 4 be satisfied. Then the following 
problem will be called Problem fan'- A vector x(t) absolutely continuous on [a, b] is 
sought that satisfies (32) and boundary conditions (28) and (29). 

Equation (32) is of the form (1). Let the matrix A(t) stand for the corresponding 
matrix of equation (32) and the vector f(t) for the corresponding right-hand side. 
We will divide the matrix A(t) into blocks as follows: 

A(t) = 
Ar(t) 

Az(t) 
A2(t) 

Mt) 

where A{(t) (i = 1,...,4) are n x n matrices. The vector f(t) will be divided into 
two vectors, 

/(*)=[ / l ( t )l 
m U(*)J 

such that each fi(t) (i = 1,2) has n components. Equation (32) implies that 
/i(*) = 0. 

We have 

Aл = -Aл = 

for n > 1 and A\ = AA = 0 for n = 1. 

First, let us examine the properties of the matrices that realize the general transfer 

of the conditions for a self-adjoint and positive definite problem. Then we will deduce 

"0 1 0 . . 0 0 

0 0 1 . . 0 0 

0 0 0 . . 1 0 

0 0 0 . . 0 1 

.0 0 0 . . 0 0 
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from these properties a certain particular transfer that will make full use of the 
symmetry property as well as the sign properties of our problem. 

Let us divide the matrix D(t) from Theorem 1 into blocks 

D(t) = (Di(t),D2(t)), 

where Di(t) and D2(t) are square matrices. Analogously, we divide the matrix C(t) 

from Theorem 2 into blocks 

C(t) = (Ci(t),C2(t)), 

where Ci(t) and C2(t) are square matrices. 

Differential equation (4) can now be rewritten as 

(35) D[(t) = Di(t)Ai(t) + D2(t)A3(t) + Zi(t,D(t),d(t))Di(t), 

(36) D'2(t) = Di(t)A2(t) + D2(t)A4(t) + Zi(t,D(t),d(t))D2(t), 

and similarly for the differential equation (9) we have 

(37) C'i(t) = Ci(t)Ai(t) + C2(t)A3(t) + Z2(t,C(t),c(t))Ci(t), 

(38) C2(t) = Ci(t)A2(t) + C2(t)A4(t) + Z2(t,C(t),c(t))C2(t). 

Lemma 5. Under the above assumptions the following statements hold: 

1. The matrix D\ (t)TD2 (t) is symmetric and negative semidehnite for allt € [a, b]. 

2. The matrix C\ (t)TC2(t) is symmetric and positive semidetmite for allt G [a, b\. 

P r o o f . It is sufficient to carry out the proof of the first assertion only for the 
case Z\(t,D,d) = 0 because according to Lemma 1, we obtain any other transfer of 
conditions by left-multiplying the matrix D\(t)TD2(t) by a nonsingular matrix K(t) 

and right-multiplying it by a matrix KT(t). These operations do not change the 
properties mentioned in Lemma 5. Let thus Zi(t,D,d) = 0 for the purpose of the 
proof. Then 

(39) (Dx(t)TDl(t)y = D^A^TD^t) + D2(t)A3(t)TD%(t) 

+ Dx(t)TAl(t)Dl(t) + D! (t)TAj(t)Dl(t) 

holds. Obviously TAj(t) = -Ax(t)T and therefore (39) reduces to 

(40) (D^TD^t))' = D2(t)A3(t)TDj(t) + D^TAl^D^t). 
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The matrices A^{t)T and TAT{t) are symmetric and negative semidefinite and thus 
the right-hand side of (40) is also a symmetric and negative semidefinite matrix. The 
initial condition (6) implies 

(41) D\{a)TDT{a) = K\U\TUTKT. 

Then, equations (40) and (41) imply the symmetry property of the matrix D\{t) x 
TDT{t). To prove that this matrix is negative semidefinite, let us consider an arbi
trary constant vector w. Then we obtain 

(42) {wTD\{t)TDl{t)w)' < 0 a.e. in (a,b). 

Under our assumptions we have 

(43) wTD\{a)TDl{a)w = wTK\U\TU^Kjw ^ 0. 

Using inequalities (42) and (43), we find that 

wTD\{t)TD%{t)w^0 

for all £ G [a, 6] and for all vectors w. Thus we have proved the first assertion of the 

lemma. The second assertion can be proved in an analogous way. D 

Lemma 6. The matrices D\ {t) — D2 {t)T and C\ {t) + C2 {t)T are nonsingular for 
allte[a,b}. 

P r o o f . The rank of the matrix D{t) equals n, and therefore the matrix 

D(t)DT(t) = Dx(t)D
T{t) + D2(t)D

T(t) 

is positive definite. Consider the product 

(Di(t) - D2(t)T)(Dt(t) - D2(t)T)T 

= Dr(t)DT(t) + D2(t)D
T(t) - D!(t)TDT(t) - D2(t)TDT(t) 

= D(t)DT(t) + (-2Dx(t)TDT(t))} 

This product is a positive definite matrix because it is the sum of a positive definite 
and a positive semidefinite matrix. Thus the matrix D\{t) — D2{t)T is nonsingular. 

Analogously we can prove that the matrix Ci(£) + C2{t)T is nonsingular. We 
consider the product {C\{t) + C2{t)T){C\{t) + C2{t)T)T to this end. D 

We use the equality T = I here. 
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Let us put 

(44) G(t) = (D\(t) - D2(t)T)~lD\(t), 

(45) g(t) = (D\(t)-D2(t)T)-ld(t), 

(46) H(t) = (C\(t) + C2(t)T)-lC\(t), 

(47) h(t) = (C1(t) + C2(t)T)-1c(t). 

Even if the construction of the above matrices and vectors is based on a fixed 
choice of the transfer, i.e., on the choice of the matrices K\, K2, Zi(t,D(t),d(t)) 
and Z2(t,C(t),c(t)), neither the matrix G(t) nor the vector g(t) depend on the 
choice of the matrices K\ and Z\(t, D(t),d(t)). This is implied by Lemma 1 trivially. 
Analogously, the matrix H(t) and the vector h(t) do not depend on the choice of 
the matrices K2 and Z2(t,C(t),c(t)). In fact, we have defined a unique canonical 
transfer of conditions for the problem discussed here. 

Lemma 7. For allt £ [a, b], the matrices G(t), I - G(t), H(t), and I - H(t) are 

symmetric and positive semidefinite. Moreover, the following equalities hold: 

(48) (D\(t) - D2(t)T)~xD2(t) = (G(t) - I)T, 

(49) (C\(t) + C2(t)T)~lC2(t) = (I- H(t))T. 

P r o o f . The matrix (D\(t) — D2(t)T)Df(t) is obviously symmetric and positive 
semidefinite. We can write the matrix G(t) in the form 

G(t) = (Dx(t) - D2{t)T)-l[D1{t){Dl{t) - D2(t)T)T]((D1(t) - D2(t)T)~l)T, 

hence the matrix G(t) is also symmetric and positive definite for all t e [a, b]. The 
matrix (Di(t) — £>2(f)T)TDT(f) is symmetric and negative semidefinite. We have 

(D1(t)-D2(t)T)~1D2(t)T 

= (Dt(t) - D2(t)T)-1[D2(t)T(D1(t) - D2(t)T)T]((D1(t) - D^T)-1)7 

and thus the matrix (D\(t) — D2(t)T)~xD2(t)T is symmetric and negative semidefi
nite. We will prove relation (48) in the following way. Obviously we have 

(D1(t) - D^Tr^D^t) - D2(t)T) = I, 

hence 

(D\(t) - D2(t)T)~lD\(t) - (D\(t) - D2(t)T)~lD2(t)T = I. 

The last identity implies (48) immediately. Analogously we can prove the assertion 
on the matrices H(t) and I - H(t) together with relation (49). D 
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R e m a r k . Lemma 7 says that the eigenvalues of the matrices G(t) and H(t) lie 
in the interval [0,1]. As a matter of fact, this gives us an estimate of the norm of the 
matrices G(t) and H(t), which will be of use in the investigations of the numerical 
stability questions. 

Now, left-multiplying the transferred condition (8) by the matrix (D\(t) — 

D2(t)T)~l and doing some simple modification, we obtain 

(50) (G(t), (G(t) - I)T)x(t) = g(t) for t G [a, b]. 

We can determine the value of the matrix G(t) and of the vector g(t) at the point a 

knowing the matrix U and the vector u only. If we knew the differential equations 
satisfied by the matrix G(t) and the vector g(t), we would construct the transferred 
condition (41) directly, solving a certain initial value problem. Let us compute the 
derivative of the matrix G(t), 

G'(t) = - (Dx(t) - D2(t)T)-\D[(t) - D^T^D^t) - D2(t)T)~'Dx(t) 

+ (D1(t)-D2(t)T)~1D'1(t). 

