
Applications of Mathematics

Ali Djellit; Saadia Tas
Study of some noncooperative linear elliptic systems

Applications of Mathematics, Vol. 49 (2004), No. 3, 185–199

Persistent URL: http://dml.cz/dmlcz/134566

Terms of use:
© Institute of Mathematics AS CR, 2004

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/134566
http://dml.cz


49 (2004) APPLICATIONS OF MATHEMATICS No. 3, 185-199 

STUDY OF SOME NONCOOPERATIVE LINEAR 

ELLIPTIC SYSTEMS 1 

ALI DJELLIT, SAADIA TAS, Annaba 

(Received November 21, 2001) 

Abstract. Using an approximation method, we show the existence of solutions for some 
noncooperative elliptic systems defined on an unbounded domain. 

Keywords: Schrodinger's operators, weighted Sobolev spaces, maximum principle, min-
max formula, noncooperative systems 

MSC 2000: 35P15 

1. INTRODUCTION 

We study here some noncooperative elliptic systems defined on a connected and 

unbounded open set Q, C RN (N ^ 3) of the form 

(S) 

( —Au + qiu = ӣQ\u + ЬQ^V + / in íl, 

—Av + q^v = CQЗU + (ІQĄV + g in íî, 

(u = v = 0 on дíì; щv -> 0 for |x| -> +oo 

where gi, ^2, Q3, Q4 (sometimes referred to as weight functions), gi, qfc, are positive 

functions; / and g are measurable functions; a, 6, c and d are real numbers, u 

and v are unknown real-valued functions defined in fl and belonging to appropriate 

function spaces. The system (S) is noncooperative since b and c are not necessarily 

positive. Under appropriate assumptions on the coefficients, we show the existence 

of non-trivial solutions. 

1 This work was supported by a grant from ANDRU under No. CU39904. 
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Generally, in order to study a nonlinear problem, we consider the linear approxi
mation, which is easy enough to resolve of course. Here we have explored the inverse 
process. In other words, we show that the linear system (S) can be taken as the limit 
of a sequence of nonlinear systems. 

The paper is organized as follows. In Section 1, we establish a Maximum Principle 
result in the scalar case. We choose decreasing weight functions which lead to a gain 
of compactness, (see [7] and [8]). In Section 2, we obtain an existence and uniqueness 
theorem for system (S). In order to prove it, we apply a nonlinear method introduced 
in [3] and [4]. The main tool used here is Schauder's fixed point theorem. The 
Maximum Principle guarantees the invariance of subsets under operators. So, we can 
prove the existence of solution for nonlinear systems. We observe that there exists 
a vast literature on the use of nonlinear methods to the study of noncooperative 
elliptic systems. We point out that an interesting version of the Maximum Principle 
for noncooperative systems was given in [13]. We refer the reader to the works in 
[5], [6] and references therein. 

2 . NOTATION 

We denote 
(1) it* = max(±u,0), sow = u + - « " . 
(2) mes(-) is the Lebesgue 1V-dimensional measure. 
(3) For e G ]0,1[ fixed: Be = n n £(0,1/e) = {x G Q/\x\ < 1/e}. 

1B€ is the characteristic function of Be. 
(4) Pa(~) = (1 + M2)~°S OL G R^; R; is the set of positive real numbers. 

(5) Let D(Q) be the set of all infinitely differentiable functions with compact sup

port in fi. We denote by D'(il) the dual space of D(Q). Let us define V(RN) = 

{u G o'(R")//R„(|V«|2 + P l | U | 2 ) d x < +oo}. 

The space V is the closure of D(il) with respect to the norm 

Nlv=(^ ( |v u | 2 + PlH
2)dx)2 

equivalent (under some conditions) to the norms 

l|t*IU = (j(^(lVtll2 + (* + ^»«)l«l2) d^)3 (< = 1>2; j = 1,4; m G R;). 

V(UN) is a Hilbert space, VIV ^ 3 (see [17], p. 230). 
(6) L2(U) = {u G D'(£l)/p2u G L2(tt)} where p(x) is a positive function defined 

on ft. 
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Hm(Q) = {ue D'(Sl)/D<*u e L2(íí), O ^ \a\ ^ m). 

(7) £ = max(£i, Q2,Q3,QA). 
I 6 » 

3. HYPOTHESES 

We suppose that 
(8) 3a,/? e R, a > N/2, 0 ^ 1; 3k{ > 0 (i = 1,2,3,4), 3a > 0 (i = 1,2) such that 

0 ^Qi(x) ^ kipa(x), i = 1,2,3,4, 

0 ^qi(x) ^ app(x), i = 1,2. 

(9) Qi(x) < \/QI(X)QA(X), \fx e ft, Q3(X) ^ y/Qi(x)QA(x) Vx € ft. 
(io) f,9 e L2_lvn) = {ue D'(n)/fQ(i + \x\2)\u\2dx < +oo}. 

4. EXISTENCE OF SOLUTIONS 

4.1. Remarks on the scalar case 
We consider the problem 

{ — Au + qiU = \QiU in IQ, 

u = 0 on dft; u - ) 0 for \x\ -+ +oo. 

By [7], [8], Problem (11) possesses an increasing infinite sequence of positive eigen
values. 

Moreover, the first eigenvalue \(qi,Qi) is principal ([9]) and is characterized vari-
ationally by 

(12) \(qi,Qi) f Qi\u\2dx^ f (\Vu\2 + qi\u\2)dx; Vu € V. 
JQ JQ 

We consider now the problem 

!