Substituting, in accordance with equations (35) and (36), for the derivatives of the 

matrices D\(t) an(^ D2(t), we obtain the matrix Riccati equation 

(51) G'(t) = G(t)A2(t)TG(t) - (G(t) - I)T A3(t)(G(t) -I)- G(t)Ax(G(t) - I) 

- (G(t) - I)AlG(t) a.e. in (a, b). 

Analogously we have for the vector g(t) 

(52) g'(t) = - G(t)(A, - A2(t)T)g(t) - (G(t) - I)T(A3(t) - AAT)g(t) 

+ (G(t)-I)Tf2(t) a.e. in (a,b). 

The initial conditions for these differential equations are 

(53) G(a) = (U1-U2T)~1U1, 

(54) g(a) = (Ux - U^^u. 

• 
Thus we have proved the following theorem. 

Theorem 4. Under the above assumptions, there exist an absolutely continuous 
matrix G(t) and an absolutely continuous vector g(t) which are the unique solutions 
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of the initial value problems for differential equations (51) and (52) with initial 
conditions (53) and (54), respectively. Any solution x(t) of Problem tp2n satisfies the 
transferred condition (50). 

Analogously, a theorem can be proved also for the following particular transfer of 
the right boundary condition. 

Theorem 5. Under the above assumptions there exist an absolutely continuous 

matrix H(t) and an absolutely continuous vector h(t) which axe the unique solutions 

of the initial value problems for the differential equations 

(55) #'(*) = - H(t)A2(t)TH(t) -(I- H(t))TA3(t)(I - H(t)) 

+ H(t)Ax(I - H(t)) + (I - H(t))A\H(t) a.e. in (a,6), 

(56) h'(t) = - H(t)(Ax + A2(t)T)h(t) -(I- H(t))T(A3(t) + A4T)h(t) 

+ (I-H(t))Tf2(t) a.e. in (a,b), 

with the initial conditions 

(57) H(b) = (V1+V2T)~1V1, 

(58) h(b) = (VT + V2T)~lv, 

respectively. Any solution x(t) of Problem ij)2n satisfies the transferred condition 

(59) (#(*), (/ - H(t))T)x(t) = h(t) for t € [a,6]. 

Theorems 4 and 5 define a particular transfer of conditions that will be called the 
canonical transfer and that exploits the given symmetry and sign properties. The 
matrix differential equation (4) represents the system of 2n2 equations whereas the 
matrix equation (51) represents the system of (n2 + n)/2 equations only. Further 
advantages of this canonical transfer will be pointed out later. 

5. PARTICULAR METHODS FOR THE CANONICAL TRANSFER 

In this section, the transfer of conditions will mean the canonical transfer treated 
by Theorems 4 and 5. Therefore, in Algorithms A and B, we have 

(60) D(t) = (G(t),(G(t)-I)T), 

(61) d(t) = g(t), 

(62) C(t) = (H(t),(I-H(t))T), 

(63) c(t) = h(t). 
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Now we will describe three algorithms that come from Algorithm A by a particular 
choice of the matrix R(t). 

A l g o r i t h m 1. Let our problem have a unique solution. We choose R(t) = 
fD(t)\ 

C(t) in Algorithm A. That can be done because the matrix is nonsingular 

according to Theorem 3. Without any difficulty we determine that r(t) = c(t). 
Therefore, the solution x(t) of our problem is found from the system of 2n equations 

(cS)^a-
The matrix (D(t),d(t)) is built up by solving the initial value problem (51), (52), 

(53) and (54). Analogously, the matrix (C(t),c(t)) is built up by solving the initial 
value problem (55), (56), (57) and (58). It is sufficient to store these matrices only 
at the points where we are interested in the solution (i.e. at the points when the 
solution is output). System (64) is now of the particular form 

(G(t), (G(t)-I)T\ (g(t)\ 
\H(t), (I-H(t))T)XW \h(t))-

The solution of this system may be transformed to solving the system of n linear 
algebraic equations with the matrix 

G(t) + H(t)-2G(t)H(t). 

A1 g o r i t h m 2. We put R(t) = (J, T) in Algorithm A. Then 

« O'XT (GVT=(V^)-

Differential equation (17) for the function r(t) in Algorithm A acquires the form 

The solution x(t) is obtained from the equation 

^uv^oes)-
Equation (66) is solved from the right to the left. Therefore, we must store the 
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as many points as are needed for the numerical integration of equation (66). Usually 
we have incomparably more such points than the points where the solution is output. 
The following Algorithm 3 avoids this unpleasant fact. The matrix R(t) is chosen 
in such a way that the equation (17) becomes a quadrature and thus can be solved 
simultaneously with equations (51) and (52) from the left to the right with an initial 
condition. In the end, the values of the function r(t) can be corrected by adding a 
constant at the points where we are interested in the solution. Hence this algorithm 
will inherit the character of Algorithm 1. 

A l g o r i t h m 3 . We choose R(t) = (Q(t),Q(t)T) in Algorithm A, where the 
matrix Q(t) will be constructed by solving a certain differential equation but from 
the left to the right. For our algorithm to be practicable the matrix Q(t) has to be 
nonsingular. Then 

r<W. (D(t)\~' (G(t), (G(t)-I)Tyl ( I, (I-G(t))Q-*(t)\ 
( ' \R(t)J \Q(t), Q(t)T J \-T, TG(t)Q~l(t) J' 

Requiring equation (17) to be a quadrature, the following equation has to hold 

™-«™>>W''%) 
= (R'(t) - R(t)A(t)) ( °® J ' ( d{*]) a.e. in (a, b). 

This condition is fulfilled provided that the matrix Q(t) satisfies the differential 

equation 

(69) Q'(t) = Q(t)(A2(t)TG(t) - AjG(t) - AxG(t) - TA3(t)G(t) + Ax + TA3(t)). 

This is a homogeneous linear differential equation and the condition of nonsingularity 

is satisfied if we choose 

(70) Q(a) = I. 

Let us sum up: We seek matrices G(t) and Q(t) and vectors g(t) and r(t) when 
solving the above mentioned differential equations from the left to the right. Then, 
at the points where we are interested in the solution, the function r(t) is corrected 
by adding a certain constant in such a way that the condition (18) is satisfied. 

In addition, we will describe three algorithms that come from Algorithm B of 
Section 1 by a particular choice of the matrix R(t). 
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A l g o r i t h m 4. Let our problem have a unique solution. We choose R(t) = 
fD(t)\ 

D(t) in Algorithm B. That can be done because the matrix ( 1 is nonsingular 

according to Theorem 3. Without any difficulty we determine that r(t) = d(t). 
Therefore, the solution x(t) of our problem is found from the system of 2n equations 

(33)-»-G8)-
As the result of this choice we obtain the same algorithm as Algorithm 1. 

A l g o r i t h m 5 . We put R(t) = (I, -T) in Algorithm B. Then 

(72) (m)~l = ( '' ~T W 7 - * ® ' ') 
( ] \c(t)J \H(t), (I-H(t))Tj \-TH(t), Tj-

The differential equation for the function r(t) acquires the form 

The solution x(t) is obtained from the equation 

•«-(^;)G8)-
Equation (73) is solved from the left to the right. Therefore, we must store the 

matrix H(t) and the vector h(t) at as many points as are needed for the numerical in
tegration of equation (73). Usually we have incomparably more such points than the 
points where the solution is output. The following algorithm avoids this unpleasant 
fact. The matrix R(t) is chosen in such a way that equation (21) becomes a quadra
ture and thus can be solved simultaneously with equations (55) and (56) from the 
right to the left with an initial condition. In the end, the values of the function r(t) 
can be corrected by adding a constant at the points where we are interested in the 
solution. Hence, this algorithm will inherit the character of Algorithm 4. 

A l g o r i t h m 6. We choose R(t) = (Q(t),-Q(t)T) in Algorithm B, where the 
matrix Q(t) will be constructed by solving a certain differential equation from the 
right to the left. For our algorithm to be practicable, the matrix Q(t) has to be 
nonsingular. Then 
(75. {mV1

 = (Q(t), -Q(t)T V1 ((I-H(t))Q~\t), I\ 
K } \c(t)J \H(t), (I-H(t))Tj \ -TH(t)Q~l(t), Tj' 
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Requiring equation (21) to be a quadrature, the following equation has to hold: 

<^«»-«(«M(.»)(^)-'CJ;J) 
=m)-mm(™)~'(°t)) «*.*(.,.>. 

This condition is fulfilled provided the matrix Q{t) satisfies the differential equation 

(76) Q'{t) = Q{t){-A2{t)TH{t) -A*H(t) -A±H{t) +TA3{t)H{t) + AX -TA3{t)). 

This is a homogeneous linear differential equation and the condition of nonsingularity 

is satisfied if we choose 

(77) Q(b) = I. 

Let us sum up: We seek matrices H{t) and Q{t) and vectors h{t) and r{t) when 
solving the above mentioned differential equations from the right to the left. Then, at 
the points where we are interested in the solution, the function r{t) will be corrected 
by adding a certain constant in such a way that condition (22) is satisfied. 

6. NUMERICAL STABILITY 

The method of transfer of conditions as described in the previous part of this 
paper, in particular in Section 1, is simple and rather graceful. It also possesses the 
advantage that it not only gives a procedure for solving the boundary value problems 
in question numerically but also provides an answer to the theoretical question about 
the existence of the boundary value problem treated. 

The reader who has followed our discussion of various algorithms of the method up 
to this point would probably ask why not use the simplest variant of the method of 
transfer and choose just Z\{t, D{t), d{t)) = 0 or Z2{t, C{t), c{t)) — 0 in the respective 
formulas of the method. However, this choice is quite often inappropriate from the 
numerical realization point of view in finite-precision arithmetic. The cause of the 
trouble here is in fact the same as are the well known numerical problems connected 
with the shooting method. It is easy to see that the above choice of zero matrices 
for Z\, Z2 results in our solving essentially the same differential equations as are those 
of the boundary value problem to be solved but with initial conditions. It is well 
known, however, that the conditioning (or stability) of a boundary value problem for 
a differential equation may be quite different from that of an initial value problem 
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for the same equation where the growth of the solution modes is not limited by all 
the boundary conditions. There are many examples from real world practice where 
initial value problems for the differential equations forming parts of well-conditioned 
boundary value problems are highly unstable so that the classical shooting method is 
inapplicable. We even dare say that the more a given problem is stable as a boundary 
value problem the less stable the corresponding initial value problems may be. 

The magnitudes of the entries in the matrices that realize the transfer of condi
tions may grow or decrease very fast. The main problem here is in the unbearable 
sensitivity of the solutions to the differential equations realizing the transfer in the 
case of zero Z\, Z% to the initial conditions. This shortcoming can be avoided by our 
requiring that the matrices D(t), C(t) that realize the transfer of conditions be "nor
malized" by which we mean that their norms and the norms of their pseudoinverses 
be bounded by constants that do not depend on the coefficients of the differential 
equation in question or on the length of the interval [a, 6]. 

In monographs [6], [7], the analysis of numerical stability of algorithms A and B 
has been performed. It has been shown that realizing the algorithms for solving the 
initial value problems involved numerically we bring into being certain inaccuracies, 
both in the solution of the differential equations and in the computation of the initial 
conditions for these differential equations. These inaccuracies are considered in the 
following theorem proved in [6] where also the estimates of the magnitudes of these 
perturbations in terms of the errors in solving the initial value problems are given. 

Theorem 6. Let the norm of the matrices D(t) and DT(t)(D(t)DT(t))~1 be 

bounded by an a priori given constant. Then all inaccuracies made in the realization 

of the method can be represented as perturbations in the coefficients of the primary 

Problem %j) whose magnitude can be estimated using the above mentioned constant. 

An analogous statement is valid also for the transfer of conditions from the right to 

the left. 

The investigation of numerical stability of the algorithm with an auxiliary 
matrix R(t) leads to the requirements that the norms of the matrices R(t), 

RT(t)(R(t)RT(t))-1 and ( 5 5 ) (or ( 5 5 ) ) be bounded by an a priori 

given constant. 

In what follows, we will show that the canonical transfer of conditions for Prob
lem fan satisfies the assumptions of the previous theorem and thus the transfer is 
numerically stable. In our further exposition we will estimate norms of certain ma
trices that are rectangular in general. To this end we will employ the spectral norm 
that is induced by the Euclidean vector norm (2-norm). The spectral matrix norm 
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of a general matrix A may be expressed as (see e.g. [2], Section 6.2) 

\\A\\ = JrtA?A) = amai(A), 

where Q is the spectral radius defined as 

Q(B) = max{|A|: det(B - XI) = 0}, 

and where O~max(-4) denotes the largest singular value of A. As this norm is unitarily 

invariant, it has the property that ||-4*|| = \\A\\ and we will exploit this fact in what 

follows. Therefore, to compute the norm ||4>(£)|| of a matrix $(t) of an arbitrary 

type, we will use any of the formulae 

(78) | |*(i)| | = y^max. eigenvalue ($T(t)$(t)) 

= ymax. eigenvalue ($(t)$T(t)). 

We obtain 

G(t) 

T(G(t) - 1 ) 
= G2(t) + (G(t)-I? (79) D(t)Dт(t) = [G(t),(G(t)-I)T] 

and 

1 = H2(t) + (I-H(t))2 (80) C(t)CT(t) = [H(t), (I-H(t))T] 

Thus 

H(t) 

T(I-H(t))\ 

(81) ||o(í)|| < / m a x ^ + ÍA- l^ ) = 1 

and 

(82) \\DT(t)(D(t)DT(t))^\ < y / m ^ , 2 + (* _ 1 ) 2 = V~2. 

Analogously we obtain estimate for the norms of the matrices C(t) and CT(t) x 

(c(t)(F(t)rh 

(83) IICWIK1 ^ d \\CT(t)(C(t)CT(t))-1\\ < V2. 

As a result of these bounds, Algorithm 1 (or 4) is numerically stable. 
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Let us now investigate the norms of the matrices f n/ v J and f „. v ) from 
\R(t)J \C(t)J Algorithms 2 and 5. Equations (65) and (72) imply 

I/!>(*) V 
\\R(t)J 

^ V\\(I,I~ G(t)W + ||(-T,To(ť))||2 <S 2 

and 

(my1 

\c(t)J 
^ V\\(i-H(t)jw + \\(-TH(Í),TW < 2. 

These results and Theorem 6 imply the numerical stability of Algorithms 2 and 5. 
In Algorithms 3 and 6, the norms of matrices Q(t) and Q~x(t) cannot be a priori 

estimated. They depend on the value of coefficients and on the length of the interval 
[a, b]. However, the numerical experiments performed have given good results. 

The structure of the matrices Ai(t), i = 1,..., 4, is tremendously simple and the 
complexity of the above mentioned matrix differential equations does not present 
any difficulty for the numerical solution. 

7. CONCLUSION 

We have presented several methods of solution of self-adjoint boundary value prob
lems for differential equations of the 2nth order by transforming them to solving 
sequences of initial value problems. First, we have studied a method where the 
boundary conditions are transferred both from the left and the right independently 
while the transfer of the conditions from one of the end-points represents the solution 
of an initial value problem for one matrix Riccati equation and the solution of an 
initial value problem for a system of linear differential equations. Then, the solu
tion of our boundary value problem may be obtained by solving a system of linear 
algebraic equations at those points where we want to compute it. 

Second, we described methods where the boundary conditions are transferred from 
one side only and the solution to the boundary value problem under consideration is 
obtained in such a way that we construct an auxiliary vector function by solving a 
system of linear ordinary differential equations and the final solution is then obtained 
by evaluating just a simple expression. 

We have presented algorithms that lead to solving the Riccati differential equations 
and have shown that for a series of problems these equations possess a unique solution 
on the whole interval in question and, moreover, that these equations are represented 
by symmetric matrices whose eigenvalues lie in [0,1]. The methods used so far had 
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to check whether the solutions to the Riccati equations exist on the whole interval 

in question or whether they do not exceed some a priori given barriers [4], which is 

not necessary in our canonical transfer of conditions. 

As a consequence of our results, we know that the solutions of the initial value 

problems used in our algorithms exist and are bounded on the whole interval [a, 6]. 

Therefore, the algorithms presented in the paper are always feasible under the as

sumptions given. Finally, we note that the class of boundary value problems dis

cussed here is quite often applicable in the physical science and technology. 
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Abstract. The paper is devoted to solving boundary value problems for self-adjoint linear
differential equations of 2nth order in the case that the corresponding differential operator
is self-adjoint and positive semidefinite. The method proposed consists in transforming
the original problem to solving several initial value problems for certain systems of first
order ODEs. Even if this approach may be used for quite general linear boundary value
problems, the new algorithms described here exploit the special properties of the boundary
value problems treated in the paper. As a consequence, we obtain algorithms that are much
more effective than similar ones used in the general case. Moreover, it is shown that the
algorithms studied here are numerically stable.

Keywords: ODE, two-point boundary value problem, transfer of boundary conditions,
self-adjoint differential equation, numerical solution, Riccati differential equation

MSC 2000 : 65L10, 34B05

1. Introduction

The paper is concerned with the numerical solution of boundary value problems
for self-adjoint linear differential equations of 2nth order such that the corresponding
differential operator is self-adjoint and positive semidefinite. Our approach consists
in transforming the boundary value problem to be solved to the solution of a sequence

of initial value problems of a special structure. This makes it possible to employ the
standard software for solving initial value problems to solve boundary value problems

*This work was supported by Grant No. 201/02/0595 of the Grant Agency of the Czech
Republic.
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of this type. One of the possibilities how to transform the boundary value problems

to solving initial value problems is to use the method of transfer of conditions as
described in [6], [7] or the method of invariant imbedding [3], [5]. The principles of
these methods could be used for the problems studied here directly, however, they

would lead to algorithms that would be unnecessarily elaborate.