— Au + qiu = \QIU + h in il, 

u = 0 on dQ; u -» 0 for |x| -+ +oo. 

We claim that the Maximum Principle holds for Problem (13) with condition 
h ^ 0, if all solutions of Problem (13) are nonnegative. 
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Theorem 1. Assume that (8) holds and h G L2^(Q). Problem (13) satisfies 

the Maximum Principle if and only if\(qi,Q\) > \. 

Proof . Let (p be an eigenfunction associated with A(gi,#i), then (p does not 
change sign. Multiplying the equation in (13) by ip and integrating over fi, we obtain 

(MQIIQI) — X) I QiUipdx= I hipdx. 
Jn Jn 

If the Maximum Principle holds then JQ hipdx > 0 implies JQ Qiuipdx > 0. 
Consequently \(qi,Qi) > A. 

Conversely, if \(qi, Qi) > A then u ^ 0. Indeed, observe that u = u + — u~. Now, 
multiplying the equation of Problem (13) by u~ and integrating over fi, we get 

/ (VuVu~ +qiuu~)dx = A / Q\uu~ dx + / hu~ dx. 
Jn Jn Jn 

/ VT/+VTX" dx = I qiu^u" dx = I Qiu+u~ dx = 0, 
Jn Jn Jn 

Since 

we obtain 

f (\Vu~\2 + qi\u~\2)dx = \ f Qi\u~\2dx- f hu~dx. 
Jn Jn Jn 

By (12), we have 

A(?i,.0i) / £i | ir"|2dx^ A / Qi\u~\2dx - / hu~ dx, 
Jn Jn Jn 

0 < (\(qi,Qi) - A ) / Q\\u~\2dx^ - / hu~ dx^O 
Jn Jn 

Hence u ^ 0. • 

Theorem 2. Under the assumptions of Theorem 1, Problem (13) with condition 
h ^ 0 has one nonnegative solution in V if and only if \(qi , gi) > A. 

P r o o f . In view of Theorem 1, the necessary condition holds. 
Let us consider the sufficient condition. The differential form 

a(u,v) = / (Vu • Vv + q\uv)dx — A / Q\uvdx 
Jn Jn 
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is continuous and coercive on V x V. Indeed, let m G R+ be such that A + m > 0. 
Taking into account the variational characterization of \(q1, £1) we have 

a(u,u)= I [|Vn|2 + (gi +mQ1)\u\2]dx-(\ + m) f Q^u\2dx 
JQ JQ 

>{X-X(aX+»?+m)^< v \(Qi,Qi)+™>' 

where || • ||i is a norm equivalent to || • ||v by virtue of (8) and Hardy's inequality 

fv1V^3, 3 7 > 0 : Vt/€.D(RN), / { ^ - d x ^ 7 / | V u | 2 d A 

V JR* m JR^ / 
Since / G L2_i(lQ), the application v 4 j f l hvdx is a continuous linear form on V. 
Hence by the Lax-Milgram lemma, Problem (13) possesses one solution u. By The
orem 1, u is nonnegative. • 

4.2. Vectorial case 
Let us consider the system (S) now. In what follows, we will find a sufficient 

condition for the system (S) to have a unique solution. 

Theorem 3. Let (8), (9) and (10) be satisfied, as weii as 

(14) \(quQi) > a; (\(qi,Qi) - a)(\(q2,Q4) - d) > \bc\. 

Then the system (S) has one (weak) solution in V x V. 

First, we state the following lemma. 

Lemma 1. Assume that the hypothesis of Theorem 3 holds. Let (z,w) G V x V 
be a solution of 

(15) 

r (—A + q{)z = aQ1z + bQ2w in SI, 

( - A + q2)w = CQ^Z + dQ4w in SI, 

z = w = 0 on dS}; z,w -> 0 for \x\ —> +oo. 

Then (z,w) = (0,0). 

Proo f . We multiply the first equation of the system (15) by z and integrate 
over SI: 

I (IV*|2 + q1 \z\2) dx = a J QX \z\2 dx + b f Qizw dx. 
JQ Jn JQ 

189 



Using the variational characterization of A ((ft, £1), we have 

0 < (\(qi,Qi) -a) / Qi\z\2dx ^ \b\\ Q2zwdx 
Jn \JQ 

By hypothesis (9) and the Cauchy-Schwarz inequality we obtain 

(16) (Afai, Ql) -a) J Ql\z\2 dx ^ \b\ (J Ql\z\2 dxj (J Q4\W\2 dxj. 

Similarly, multiplying the second equation of system (15) by w and integrating 
over £2, we get 

(17) (A(g2, Q4) -d)J^ Q4\w\2 dx ^ \c\ (J Ql\z\2 dxj (J Q4\W\2 dxj. 

Combining (16) with (17), we obtain 

0<[(X(quQi)-a)(\(q2,Q4)-d)-\bc\] f Qi\z\2 dx - [ Q4\w\2dx^0, 
JQ JQ 

which implies that z = w = 0 a.e. 

P r o o f of Theorem 3, Let m 6 R+ be such that a -F m > 0 and d + m > 0. 

We define an operator 

T: L2
e(U) x L2

e(Q) 4 V x V , (Z,T,) K> T(t,n) = (u,v) 

such that (UJ,V) verifies the system 

' (-A + q1+mQ1)u = (a + m)-^^lBe+b f2^ lBe + / in 0, 
l + £ c 1 + eM 

(18) (-A + q2+mвA)v = c ^ - l в c + (d + m)^^:lвc+g in П, 

o; = v = 0 on дíî, ш,v —> 0 for |x| —> +cx>. 