In particular, applying the methods of the above type that were devised for general

boundary value problems we cannot guarantee, in general, the global solvability of
the initial value problems obtained as the result of the above mentioned transforma-

tion. Therefore, to be able to obtain algorithms based on the transfer of boundary
conditions that would be practicable and to achieve their numerical stability in the

general case it is necessary to take certain elaborate measures [6], [7]. This is unnec-
essary and even superfluous to do with the algorithms devised here for the special

boundary value problems considered in the paper. This result is not due to that
fact that the original methods designed for general linear boundary value problems

would possess the required properties when applied to the special problem consid-
ered. It is due to the fact that we have constructed new special methods of the

transfer of conditions for the special boundary value problems considered that make
use of all the additional information at our disposal here (self-adjointness, positive

semidefiniteness).

Hence, the present paper exploits the special form of the problem under consid-

eration and the numerical method proposed is chosen in order to use the additional
information, namely all the symmetry and some sign properties. As a consequence,

the resulting method is very advantageous as to the effort expended and fulfils all of
the numerical stability requirements. In particular, we prove that the initial value

problems for the matrix Riccati differential equation that occur in our algorithms
have a bounded solution on the whole interval of question. In fact, all the entries
of the matrix solution are shown to lie in [0, 1]. This is one of the most important
results of the paper. To prove the properties of the transfer of conditions in the
particular case studied here we need to prove some properties of the general transfer

of conditions that have not yet been published and that apply to the special prob-
lem considered. We also note that contrary to the invariant imbedding method the

coefficients of the equations are not required to be smooth here.

The structure of the paper is as follows. Section 2 contains a survey of the fun-

damental results of the methods based on the idea of the transfer of conditions for
general two-point boundary value problems for systems of first order ODEs. In Sec-

tion 3, we define the boundary value problem for a self-adjoint differential equation
of the 2nth order studied in the paper and introduce necessary notation and con-
cepts. We also give necessary and sufficient conditions for the problem studied to be
self-adjoint and positive semidefinite. These conditions were proved in [1]. Section 4
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represents the essential part of the paper. Namely, it shows how the original bound-

ary value problem is transformed to initial value problems and studies the properties
of the resulting initial value problems. Theorems 4 and 5 contained there are the
main results. Section 5 has an algorithmic character and describes algorithms based

on the special transfer of boundary conditions introduced in Section 4. In Section 6,
numerical stability of the algorithms is discussed. It is shown that all the algorithms

of Section 5 are feasible and stable numerically. Theorem 6 of this section is another
of the main results of the paper. Section 6 contains a short conclusion summarizing

the results obtained.

2. Preliminaries

For the convenience of the reader, we start with a survey of the fundamental results
of the methods based on the idea of the transfer of conditions for a general two-point

boundary value problem for a system of N linear ordinary differential equations as
discussed in [6], [7]. All the proofs of the statements quoted here may be found in [6],

[7]. The general theory of the transfer of conditions deals with the system

(1) x′(t) +A(t)x(t) = f(t) a.e. in (a, b),

where x(t) and f(t) are N × 1 vectors, A(t) is an N × N matrix, and (a, b) is a
bounded interval. We suppose the entries of the matrix A(t) and the components
of the vector f(t) to be Lebesgue-integrable functions. The boundary conditions are
supposed to be separated of the form

Ux(a) = u,(2)

V x(b) = v,(3)

where U and V are in general rectangular matrices, with the number of columns
equal to N .

Definition 1. The following problem will be called Problem ψ: A vector x(t)
absolutely continuous on [a, b] is sought that satisfies the following requirements:
1. x′(t) +A(t)x(t) = f(t) a.e. in (a, b),
2. Ux(a) = u and V x(b) = v.

Now we formulate theorems on the transfer of the conditions for Problem ψ and

define basic algorithms for the solution of the problem. For the sake of definiteness
let the matrices U and V have n1 and n2 rows, respectively, and suppose that the

matrices U and V have the maximum rank. Typically, n1 + n2 = N , which will be
the case applied later in the paper.

143



Theorem 1. Let D(t) be an absolutely continuous n1 ×N matrix and d(t) an
absolutely continuous vector with n1 components satisfying the equations

D′(t) = D(t)A(t) + Z1(t,D(t), d(t))D(t) a.e. in (a, b),(4)

d′(t) = D(t)f(t) + Z1(t,D(t), d(t))d(t) a.e. in (a, b),(5)

and the initial conditions

D(a) = K1U,(6)

d(a) = K1u,(7)

where Z1(t,D, d) is an n1×n1 matrix such that Z1(t,D(t), d(t)) ∈ L(a, b) and K1 is

a nonsingular matrix of order n1.

Then

(8) D(t)x(t) = d(t) for every t ∈ [a, b]

for any function x(t) satisfying (1), (2), i.e., also for every solution of Problem ψ.

This theorem brings us to the idea of the transfer of the left boundary condition (2)
to the whole interval [a, b]. Equation (8) is called the transferred condition (2). We
say that the matrix D(t) and the vector d(t) realize the transfer of the condition (2).
Analogously we can formulate the theorem on the transfer of the right boundary

condition.

Theorem 2. Let C(t) be an absolutely continuous n2 ×N matrix and c(t) an
absolutely continuous vector with n2 components satisfying the equations

C ′(t) = C(t)A(t) + Z2(t, C(t), c(t))C(t) a.e. in (a, b),(9)

c′(t) = C(t)f(t) + Z2(t, C(t), c(t))c(t) a.e. in (a, b),(10)

and the initial conditions (this time at the point b)

C(b) = K2V,(11)

c(b) = K2v,(12)

where Z2(t, C, c) is an n2 × n2 matrix such that Z2(t, C(t), c(t)) ∈ L(a, b) and K2 is

a nonsingular matrix of order n2.
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Then

(13) C(t)x(t) = c(t) for every t ∈ [a, b]

for any function x(t) satisfying (1), (3), i.e., also for every solution of Problem ψ.

The transfer of conditions is not determined uniquely. There is some arbitrariness

in the choice of the matrices Z1(t,D(t), d(t)), Z2(t, C(t), c(t)), K1, and K2. Just this
gives us a variety of possible transfers and a variety of methods among which we

look for the proper ones from the point of view of their numerical realization. Let us
pay attention to the connection between two different transfers of the left condition.

Let the matrix D(t) and the vector d(t) fulfil the assumptions of Theorem 1. Let
matrix ◦D(t) and a vector ◦d(t) satisfy the assumptions of Theorem 1 except that
in (4) and (5), the matrix Z1(t,D(t), d(t)) is replaced by a generally different matrix
◦Z1(t,◦D(t),◦d(t)) and in (6) and (7), the matrix K1 is replaced by a matrix ◦K1.

Then the following lemma holds.

Lemma 1. There exists an absolutely continuous and nonsingular matrix K(t)
on [a, b] such that

◦D(t) = K(t)D(t) for t ∈ [a, b],(14)
◦d(t) = K(t)d(t) for t ∈ [a, b].(15)

This lemma implies that the transferred condition (8) is equivalent to the condition

◦D(t)x(t) = ◦d(t).

To be able to study the solvability of the algebraic equations resulting from the

transfer of conditions we will use the following lemma. We denote by rank(A) the
rank of the matrix A.

Lemma 2. The following statements hold on the interval [a, b]:
1. rank(D(t)) = const.
2. rank(D(t), d(t)) = const.
3. rank(C(t)) = const.
4. rank(C(t), c(t)) = const.

5. rank
(
D(t)
C(t)

)
= const.

6. rank
(
D(t), d(t)
C(t), c(t)

)
= const.
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Theorems 1 and 2 imply that every solution of Problem ψ satisfies the equation

(16)

(
D(t)
C(t)

)
x(t) =

(
d(t)
c(t)

)
for t ∈ [a, b].

Lemma 2 (in particular assertions 5 and 6) implies that system (16) has a solu-
tion in the whole interval [a, b] provided it has a solution at a single point of the
interval [a, b]. Similarly, system (16) has a unique solution in the whole interval [a, b]
provided it has a unique solution at a single point of the interval [a, b]. Moreover,
the following statement may be proved.

Theorem 3.
1. Every solution of Problem ψ satisfies (16) for any t ∈ [a, b].
2. System (16) has a solution at any t ∈ [a, b] if and only if Problem ψ has a

solution.