(i) First we verify that T is well defined. 

Let (£,T?) € L*(fi) x L2
e(Sl), we put 

(19) 
^^^ + ^T+%^+bT+Ъlв-
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We have 

/ (1 + \*?) 
Jíí 

QiІ . 2 

l + e | í | Bc dx< / ( l + |x |2) |^|2dx 
Ja 

šk [ e\£\2dx, (i = 1,3), 
Já 

and 

/ f i (
i + i x | 2 ) i í^ i B ' r d x < X ( i + N 2 ) M | 2 d x 

š k [ Q\t]\2dx, (i = 2,4). 

So * ! « , - / ) , * 2 ( f , f / ) €Lj_ . (n ) . 
In view of Theorem 2, the system 

(20) 

( - Д + qi)ш = -m^iu; + (Фi(^,ry) + / ) in íî; ш = 0 on Әíì; 

o; —r 0 foг |x| -> +oo, 

( - Д + g2)г; = -TПQ4V + (Ф2(í,ry) + ø) in íì; u = 0 on дíì; 

v -> 0 foг |x| -> +oo 

has one solution (u;, v) in V x V, since 

(*ifc,»?) + /) € L^ . (n ) , (*„(*;. r/) + 5 ) € L2 

-M-ji.gi) > —m and A(</2,04) > —m. 

(ii) For all for/) € L2(n) x X,2(n), we have 

ftí 
U+eKI 

Similarly 

Then 

lв. = i r T d k l ß < * t l ß < a e - i n n- (i = 1,3)' l ß « G L 2 r i ( n ) -

ÏT7м^Һ7 lß«aemíì' (i = 2'4)-

(21) 

with k = max(fci,£2,£3, A,4). 

I*i(€,»7)l < 2max(a + m , |&|)- lB e , 

l*att,»7)l < 2max(|c|,d + m ) - l B í 
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i — .& mcuiyit T /'*, |f | , | H , Ur T m}~ 

We have 
We put h = 2max(a + m,|ò|,|c|,d + m)£ lß c . 

ft € Lj- , (n) and |*i(f,r/)| < ft; |*att,r/)| ^ ft; V«,r/) € L»(fl) x L\(p). 

According to Theorem 2, the problem 

Pi := ( - A + qi + m^i)w = h + / in Q; u = O o n dQ; u -> 0 for |x| -> +00 

(or with P/ defined by replacing ft by —ft in Pi) possesses one solution £° (£0) in V. 
Similarly, the problem 

P2 := (—A + #2 + rriQijv = ft + g in ft; u = 0 on 9tQ; i; -> 0 for |x| -> +00 

(or with Pj obtained by replacing ft by —ft in P2) has one solution 770 (770) in V. 
Observe that £0 ^ f°. Indeed, we have 

( - A + ft + m£i)(C° - &) = 2ft in fi, f° - f0 = 0 on dft, 

(C° ~ Co) - • 0 for |x| -> +00. 

According to Theorem 1, f° - f0 ^ 0. Similarly 770 - 770 -̂  0. 
We consider now the restriction of T, denoted again by T, to the rectangle [f0, f°] x 

fan 
We show that T admits a fixed point using Schauder's Theorem. 

(iii) We prove first that the closed convex [£0,£°] x [770,77°] is invariant by T. 
Let (£,77) € [£o,£°] x fro,'/0]. We show that u G [fo,£°] and t; G fob,»y0]. Combin

ing (20) with Pi, we get 

( - A + ? i + m £ i ) ( f ° - u ; ) = ft- #i(£,77) in H, f° - u; = 0 on 3Q, 

(f° - a;) -> 0 for \x\ -> +00. 

Since ft — ^1( ,̂̂ 7) ^ 0 then u ^ £°. In the same way, we obtain v ^ 770. On the 

other hand, we have 

( - A + qi + m£i)(u; - f0) = ^1( ,̂̂ 7) + ft in H, a; - f0 = 0 on dQ, 

(v - Co) ~> 0 for |x| -> +00. 

Since ^1(^,77) + ft ^ 0 then £0 < ^- Analogously, we obtain 770 < v. 
Consequently [fo,f°] x fro,*/0] is invariant by T . 
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(iv) We show now that T is continuous. Let (fn>f7n) be a sequence of [fo,£°] x 
[Vo,r)°] convergent to fan) in L2

e(il) x L2
e(Q). 

We put T(£n,nn) = (un,vn), Tfan) = (u,v). 

Prom (18) and (19), we get 

(22) 

( - Д + qi + mвl)(wn -ш) = Фi(£„,77n) - Фi(£,*?) in íì, 

( - Д + q2 + m g 4 Ж - v) = Ф2(ín, »?n) - Фг(í, v) in П, 

, ы „ = w = v n = u = 0 on дӣ; шn,ш,vn,v -> 0 foг |x| -> +00. 

Multiplying both the first and the second equation of the system (22) by (c*;n — u) 

and (vn — v) respectively, later integrating over ft, we obtain by virtue of Hardy's 
inequality 

||w» -w| | i ^ y/T\\9i(tn,rh) - 9ifari)\\L2 (Q)9 
p i 

K - t j | | 2 ^ y/7\\*2(tn,rin)-*2fari)\\L2 ( n ) . 
p i 

Then, to prove (ujn,vn) -» (u,v) in V x V, it sufiices to show that 

*i(£n,»M)->*i(f,»?) and *2(€n,fM)^*2(f,»?) in Lj..i(n). 