3. System (16) has exactly one solution for any t ∈ [a, b] if and only if Problem ψ

has exactly one solution.

Provided Problem ψ has a unique solution, this solution may be found at any
t ∈ [a, b] by solving (16). However, there are additional algorithms of the transfer
of conditions that may be preferable in particular situations. Now we will introduce
two algorithms to be applied later to the boundary value problem for a self-adjoint

equation of 2nth order. At this moment, we will give a general form of these al-
gorithms. In Section 4 we will present proper modifications useful and effective for

solving the boundary value problems treated in this paper.
����������������

A ([6], [7]). Let Problem ψ have a solution. We choose an abso-

lutely continuous matrix R(t) such that the matrix
(
D(t)
R(t)

)
is nonsingular for all

t ∈ [a, b]. We look for a vector r(t) solving the differential equation

(17) r′(t) = R(t)f(t) + (R′(t)−R(t)A(t))
(
D(t)
R(t)

)−1 (
d(t)
r(t)

)

from the right to the left with the initial condition at the point b given as

(18) r(b) = R(b)p,

where p is a solution of the equation

(19)

(
D(b)
V

)
p =

(
d(b)
v

)

(the system (19) has a solution according to Theorem 3).
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Then the solution x(t) of Problem ψ is found from the system

(20)

(
D(t)
R(t)

)
x(t) =

(
d(t)
r(t)

)
for all t ∈ [a, b].

����������������
B ([6], [7]). Let Problem ψ have a solution. We choose an abso-

lutely continuous matrix R(t) such that the matrix
(
R(t)
C(t)

)
is nonsingular for all

t ∈ [a, b]. We look for a vector r(t) solving the differential equation

(21) r′(t) = R(t)f(t) + (R′(t)−R(t)A(t))
(
R(t)
C(t)

)−1 (
r(t)
c(t)

)

from the left to the right with the initial condition at the point a given as

(22) r(a) = R(a)p,

where p is a solution of the equation

(23)

(
U

C(a)

)
p =

(
u

c(a)

)

(the system (23) has a solution according to Theorem 3).

Then the solution x(t) of Problem ψ is found from the system

(24)

(
R(t)
C(t)

)
x(t) =

(
r(t)
c(t)

)
for all t ∈ [a, b].

In order to apply Algorithms A and B efficiently, it is requirable that the matrices

(
D(t)
R(t)

)−1

,

(
R(t)
C(t)

)−1

in Eqs. (17), (21) be given by simple expressions (this will be the case in Algorithms 2,
3, 5, and 6 below) or that they would not occur in the respective expressions at all

(Algorithms 1 and 4).
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3. On a selfadjoint boundary value problem for

a differential equation of 2nth order

Consider the boundary value problem for a self-adjoint differential equation of
2nth order

(25) `y ≡
n∑

i=0

(−1)i(pn−i(t)y(i)(t))(i) = q(t) a.e. in (a, b),

where the coefficients of the equation satisfy the following requirements: 1/p0(t) ∈
L(a, b), pi(t) ∈ L(a, b) for i = 1, . . . , n, and q(t) ∈ L2(a, b). This last requirement that
enables us to treat ` as an operator in L2 will be weakened later as this assumption
will not be necessary for the application of our algorithms.

First of all let us introduce the concept of quasiderivatives in order to be able to

formulate the boundary conditions for our problem.

Definition 2. We say that a function y(t) has all quasiderivatives up to the 2nth
order provided that the following 2n functions exist:

y[k](t) = y(k)(t) for k = 1, 2, . . . , n− 1,
y[n](t) = p0(t)y(n)(t),
y[n+j](t) = pj(t)y(n−j)(t)− (y[n+j−1](t))′ for j = 1, . . . , n.

The last n+ 1 equations are assumed to hold almost everywhere and the first 2n− 1
quasiderivatives are assumed to be absolutely continuous.

In addition, we define y[0](t) = y(t) and put xi(t) = y[i−1](t) for i = 1, . . . , 2n. Let
us introduce the vector x(t) = (x1(t), . . . , x2n(t))T . Consider the boundary condition
for the differential equation (25) in the form

(26) W1x(a) +W2x(b) = w,

where W1 and W2 are square matrices of order 2n and the vector w has 2n com-
ponents. Let S be the set of all functions y(t) whose quasiderivatives y[k](t), k =
0, 1, . . . , 2n− 1, are absolutely continuous and y[2n](t) ∈ L2. Then S obviously is the
largest linear set for which the operation `y has a natural sense and the operator `

can be considered as an operator in L2. The matricesW1 andW2 have to satisfy cer-
tain conditions in order that the boundary problem be self-adjoint. Let us formulate

these conditions. For that reason we divide the matrices W1 and W2 into blocks:

W1 = (B1, B2), W2 = (B3, B4),
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where the matrices Bi (i = 1, . . . , 4) have n columns. Let T be the square matrix of
order n defined as

T =




0 0 . . . 0 1
0 0 . . . 1 0
...
...
. . .

...
...

0 1 . . . 0 0
1 0 . . . 0 0



for n > 2

and T = 1 for n = 1 (i.e., the matrix has 1’s on the adjoint diagonal and zeros
everywhere else).
Now we can formulate two known lemmas (see [1]).

Lemma 3. A necessary and sufficient condition for problem (25), (26) to be

self-adjoint is

B1TB
T
2 −B2TB

T
1 = B3TB

T
4 −B4TB

T
3(27)

and rank(W1,W2) = 2n.

Lemma 4. Let pi(t) > 0 a.e. in (a, b) for i = 0, . . . , n. A necessary and sufficient
condition for the self-adjoint problem (25), (26) to be positive semidefinite is that
the matrix

B1TB
T
2 −B3TB

T
4

is negative semidefinite.

In the following we will consider only boundary value problems with separated
conditions, i.e., we will assume that the boundary conditions are of the form

Ux(a) = u,(28)

V x(b) = v,(29)

where U and V are n×2n matrices and the vectors u and v have n components. Let
us divide the matrices U and V into blocks

U = (U1, U2), V = (V1, V2),

where U1, U2, V1, and V2 are square matrices.

Condition (27) of Lemma 3 turns into two equations

U1TU
T
2 = U2TU

T
1 ,(30)

V1TV
T
2 = V2TV

T
1(31)
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and the requirement that rank(U) = rank(V ) = n. The condition of Lemma 4

turns into the conditions that the matrix U1TU
T
2 is negative semidefinite and the

matrix V1TV
T
2 is positive semidefinite.

4. Transfer of the conditions for a selfadjoint
positive semidefinite boundary value problem

Throughout the remainder of the paper we suppose only (because of the techniques
of the transfer of conditions used):

1. 1/p0(t), q(t), pi(t) ∈ L(a, b), i = 1, . . . , n. (Note that we do not need to assume
q(t) ∈ L2 in what follows.)

2. pi(t) > 0 a.e. in (a, b) for i = 0, 1, . . . , n.
3. The matrix U1TU

T
2 is symmetric and negative semidefinite.

The matrix V1TV
T
2 is symmetric and positive semidefinite.

4. The ranks of the matrices U and V equal n.

First we will replace the equation of the 2nth order by the system of 2n equations
of the first order in a standard way. The definition of quasiderivatives implies that

the introduced vector x(t) satisfies the differential equation

x′(t) +




0 −1 0 . . . 0 0 0 0 0 . . . 0 0
0 0 −1 . . . 0 0 0 0 0 . . . 0 0
...

...
...
. . .

...
...

...
...
...
. . .

...
...

0 0 0 . . . 0 −1 0 0 0 . . . 0 0
0 0 0 . . . 0 0 −1/p0 0 0 . . . 0 0
0 0 0 . . . 0 −p1 0 1 0 . . . 0 0
0 0 0 . . . −p2 0 0 0 1 . . . 0 0
...

...
...
. . .

...
...

...
...
...
. . .

...
...

0 −pn−1 0 . . . 0 0 0 0 0 . . . 0 1
−pn 0 0 . . . 0 0 0 0 0 . . . 0 0




x(t)(32)

=




0
0
...

0
−q(t)




a.e. in (a, b).
Now we will treat problem (25), (28), (29) as Problem ψ, where equation (32)

corresponds to the differential equation (1) and conditions (28) and (29) correspond
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to the boundary conditions. That also defines the class in which we seek the so-

lution of our problem: we demand that the vector x(t) be absolutely continuous,
i.e., we seek such a function y(t) that it is absolutely continuous, together with all its
quasiderivatives up to the order 2n−1, and such that the 2n quasiderivative satisfies
the equation

(33) y[2n](t) = q(t) a.e. in (a, b),

where owing to Definition 2 we have

(34) y[2n](t) =
n∑

i=1

(−1)i
(
pn−i(t)y(i)(t)

)(i)
.