We have 

|| Qitn 1 gig 1 || __ 11|___________ 1 __fi__Li || 
lll + s|c;n|

ifl£ l + c|€| ^IL»__(ii) elll + CKn | lB ' 1 + C|(|1B 'IIL». I (O)-
p i p i 

The function Z(x) = x(l + |x | ) _ 1 is Lipschitzian on R and verifies 

(23) V s , y € R , | / ( « ) - % ) | < | « - y | . 

Consequently, 

< II-T&. - -?ig||_2_i(fi) -> 0 for n -> +oo, 

since 

/ (1 + |x|a)fl?|f» - €|a dx ^ / (1 + | x | 2 ) - ^ - j d € „ - £|2 dx 
jn jn 1 + l-̂ l 

< *i llín - ÍIIÍ-(tí) -> 0 for n -> +oo. 
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Similarly, we show that ^2r/n(l + e|r/n|)-1lBg -» Q2rj(l + e|T/|)_1lBg for e -+ 0 in 
r2 / n \ 

Then #i(Cn,7?n) -> *i(^,r/) in L2_2(n) and therefore cjn -+ u in V. 
Pi 

In the same way, vn-* v mV. Consequently, T is continuous. 

(v) Next we show that T: L2(9) x L2
e(Sl) -+ L2

e(il) x L2
e(Q) is compact. 

We have the compact imbedding V C L2(Q). 
Indeed, let (un)n be a bounded sequence in V. (un)n is bounded in HX(B£). Hence 

the imbedding Hl(Be) into L2(B£) is compact; there exists a subsequence denoted 
again by (un)n, such that 

/ Q\up - uq\
2dx ^ \up - uq\

2dx -> 0 when p,q -> +oo. 
JB£ JB£ 

On the other hand, since the weight g tends to 0 at infinity, we have 

L*< 6lU" ~ U"f dX = LB, (1 + | l | 2 )^(lTkF) | U ? " Uq? dX 

Consequently, (un)n is a Cauchy sequence in L2(U). 
Since T: Lj(fl) x Lj(fl) - • V x V is continuous, T: Lj(«) x Lj(Il) -> L2

e(Q) x 
L^(n) is compact. According to (iii) and (v), we can apply Schauder's fixed point 
theorem. Then there exists (£,77) e [fo,£°] x fro,*/0] such that T(^rj) = (^rj). 

Since £ and rj depend on e1 we denote £ = u£ and rj = v£. 
So ue,v£ verify the system 

í ( - A + qi + meí)u£ = (a + m ) - - ^ - ! * + 6 ^ ^ U , + / i» íl, 

(24) ^ 
(-A + ft+mg4)t;e = c Q*UJ lBe+(d + m) ^f ,1B£ + 0 in ft, 

l + qwe| l+£ | i ; 6 | 
ue = ve = 0 on dil; u£,v£ -» 0 for |x| —•> +00. 

(vi) We show that (eue)£ (as well as (eve)e ) is a bounded sequence in V. 
We multiply the first equation of the system (24) by e2ue and integrate over !Q, 

obtaining 

/ (\V(eu£)\
2 + (qi + mQl)\eu£\

2)dx = (a + m) f 6Ql^ ,eu£lBe dx 
JQ JQ -- ^ £\ue\ 

+ W , g V,£ ,eu£lBedx+ / efeu£dx. 
Ju\ + e\v£\ JQ 
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Since _|a-|(l + eKI)" 1 < 1, e|ue|(l + e |_ , | ) - 1 < 1, 0 < e < 1, / € L2_,(fi) and 
Pi 

a > N/2, there exists a constant M > 0 such that ||ei_e||i ^ M. 

Similarly, there exists M' > 0 such that ||ev_:||2 ^ M'. 
(vii) We show that eu€ -> 0 (as well as ev£ -> 0) when e -> 0 in V. 
Since (eue)€ is bounded in V, there exists a subsequence denoted again by (eue)e 

(we denote it by writing for example e = ^, n > 1) weakly convergent to u* in V 
and hence strongly convergent to u* in L2(Tt). 

We multiply the first equation of the system (24) by e: 

£Q\ue ЄQ2VЄ (-A + (Ql + mQl))(eu£) = (a + m) J V • *Bg + i> J V • U + gf in fl. 
I+SIM^I l + e|i;e| 

Then V<peD(fl), 

I [V(-rue) • V<p + (gi + mQ^eUeip] dx / [Vu* • V<£ + ((ft + m£i)i_V] dx for e -> 0. 

y__ y« 
Moreover Vy> G -0(0), Jfi efipdx -> 0 for e -> 0. 