Definition 3. Let the above assumptions 1 to 4 be satisfied. Then the following
problem will be called Problem ψ2n: A vector x(t) absolutely continuous on [a, b] is
sought that satisfies (32) and boundary conditions (28) and (29).

Equation (32) is of the form (1). Let the matrix A(t) stand for the corresponding
matrix of equation (32) and the vector f(t) for the corresponding right-hand side.
We will divide the matrix A(t) into blocks as follows:

A(t) =
[
A1(t) A2(t)
A3(t) A4(t)

]
,

where Ai(t) (i = 1, . . . , 4) are n × n matrices. The vector f(t) will be divided into
two vectors,

f(t) =
[
f1(t)
f2(t)

]

such that each fi(t) (i = 1, 2) has n components. Equation (32) implies that
f1(t) = 0.
We have

A4 = −A1 =




0 1 0 . . . 0 0
0 0 1 . . . 0 0
...
...
...
. . .

...
...

0 0 0 . . . 1 0
0 0 0 . . . 0 1
0 0 0 . . . 0 0




for n > 1 and A1 = A4 = 0 for n = 1.
First, let us examine the properties of the matrices that realize the general transfer

of the conditions for a self-adjoint and positive definite problem. Then we will deduce
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from these properties a certain particular transfer that will make full use of the

symmetry property as well as the sign properties of our problem.

Let us divide the matrix D(t) from Theorem 1 into blocks

D(t) = (D1(t), D2(t)),

where D1(t) and D2(t) are square matrices. Analogously, we divide the matrix C(t)
from Theorem 2 into blocks

C(t) = (C1(t), C2(t)),

where C1(t) and C2(t) are square matrices.
Differential equation (4) can now be rewritten as

D′
1(t) = D1(t)A1(t) +D2(t)A3(t) + Z1(t,D(t), d(t))D1(t),(35)

D′
2(t) = D1(t)A2(t) +D2(t)A4(t) + Z1(t,D(t), d(t))D2(t),(36)

and similarly for the differential equation (9) we have

C ′
1(t) = C1(t)A1(t) + C2(t)A3(t) + Z2(t, C(t), c(t))C1(t),(37)

C ′
2(t) = C1(t)A2(t) + C2(t)A4(t) + Z2(t, C(t), c(t))C2(t).(38)

Lemma 5. Under the above assumptions the following statements hold:
1. The matrixD1(t)TDT

2 (t) is symmetric and negative semidefinite for all t ∈ [a, b].
2. The matrix C1(t)TCT

2 (t) is symmetric and positive semidefinite for all t ∈ [a, b].
� �������

. It is sufficient to carry out the proof of the first assertion only for the

case Z1(t,D, d) = 0 because according to Lemma 1, we obtain any other transfer of
conditions by left-multiplying the matrix D1(t)TDT

2 (t) by a nonsingular matrixK(t)
and right-multiplying it by a matrix KT (t). These operations do not change the
properties mentioned in Lemma 5. Let thus Z1(t,D, d) = 0 for the purpose of the
proof. Then

(D1(t)TDT
2 (t))′ = D1(t)A1(t)TDT

2 (t) +D2(t)A3(t)TDT
2 (t)(39)

+D1(t)TAT
2 (t)DT

1 (t) +D1(t)TAT
4 (t)DT

2 (t)

holds. Obviously TAT
4 (t) = −A1(t)T and therefore (39) reduces to

(40) (D1(t)TDT
2 (t))′ = D2(t)A3(t)TDT

2 (t) +D1(t)TAT
2 (t)DT

1 (t).
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The matrices A3(t)T and TAT
2 (t) are symmetric and negative semidefinite and thus

the right-hand side of (40) is also a symmetric and negative semidefinite matrix. The
initial condition (6) implies

(41) D1(a)TDT
2 (a) = K1U1TU

T
2 K

T
1 .

Then, equations (40) and (41) imply the symmetry property of the matrix D1(t)×
TDT

2 (t). To prove that this matrix is negative semidefinite, let us consider an arbi-
trary constant vector w. Then we obtain

(42) (wTD1(t)TDT
2 (t)w)′ 6 0 a.e. in (a, b).

Under our assumptions we have

(43) wTD1(a)TDT
2 (a)w = wTK1U1TU

T
2 K

T
1 w 6 0.

Using inequalities (42) and (43), we find that

wTD1(t)TDT
2 (t)w 6 0

for all t ∈ [a, b] and for all vectors w. Thus we have proved the first assertion of the
lemma. The second assertion can be proved in an analogous way. �

Lemma 6. The matrices D1(t)−D2(t)T and C1(t)+C2(t)T are nonsingular for
all t ∈ [a, b].
� �������

. The rank of the matrix D(t) equals n, and therefore the matrix

D(t)DT (t) = D1(t)DT
1 (t) +D2(t)DT

2 (t)

is positive definite. Consider the product

(D1(t)−D2(t)T )(D1(t)−D2(t)T )T

= D1(t)DT
1 (t) +D2(t)DT

2 (t)−D1(t)TDT
2 (t)−D2(t)TDT

1 (t)

= D(t)DT (t) + (−2D1(t)TDT
2 (t)).1

This product is a positive definite matrix because it is the sum of a positive definite
and a positive semidefinite matrix. Thus the matrix D1(t)−D2(t)T is nonsingular.
Analogously we can prove that the matrix C1(t) + C2(t)T is nonsingular. We

consider the product (C1(t) + C2(t)T )(C1(t) + C2(t)T )T to this end. �
1 We use the equality T 2 = I here.
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Let us put

G(t) = (D1(t)−D2(t)T )−1D1(t),(44)

g(t) = (D1(t)−D2(t)T )−1d(t),(45)

H(t) = (C1(t) + C2(t)T )−1C1(t),(46)

h(t) = (C1(t) + C2(t)T )−1c(t).(47)

Even if the construction of the above matrices and vectors is based on a fixed

choice of the transfer, i.e., on the choice of the matrices K1, K2, Z1(t,D(t), d(t))
and Z2(t, C(t), c(t)), neither the matrix G(t) nor the vector g(t) depend on the
choice of the matrices K1 and Z1(t,D(t), d(t)). This is implied by Lemma 1 trivially.
Analogously, the matrix H(t) and the vector h(t) do not depend on the choice of
the matrices K2 and Z2(t, C(t), c(t)). In fact, we have defined a unique canonical
transfer of conditions for the problem discussed here.

Lemma 7. For all t ∈ [a, b], the matrices G(t), I −G(t), H(t), and I −H(t) are
symmetric and positive semidefinite. Moreover, the following equalities hold:

(D1(t)−D2(t)T )−1D2(t) = (G(t)− I)T,(48)

(C1(t) + C2(t)T )−1C2(t) = (I −H(t))T.(49)

� �������
. The matrix (D1(t)−D2(t)T )DT

1 (t) is obviously symmetric and positive
semidefinite. We can write the matrix G(t) in the form

G(t) = (D1(t)−D2(t)T )−1[D1(t)(D1(t)−D2(t)T )T ]((D1(t)−D2(t)T )−1)T ,

hence the matrix G(t) is also symmetric and positive definite for all t ∈ [a, b]. The
matrix (D1(t)−D2(t)T )TDT

2 (t) is symmetric and negative semidefinite. We have

(D1(t)−D2(t)T )−1D2(t)T

= (D1(t)−D2(t)T )−1[D2(t)T (D1(t)−D2(t)T )T ]((D1(t)−D2(t)T )−1)T

and thus the matrix (D1(t)−D2(t)T )−1D2(t)T is symmetric and negative semidefi-
nite. We will prove relation (48) in the following way. Obviously we have

(D1(t)−D2(t)T )−1(D1(t)−D2(t)T ) = I,

hence

(D1(t)−D2(t)T )−1D1(t)− (D1(t)−D2(t)T )−1D2(t)T = I.

The last identity implies (48) immediately. Analogously we can prove the assertion
on the matrices H(t) and I −H(t) together with relation (49). �
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� � �"!#��$
. Lemma 7 says that the eigenvalues of the matrices G(t) and H(t) lie

in the interval [0, 1]. As a matter of fact, this gives us an estimate of the norm of the
matrices G(t) and H(t), which will be of use in the investigations of the numerical
stability questions.

Now, left-multiplying the transferred condition (8) by the matrix (D1(t) −
D2(t)T )−1 and doing some simple modification, we obtain

(50) (G(t), (G(t) − I)T )x(t) = g(t) for t ∈ [a, b].

We can determine the value of the matrix G(t) and of the vector g(t) at the point a
knowing the matrix U and the vector u only. If we knew the differential equations

satisfied by the matrix G(t) and the vector g(t), we would construct the transferred
condition (41) directly, solving a certain initial value problem. Let us compute the

derivative of the matrix G(t),

G′(t) = − (D1(t)−D2(t)T )−1(D′
1(t)−D′

2(t)T )(D1(t)−D2(t)T )−1D1(t)

+ (D1(t)−D2(t)T )−1D′
1(t).