On the other hand, 

í (л , I | 2 \ | є - ? l u e i í?i w * ř л í (л , I | 2 \ | є - ? i ^ í?iw* | 2 

Уn(
1+м )lîTфЛlß' - î + и l ^ Уße(

1+|x| )lî+i - î+ ӣ l d ж 

+ / U + M l̂ттГӣГd*. Лì\B£
 7 І1 + |«*|I 

/ (1 + мa)|тSëiтГ^< / (i+w2)i.iui2dx 
Jí_\в£ 11 + |гx 11 Jfì\яe 

Taking (23) into account, we have 

/ (i + M2) 
Jвe 

ЄQXUЄ Q\UЩ 

l+e\ue\ l + |it*| 

Jn\Be 

O l / Q\U*\2 dx -> 0 for e -> 0. 

d x ^ / (l + lxpj l^iг ie-^гi^pdx 
Jn 

O i / £|ć.гxє - i_*|2 dx -> 0 for e: -> 0. 
Jӣ 

Similarly, we show that SQ2VE(l + e\v£\)
 llBe -> Q2V*(\ + \v*\) l for e -> 0 

inL 2 .^ ! ! ) . 
Pi 

In the same manner we can establish that 

Qзu Q4V
Щ 

e*2(ue,ve) -> c--f----| + (d + m ) r + V i for e "+ ° ™ LPT (П). 
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We get, when e —> 0, 

j ' ( -A + „ + m ( ? l ) u - _ ( < , + m ) l ^ 7 j + 6 r £ ^ tad, 

«») ( - i + f i + r a f f ( ) „ . = c _ | ^ _ + (d + m ) _ ^ _ , n 

l tz* _= v* ___ 0 on dQ; u*,v* ->> 0 for |x| -> +oo. 

We show now that w* = t;* = 0. 
We multiply the first equation of the system (25) by u* and integrate over fi: 

j[(lwp + («+*)KP)<_.(.+„> / ^ . <_+»/^X<_ 

< ( a + ro) /0i|i_*|2da; + |6| [ Qi\u*v*\dx. 
J__ J__ 

By virtue of the variational characterization of A(g_, _?_) and using (10), we get 

(26) (AOft, ft) - a) jf ft1 _* |2 d_ < 1.1 f jf ft |u" |2 d_Y • (jT ft |»* |2 dxY. 

In the same way, we prove that 

(27) (A(<?2,04) - <*) j QA\V*\2 dx < \c\ Q f Ql\u*\2 dxj . Q f *4|t;*|2 dxj. 

Combining (26), (27) with (14), we have u* = v* = 0. 

(viii) We show that the sequence (u£)£ (as well as (v£)e) is bounded in V. We 
suppose that \\ue\\v -> +oo for e -.> 0 and ||ve||v -> +o° for e —•> 0 and define 

te = max(||tic||v,IMHv)-

^ = —ue then ||2e||v < 1, 
*e 

we = —v€ then ||t0_:||v ^ 1. 
*£ 

Since (ze)£ is a bounded sequence in V, there exists a subsequence denoted again 
by (z£)£, weakly convergent to z in V and hence strongly convergent to z in L2(Q). 

Similarly, (w£)£ converges to w , weakly in V and strongly in L2(ft). 
Taking (24) into account, we get 

(-A + qi+mei)ze = (a + m)^^lBl+bIf^lBc+±f mil, 

(28) < ( . A + fc+^K=c_^1_<+(d + m ) _ ^ u + ^ tan, 

2e = w£ = 0 on dil; z£,w£ -» 0 for \x\ -» +oo. 
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We know that V^ e D(Q), JQ(Vz£ • V<p+ (qx +mg1)z£<p)dx -> JQ(Vz-V<p+(qiJ-

mQi)z<p) dx for E -> 0 and JQ j-f<pdx -> 0 for e -> 0. 

On the other hand, 

II 0-** i II2 f li i I |2\| ^ l ^ I2 j 
h i—-ABE-Q\A\ = / U + F )h i—i - Qiz\ &x 

I l l+C|tle| C I I L 2 . ^ ) JB€
V ' Ml-hellXel » 

p i 

+ / ( l + |x|2 ) |^2|2dx. 
J«\BC 

We have JQKB (l + \x\2)\Q\Z\2 dx ^ kx JQKBC Q\Z\2 dx -> 0 for e -> 0, and 

/s.(
i+w5)iT^-^r^«x<i+w2)ir^i-^r^ 

</fl(
i+'"2)ri("T:)

e;:r"'"lr^ 
*2/„<>+^(i^r+iTftii> 

So 

/(1 + lxП ľ . 1 ^, f f d x < / ( l + |x|2)Ыz£-г)|2dx 
Jß » A + ч w И i Jп 

^ Л:i / g|.гв - z| 2 dx -> 0 for є -> 0. 

Moreover, 

£ i * M -> 0 for є -> 0 a.e. in П, 
l l+e | t t- | l 

(1 + | a ; | 2 ) l l+lKIf ^ (1 + | x | 2 ) k l"'2 * kMz?-

Since z € L2(^), by virtue of the Lebesgue dominated convergence theorem we 
deduce that 

/ ( j + l ^ l f M M l ^ ^ o f o r ^ O . 
Jn

K ' l l + e | t t , | l 

Hence 

—f^т-гlв. - деll -> 0 for є -> 0. 
l + ф e | £ *A IIL2 .^) 
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Analogously, we obtain 

Q3Z£ 

1 + є\ut 

rlB£ -Q3Z\ 
L2-!(ß) 

p l 

-> 0 for є -> 0 

and 

giWe 
, Г i i lв, - QІЩ , -> 0 far e -+ 0 (i = 2,4). 
1 + Є | ü e | IІŁ2_.(П) 

(—A + gi)z = aQ\Z + 6(?2^ in ft, 

(—A + q2)w = c_?3^ + dQ4w in ft, 

2; = w = 0 on 9ft; z, w -> 0 for \x\ -> +00. 

By virtue of Lemma 1, we have z = w = 0, which is in contradiction with the fact that 

at least one sequence ((ze) or (we)) has the norm equal to one. The sequence (ue) 

(as well as (v£)) is bounded in V. 

(ix) We extract a sequence denoted again by (ue) ((ve)) weakly convergent to u° 

(or v°) in V and hence strongly convergent to the same limit in L2
e(il). 

We have V</> G F>(ft), 

/ (Vu£ • V<£ + (<ji + mQi)ue(p) dx -> / (Vtt0 • V</? + (gi + mQi)u°<p) dx, for £ -> 0 
Jfl JQ 

/ (Vve • V<p + (#2 + rnQ4)v£(p) dx -> / (Vu° • V</> + (q2 + mQA)v°ip) dx for e: -> 0. 
J_7 Jn 

In the same way as in (viii), we show that 

1 T\ . U - g i t t i (ft)->0for e->0 (i = 1,3), 

QiVe , o 
, , 1 , lB g " QiV 

- 2 - l ( " ) 
p i 

0 for є - > 0 (i = 2,4). 

When e -> 0, we get 

{ (-A + gi)i_° = a^iw0 + bQ2v° + / in ft, 

(-A + q2)v° = CO3U0 + dQAv° + g in ft, 

u° = v° = 0 on 9ft; u°,v° -> 0 for |x| -> +00. 

We conclude that (u°, v°) is a solution of (S). 
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The uniqueness of the solution follows from Lemma 1. Indeed, let (y},vl) be 
another solution of the system (S). We put w = u° — u1 and z = v° — v1, then (w, z) 
is a solution of the system (15). Lemma 1 gives (w,z) = (0,0). 

Acknowledgment. We wish to thank the referee for helpful comments. 
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Abstract. Using an approximation method, we show the existence of solutions for some
noncooperative elliptic systems defined on an unbounded domain.
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max formula, noncooperative systems
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1. Introduction

We study here some noncooperative elliptic systems defined on a connected and
unbounded open set Ω ⊆ � N (N > 3) of the form

(S)





−∆u + q1u = a%1u + b%2v + f in Ω,

−∆v + q2v = c%3u + d%4v + g in Ω,

u = v = 0 on ∂Ω; u, v → 0 for |x| → +∞

where %1, %2, %3, %4 (sometimes referred to as weight functions), q1, q2, are positive
functions; f and g are measurable functions; a, b, c and d are real numbers. u

and v are unknown real-valued functions defined in Ω and belonging to appropriate
function spaces. The system (S) is noncooperative since b and c are not necessarily

positive. Under appropriate assumptions on the coefficients, we show the existence
of non-trivial solutions.

1 This work was supported by a grant from ANDRU under No. CU39904.
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Generally, in order to study a nonlinear problem, we consider the linear approxi-

mation, which is easy enough to resolve of course. Here we have explored the inverse
process. In other words, we show that the linear system (S) can be taken as the limit
of a sequence of nonlinear systems.

The paper is organized as follows. In Section 1, we establish a Maximum Principle
result in the scalar case. We choose decreasing weight functions which lead to a gain

of compactness, (see [7] and [8]). In Section 2, we obtain an existence and uniqueness
theorem for system (S). In order to prove it, we apply a nonlinear method introduced

in [3] and [4]. The main tool used here is Schauder’s fixed point theorem. The
Maximum Principle guarantees the invariance of subsets under operators. So, we can

prove the existence of solution for nonlinear systems. We observe that there exists
a vast literature on the use of nonlinear methods to the study of noncooperative

elliptic systems. We point out that an interesting version of the Maximum Principle
for noncooperative systems was given in [13]. We refer the reader to the works in

[5], [6] and references therein.

2. Notation

We denote

(1) u± = max(±u, 0), so u = u+ − u−.
(2) mes(·) is the Lebesgue N -dimensional measure.

(3) For ε ∈ ]0, 1[ fixed: Bε = Ω ∩ B(0, 1/ε) = {x ∈ Ω/|x| < 1/ε}.
1Bε is the characteristic function of Bε.

(4) pα(x) = (1 + |x|2)−α, α ∈ � ∗+ ; � ∗+ is the set of positive real numbers.
(5) Let D(Ω) be the set of all infinitely differentiable functions with compact sup-
port in Ω. We denote by D′(Ω) the dual space of D(Ω). Let us define V ( � N ) ={
u ∈ D′( � N )/

∫ �
N (|∇u|2 + p1|u|2) dx < +∞

}
.

The space V is the closure of D(Ω) with respect to the norm

‖u‖V =
(∫

Ω

(|∇u|2 + p1|u|2) dx

)1
2

equivalent (under some conditions) to the norms

‖u‖i =
(∫

Ω

(|∇u|2 + (qi + m%j)|u|2) dx

)1
2

(i = 1, 2; j = 1, 4; m ∈ � ∗+ ).

V ( � N ) is a Hilbert space, ∀N > 3 (see [17], p. 230).
(6) L2

p(Ω) =
{
u ∈ D′(Ω)/p

1
2 u ∈ L2(Ω)

}
where p(x) is a positive function defined

on Ω.
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Hm(Ω) = {u ∈ D′(Ω)/Dαu ∈ L2(Ω), 0 6 |α| 6 m}.
(7) % = max

x∈Ω
(%1, %2, %3, %4).