Substituting, in accordance with equations (35) and (36), for the derivatives of the

matrices D1(t) and D2(t), we obtain the matrix Riccati equation

G′(t) = G(t)A2(t)TG(t)− (G(t) − I)TA3(t)(G(t) − I)−G(t)A1(G(t)− I)(51)

− (G(t) − I)AT
1 G(t) a.e. in (a, b).

Analogously we have for the vector g(t)

g′(t) = −G(t)(A1 −A2(t)T )g(t)− (G(t)− I)T (A3(t)−A4T )g(t)(52)

+ (G(t) − I)Tf2(t) a.e. in (a, b).

The initial conditions for these differential equations are

G(a) = (U1 − U2T )−1U1,(53)

g(a) = (U1 − U2T )−1u.(54)

�

Thus we have proved the following theorem.

Theorem 4. Under the above assumptions, there exist an absolutely continuous
matrix G(t) and an absolutely continuous vector g(t) which are the unique solutions
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of the initial value problems for differential equations (51) and (52) with initial

conditions (53) and (54), respectively. Any solution x(t) of Problem ψ2n satisfies the

transferred condition (50).

Analogously, a theorem can be proved also for the following particular transfer of
the right boundary condition.

Theorem 5. Under the above assumptions there exist an absolutely continuous
matrix H(t) and an absolutely continuous vector h(t) which are the unique solutions
of the initial value problems for the differential equations

H ′(t) = −H(t)A2(t)TH(t)− (I −H(t))TA3(t)(I −H(t))(55)

+H(t)A1(I −H(t)) + (I −H(t))AT
1 H(t) a.e. in (a, b),

h′(t) = −H(t)(A1 +A2(t)T )h(t)− (I −H(t))T (A3(t) +A4T )h(t)(56)

+ (I −H(t))Tf2(t) a.e. in (a, b),

with the initial conditions

H(b) = (V1 + V2T )−1V1,(57)

h(b) = (V1 + V2T )−1v,(58)

respectively. Any solution x(t) of Problem ψ2n satisfies the transferred condition

(59) (H(t), (I −H(t))T )x(t) = h(t) for t ∈ [a, b].

Theorems 4 and 5 define a particular transfer of conditions that will be called the

canonical transfer and that exploits the given symmetry and sign properties. The
matrix differential equation (4) represents the system of 2n2 equations whereas the

matrix equation (51) represents the system of (n2 + n)/2 equations only. Further
advantages of this canonical transfer will be pointed out later.

5. Particular methods for the canonical transfer

In this section, the transfer of conditions will mean the canonical transfer treated

by Theorems 4 and 5. Therefore, in Algorithms A and B, we have

D(t) = (G(t), (G(t) − I)T ),(60)

d(t) = g(t),(61)

C(t) = (H(t), (I −H(t))T ),(62)

c(t) = h(t).(63)
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Now we will describe three algorithms that come from Algorithm A by a particular

choice of the matrix R(t).
����������������

1. Let our problem have a unique solution. We choose R(t) =

C(t) in Algorithm A. That can be done because the matrix
(
D(t)
C(t)

)
is nonsingular

according to Theorem 3. Without any difficulty we determine that r(t) = c(t).
Therefore, the solution x(t) of our problem is found from the system of 2n equations

(64)

(
D(t)
C(t)

)
x(t) =

(
d(t)
c(t)

)
.

The matrix (D(t), d(t)) is built up by solving the initial value problem (51), (52),
(53) and (54). Analogously, the matrix (C(t), c(t)) is built up by solving the initial
value problem (55), (56), (57) and (58). It is sufficient to store these matrices only

at the points where we are interested in the solution (i.e. at the points when the
solution is output). System (64) is now of the particular form

(
G(t), (G(t) − I)T
H(t), (I −H(t))T

)
x(t) =

(
g(t)
h(t)

)
.

The solution of this system may be transformed to solving the system of n linear

algebraic equations with the matrix

G(t) +H(t)− 2G(t)H(t).

����������������
2. We put R(t) = (I, T ) in Algorithm A. Then

(65)

(
D(t)
R(t)

)−1

=
(
G(t), (G(t)− I)T
I, T

)−1

=
(

I, I −G(t)
−T, TG(t)

)
.

Differential equation (17) for the function r(t) in Algorithm A acquires the form

(66) r′(t) = Tf2(t)− (I, T )
(

A1 A2(t)
A3(t) A4

) (
I, I −G(t)
−T, TG(t)

) (
g(t)
r(t)

)
.

The solution x(t) is obtained from the equation

(67) x(t) =
(

I, I −G(t)
−T, TG(t)

) (
g(t)
r(t)

)
.

Equation (66) is solved from the right to the left. Therefore, we must store the
matrix G(t) and the vector g(t) during the solution of the initial value problems at
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as many points as are needed for the numerical integration of equation (66). Usually

we have incomparably more such points than the points where the solution is output.
The following Algorithm 3 avoids this unpleasant fact. The matrix R(t) is chosen
in such a way that the equation (17) becomes a quadrature and thus can be solved

simultaneously with equations (51) and (52) from the left to the right with an initial
condition. In the end, the values of the function r(t) can be corrected by adding a
constant at the points where we are interested in the solution. Hence this algorithm
will inherit the character of Algorithm 1.

����������������
3. We choose R(t) = (Q(t), Q(t)T ) in Algorithm A, where the

matrix Q(t) will be constructed by solving a certain differential equation but from
the left to the right. For our algorithm to be practicable the matrix Q(t) has to be
nonsingular. Then

(68)

(
D(t)
R(t)

)−1

=
(
G(t), (G(t)− I)T
Q(t), Q(t)T

)−1

=
(

I, (I −G(t))Q−1(t)
−T, TG(t)Q−1(t)

)
.

Requiring equation (17) to be a quadrature, the following equation has to hold

(R′(t)−R(t)A(t))
(
D(t)
R(t)

)−1 (
d(t)
r(t)

)

= (R′(t)−R(t)A(t))
(
D(t)
R(t)

)−1 (
d(t)
0

)
a.e. in (a, b).

This condition is fulfilled provided that the matrix Q(t) satisfies the differential
equation

(69) Q′(t) = Q(t)(A2(t)TG(t)−AT
1G(t)−A1G(t)− TA3(t)G(t) +A1 + TA3(t)).

This is a homogeneous linear differential equation and the condition of nonsingularity

is satisfied if we choose

(70) Q(a) = I.

Let us sum up: We seek matrices G(t) and Q(t) and vectors g(t) and r(t) when
solving the above mentioned differential equations from the left to the right. Then,
at the points where we are interested in the solution, the function r(t) is corrected
by adding a certain constant in such a way that the condition (18) is satisfied.

In addition, we will describe three algorithms that come from Algorithm B of
Section 1 by a particular choice of the matrix R(t).
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����������������
4. Let our problem have a unique solution. We choose R(t) =

D(t) in Algorithm B. That can be done because the matrix
(
D(t)
C(t)

)
is nonsingular

according to Theorem 3. Without any difficulty we determine that r(t) = d(t).
Therefore, the solution x(t) of our problem is found from the system of 2n equations

(71)

(
D(t)
C(t)

)
x(t) =

(
d(t)
c(t)

)
.

As the result of this choice we obtain the same algorithm as Algorithm 1.
����������������

5. We put R(t) = (I,−T ) in Algorithm B. Then

(72)

(
R(t)
C(t)

)−1

=
(

I, −T
H(t), (I −H(t))T

)−1

=
(
I −H(t), I

−TH(t), T

)
.

The differential equation for the function r(t) acquires the form

(73) r′(t) = −Tf2(t)− (I,−T )
(

A1 A2(t)
A3(t) A4

) (
I −H(t), I

−TH(t), T

) (
r(t)
h(t)

)
.

The solution x(t) is obtained from the equation

(74) x(t) =
(
I −H(t), I

−TH(t), T

) (
r(t)
h(t)

)
.

Equation (73) is solved from the left to the right. Therefore, we must store the

matrix H(t) and the vector h(t) at as many points as are needed for the numerical in-
tegration of equation (73). Usually we have incomparably more such points than the

points where the solution is output. The following algorithm avoids this unpleasant
fact. The matrix R(t) is chosen in such a way that equation (21) becomes a quadra-
ture and thus can be solved simultaneously with equations (55) and (56) from the
right to the left with an initial condition. In the end, the values of the function r(t)
can be corrected by adding a constant at the points where we are interested in the
solution. Hence, this algorithm will inherit the character of Algorithm 4.
����������������

6. We choose R(t) = (Q(t),−Q(t)T ) in Algorithm B, where the
matrix Q(t) will be constructed by solving a certain differential equation from the
right to the left. For our algorithm to be practicable, the matrix Q(t) has to be
nonsingular. Then

(75)

(
R(t)
C(t)

)−1

=
(
Q(t), −Q(t)T
H(t), (I −H(t))T

)−1

=
(

(I −H(t))Q−1(t), I

−TH(t)Q−1(t), T

)
.
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Requiring equation (21) to be a quadrature, the following equation has to hold:

(R′(t)−R(t)A(t))
(
R(t)
C(t)

)−1 (
r(t)
c(t)

)

= (R′(t)−R(t)A(t))
(
R(t)
C(t)

)−1 (
0
c(t)

)
a.e. in (a, b).