3. Hypotheses

We suppose that

(8) ∃α, β ∈ � , α > N/2, β > 1; ∃ki > 0 (i = 1, 2, 3, 4), ∃ci > 0 (i = 1, 2) such that

0 6%i(x) 6 kipα(x), i = 1, 2, 3, 4,

0 6qi(x) 6 cipβ(x), i = 1, 2.

(9) %2(x) 6
√

%1(x)%4(x), ∀x ∈ Ω, %3(x) 6
√

%1(x)%4(x) ∀x ∈ Ω.
(10) f, g ∈ L2

p−1
1

(Ω) =
{
u ∈ D′(Ω)/

∫
Ω(1 + |x|2)|u|2 dx < +∞

}
.

4. Existence of solutions

4.1. Remarks on the scalar case
We consider the problem

(11)

{
−∆u + q1u = λ%1u in Ω,

u = 0 on ∂Ω; u → 0 for |x| → +∞.

By [7], [8], Problem (11) possesses an increasing infinite sequence of positive eigen-
values.

Moreover, the first eigenvalue λ(q1, %1) is principal ([9]) and is characterized vari-
ationally by

(12) λ(q1, %1)
∫

Ω

%1|u|2 dx 6
∫

Ω

(
|∇u|2 + q1|u|2

)
dx; ∀u ∈ V.

We consider now the problem

(13)

{
−∆u + q1u = λ%1u + h in Ω,

u = 0 on ∂Ω; u → 0 for |x| → +∞.

We claim that the Maximum Principle holds for Problem (13) with condition

h > 0, if all solutions of Problem (13) are nonnegative.
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Theorem 1. Assume that (8) holds and h ∈ L2
p−1
1

(Ω). Problem (13) satisfies
the Maximum Principle if and only if λ(q1, %1) > λ.

���������
. Let ϕ be an eigenfunction associated with λ(q1, %1), then ϕ does not

change sign. Multiplying the equation in (13) by ϕ and integrating over Ω, we obtain

(λ(q1, %1)− λ)
∫

Ω

%1uϕ dx =
∫

Ω

hϕ dx.

If the Maximum Principle holds then
∫
Ω hϕ dx > 0 implies

∫
Ω %1uϕ dx > 0.

Consequently λ(q1, %1) > λ.

Conversely, if λ(q1, %1) > λ then u > 0. Indeed, observe that u = u+ − u−. Now,

multiplying the equation of Problem (13) by u− and integrating over Ω, we get

∫

Ω

(∇u∇u− + q1uu−) dx = λ

∫

Ω

%1uu− dx +
∫

Ω

hu− dx.

Since ∫

Ω

∇u+∇u− dx =
∫

Ω

q1u
+u− dx =

∫

Ω

%1u
+u− dx = 0,

we obtain

∫

Ω

(
|∇u−|2 + q1|u−|2

)
dx = λ

∫

Ω

%1|u−|2 dx−
∫

Ω

hu− dx.

By (12), we have

λ(q1, %1)
∫

Ω

%1|u−|2 dx 6 λ

∫

Ω

%1|u−|2 dx−
∫

Ω

hu− dx,

0 < (λ(q1, %1)− λ)
∫

Ω

%1|u−|2 dx 6 −
∫

Ω

hu− dx 6 0

Hence u > 0. �

Theorem 2. Under the assumptions of Theorem 1, Problem (13) with condition
h > 0 has one nonnegative solution in V if and only if λ(q1, %1) > λ.

���������
. In view of Theorem 1, the necessary condition holds.

Let us consider the sufficient condition. The differential form

a(u, v) =
∫

Ω

(∇u · ∇v + q1uv) dx− λ

∫

Ω

%1uv dx
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is continuous and coercive on V × V . Indeed, let m ∈ � ∗+ be such that λ + m > 0.
Taking into account the variational characterization of λ(q1, %1) we have

a(u, u) =
∫

Ω

[
|∇u|2 + (q1 + m%1)|u|2

]
dx− (λ + m)

∫

Ω

%1|u|2 dx

>
(
1− λ + m

λ(q1, %1) + m

)
‖u‖2

1

where ‖ · ‖1 is a norm equivalent to ‖ · ‖V by virtue of (8) and Hardy’s inequality

(
∀N > 3, ∃γ > 0: ∀u ∈ D( � N ),

∫
�

N

|u|2
|x|2 dx 6 γ

∫
�

N

|∇u|2 dx

)
.

Since f ∈ L2
p−1
1

(Ω), the application v 7→
∫
Ω hv dx is a continuous linear form on V .

Hence by the Lax-Milgram lemma, Problem (13) possesses one solution u. By The-
orem 1, u is nonnegative. �

4.2. Vectorial case
Let us consider the system (S) now. In what follows, we will find a sufficient

condition for the system (S) to have a unique solution.

Theorem 3. Let (8), (9) and (10) be satisfied, as well as

(14) λ(q1, %1) > a; (λ(q1, %1)− a)(λ(q2, %4)− d) > |bc|.

Then the system (S) has one (weak) solution in V × V .

First, we state the following lemma.

Lemma 1. Assume that the hypothesis of Theorem 3 holds. Let (z, w) ∈ V ×V

be a solution of

(15)





(−∆ + q1)z = a%1z + b%2w in Ω,

(−∆ + q2)w = c%3z + d%4w in Ω,

z = w = 0 on ∂Ω; z, w → 0 for |x| → +∞.