This condition is fulfilled provided the matrix Q(t) satisfies the differential equation

(76) Q′(t) = Q(t)(−A2(t)TH(t)−AT
1H(t)−A1H(t)+TA3(t)H(t)+A1−TA3(t)).

This is a homogeneous linear differential equation and the condition of nonsingularity
is satisfied if we choose

(77) Q(b) = I.

Let us sum up: We seek matrices H(t) and Q(t) and vectors h(t) and r(t) when
solving the above mentioned differential equations from the right to the left. Then, at
the points where we are interested in the solution, the function r(t) will be corrected
by adding a certain constant in such a way that condition (22) is satisfied.

6. Numerical stability

The method of transfer of conditions as described in the previous part of this
paper, in particular in Section 1, is simple and rather graceful. It also possesses the

advantage that it not only gives a procedure for solving the boundary value problems
in question numerically but also provides an answer to the theoretical question about

the existence of the boundary value problem treated.
The reader who has followed our discussion of various algorithms of the method up

to this point would probably ask why not use the simplest variant of the method of
transfer and choose just Z1(t,D(t), d(t)) = 0 or Z2(t, C(t), c(t)) = 0 in the respective
formulas of the method. However, this choice is quite often inappropriate from the
numerical realization point of view in finite-precision arithmetic. The cause of the

trouble here is in fact the same as are the well known numerical problems connected
with the shooting method. It is easy to see that the above choice of zero matrices

for Z1, Z2 results in our solving essentially the same differential equations as are those
of the boundary value problem to be solved but with initial conditions. It is well

known, however, that the conditioning (or stability) of a boundary value problem for
a differential equation may be quite different from that of an initial value problem
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for the same equation where the growth of the solution modes is not limited by all

the boundary conditions. There are many examples from real world practice where
initial value problems for the differential equations forming parts of well-conditioned
boundary value problems are highly unstable so that the classical shooting method is

inapplicable. We even dare say that the more a given problem is stable as a boundary
value problem the less stable the corresponding initial value problems may be.

The magnitudes of the entries in the matrices that realize the transfer of condi-
tions may grow or decrease very fast. The main problem here is in the unbearable

sensitivity of the solutions to the differential equations realizing the transfer in the
case of zero Z1, Z2 to the initial conditions. This shortcoming can be avoided by our

requiring that the matrices D(t), C(t) that realize the transfer of conditions be “nor-
malized” by which we mean that their norms and the norms of their pseudoinverses

be bounded by constants that do not depend on the coefficients of the differential
equation in question or on the length of the interval [a, b].
In monographs [6], [7], the analysis of numerical stability of algorithms A and B

has been performed. It has been shown that realizing the algorithms for solving the

initial value problems involved numerically we bring into being certain inaccuracies,
both in the solution of the differential equations and in the computation of the initial

conditions for these differential equations. These inaccuracies are considered in the
following theorem proved in [6] where also the estimates of the magnitudes of these

perturbations in terms of the errors in solving the initial value problems are given.

Theorem 6. Let the norm of the matrices D(t) and DT (t)(D(t)DT (t))−1 be

bounded by an a priori given constant. Then all inaccuracies made in the realization

of the method can be represented as perturbations in the coefficients of the primary

Problem ψ whose magnitude can be estimated using the above mentioned constant.

An analogous statement is valid also for the transfer of conditions from the right to

the left.

The investigation of numerical stability of the algorithm with an auxiliary

matrix R(t) leads to the requirements that the norms of the matrices R(t),

RT (t)(R(t)RT (t))−1 and

(
D(t)
R(t)

)−1

(or

(
R(t)
C(t)

)−1

) be bounded by an a priori

given constant.

In what follows, we will show that the canonical transfer of conditions for Prob-

lem ψ2n satisfies the assumptions of the previous theorem and thus the transfer is
numerically stable. In our further exposition we will estimate norms of certain ma-

trices that are rectangular in general. To this end we will employ the spectral norm
that is induced by the Euclidean vector norm (2-norm). The spectral matrix norm
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of a general matrix A may be expressed as (see e.g. [2], Section 6.2)

‖A‖ =
√
%(A∗A) = σmax(A),

where % is the spectral radius defined as

%(B) = max{|λ| : det(B − λI) = 0},

and where σmax(A) denotes the largest singular value of A. As this norm is unitarily
invariant, it has the property that ‖A∗‖ = ‖A‖ and we will exploit this fact in what
follows. Therefore, to compute the norm ‖Φ(t)‖ of a matrix Φ(t) of an arbitrary
type, we will use any of the formulae

‖Φ(t)‖ =
√
max. eigenvalue (ΦT (t)Φ(t))(78)

=
√
max. eigenvalue (Φ(t)ΦT (t)).

We obtain

D(t)DT (t) = [G(t), (G(t)− I)T ]
[

G(t)
T (G(t)− I)

]
= G2(t) + (G(t) − I)2(79)

and

C(t)CT (t) = [H(t), (I −H(t))T ]
[

H(t)
T (I −H(t))

]
= H2(t) + (I −H(t))2.(80)

Thus

‖D(t)‖ 6
√

max
06λ61

(λ2 + (λ− 1)2) = 1(81)

and

‖DT (t)(D(t)DT (t))−1‖ 6
√

max
06λ61

1
λ2 + (λ− 1)2

=
√

2.(82)

Analogously we obtain estimate for the norms of the matrices C(t) and CT (t)×
(C(t)CT (t))−1:

(83) ‖C(t)‖ 6 1 and ‖CT (t)(C(t)CT (t))−1‖ 6
√

2.

As a result of these bounds, Algorithm 1 (or 4) is numerically stable.
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Let us now investigate the norms of the matrices

(
D(t)
R(t)

)−1

and

(
R(t)
C(t)

)−1

from

Algorithms 2 and 5. Equations (65) and (72) imply

∥∥∥∥∥

(
D(t)
R(t)

)−1
∥∥∥∥∥ 6

√
‖(I, I −G(t))‖2 + ‖(−T, TG(t))‖2 6 2

and
∥∥∥∥∥

(
R(t)
C(t)

)−1
∥∥∥∥∥ 6

√
‖(I −H(t), I)‖2 + ‖(−TH(t), T )‖2 6 2.

These results and Theorem 6 imply the numerical stability of Algorithms 2 and 5.
In Algorithms 3 and 6, the norms of matrices Q(t) and Q−1(t) cannot be a priori

estimated. They depend on the value of coefficients and on the length of the interval
[a, b]. However, the numerical experiments performed have given good results.
The structure of the matrices Ai(t), i = 1, . . . , 4, is tremendously simple and the

complexity of the above mentioned matrix differential equations does not present

any difficulty for the numerical solution.

7. Conclusion

We have presented several methods of solution of self-adjoint boundary value prob-
lems for differential equations of the 2nth order by transforming them to solving
sequences of initial value problems. First, we have studied a method where the
boundary conditions are transferred both from the left and the right independently

while the transfer of the conditions from one of the end-points represents the solution
of an initial value problem for one matrix Riccati equation and the solution of an

initial value problem for a system of linear differential equations. Then, the solu-
tion of our boundary value problem may be obtained by solving a system of linear

algebraic equations at those points where we want to compute it.
Second, we described methods where the boundary conditions are transferred from

one side only and the solution to the boundary value problem under consideration is
obtained in such a way that we construct an auxiliary vector function by solving a

system of linear ordinary differential equations and the final solution is then obtained
by evaluating just a simple expression.

We have presented algorithms that lead to solving the Riccati differential equations
and have shown that for a series of problems these equations possess a unique solution

on the whole interval in question and, moreover, that these equations are represented
by symmetric matrices whose eigenvalues lie in [0, 1]. The methods used so far had
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to check whether the solutions to the Riccati equations exist on the whole interval

in question or whether they do not exceed some a priori given barriers [4], which is
not necessary in our canonical transfer of conditions.
As a consequence of our results, we know that the solutions of the initial value

problems used in our algorithms exist and are bounded on the whole interval [a, b].
Therefore, the algorithms presented in the paper are always feasible under the as-

sumptions given. Finally, we note that the class of boundary value problems dis-
cussed here is quite often applicable in the physical science and technology.
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