Then (z, w) = (0, 0).
���������

. We multiply the first equation of the system (15) by z and integrate

over Ω: ∫

Ω

(
|∇z|2 + q1|z|2) dx = a

∫

Ω

%1|z|2 dx + b

∫

Ω

%2zw dx.
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Using the variational characterization of λ(q1, %1), we have

0 < (λ(q1, %1)− a)
∫

Ω

%1|z|2 dx 6 |b|
∣∣∣∣
∫

Ω

%2zw dx

∣∣∣∣.

By hypothesis (9) and the Cauchy-Schwarz inequality we obtain

(16) (λ(q1, %1)− a)
∫

Ω

%1|z|2 dx 6 |b|
(∫

Ω

%1|z|2 dx

)1
2
(∫

Ω

%4|w|2 dx

)1
2

.

Similarly, multiplying the second equation of system (15) by w and integrating
over Ω, we get

(17) (λ(q2, %4)− d)
∫

Ω

%4|w|2 dx 6 |c|
(∫

Ω

%1|z|2 dx

)1
2
(∫

Ω

%4|w|2 dx

)1
2

.

Combining (16) with (17), we obtain

0 < [(λ(q1, %1)− a)(λ(q2, %4)− d)− |bc|]
∫

Ω

%1|z|2 dx ·
∫

Ω

%4|w|2 dx 6 0,

which implies that z = w = 0 a.e. �
���������

of Theorem 3. Let m ∈ � ∗+ be such that a + m > 0 and d + m > 0.
We define an operator

T : L2
%(Ω)× L2

%(Ω) → V × V, (ξ, η) 7→ T (ξ, η) = (ω, υ)

such that (ω, υ) verifies the system

(18)





(−∆ + q1 + m%1)ω = (a + m)
%1ξ

1 + ε|ξ|1Bε + b
%2η

1 + ε|η|1Bε + f in Ω,

(−∆ + q2 + m%4)υ = c
%3ξ

1 + ε|ξ|1Bε + (d + m)
%4η

1 + ε|η|1Bε + g in Ω,

ω = υ = 0 on ∂Ω, ω, υ → 0 for |x| → +∞.

(i) First we verify that T is well defined.

Let (ξ, η) ∈ L2
%(Ω)× L2

%(Ω), we put

(19)





Ψ1(ξ, η) = (a + m)
%1ξ

1 + ε|ξ|1Bε + b
%2η

1 + ε|η|1Bε ,

Ψ2(ξ, η) = c
%3ξ

1 + ε|ξ|1Bε + (d + m)
%4η

1 + ε|η|1Bε .
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We have
∫

Ω

(
1 + |x|2

)∣∣∣ %iξ

1 + ε|ξ|1Bε

∣∣∣
2

dx 6
∫

Ω

(
1 + |x|2

)
|%iξ|2 dx

6 ki

∫

Ω

%|ξ|2 dx, (i = 1, 3),

and
∫

Ω

(
1 + |x|2

)∣∣∣ %iη

1 + ε|η|1Bε

∣∣∣
2

dx 6
∫

Ω

(
1 + |x|2

)
|%iη|2 dx

6 ki

∫

Ω

%|η|2 dx, (i = 2, 4).

So Ψ1(ξ, η), Ψ2(ξ, η) ∈ L2
p−1
1

(Ω).
In view of Theorem 2, the system

(20)





(−∆ + q1)ω = −m%1ω + (Ψ1(ξ, η) + f) in Ω; ω = 0 on ∂Ω;

ω → 0 for |x| → +∞,

(−∆ + q2)υ = −m%4υ + (Ψ2(ξ, η) + g) in Ω; υ = 0 on ∂Ω;

υ → 0 for |x| → +∞

has one solution (ω, υ) in V × V , since

(Ψ1(ξ, η) + f) ∈ L2
p−1
1

(Ω), (Ψ2(ξ, η) + g) ∈ L2
p−1
1

(Ω),

λ(q1, %1) > −m and λ(q2, %4) > −m.

(ii) For all (ξ, η) ∈ L2
%(Ω)× L2

%(Ω), we have

∣∣∣ %iξ

1 + ε|ξ|1Bε

∣∣∣ =
1
ε

ε%i|ξ|
1 + ε|ξ|1Bε 6 ki

ε
1Bε a.e. in Ω, (i = 1, 3), 1Bε ∈ L2

p−1
1

(Ω).

Similarly ∣∣∣ %iη

1 + ε|η|1Bε

∣∣∣ 6 ki

ε
1Bε a.e. in Ω, (i = 2, 4).

Then

(21)





|Ψ1(ξ, η)| 6 2 max(a + m, |b|)k

ε
1Bε ,

|Ψ2(ξ, η)| 6 2 max(|c|, d + m)
k

ε
1Bε

with k = max(k1, k2, k3, k4).
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We put h = 2 max(a + m, |b|, |c|, d + m) k
ε 1Bε .

We have

h ∈ L2
p−1
1

(Ω) and |Ψ1(ξ, η)| 6 h; |Ψ2(ξ, η)| 6 h; ∀(ξ, η) ∈ L2
%(Ω)× L2

%(Ω).

According to Theorem 2, the problem

P1 := (−∆ + q1 + m%1)u = h + f in Ω; u = 0 on ∂Ω; u → 0 for |x| → +∞

(or with P ′
1 defined by replacing h by −h in P1) possesses one solution ξ0 (ξ0) in V .

Similarly, the problem

P2 := (−∆ + q2 + m%4)v = h + g in Ω; v = 0 on ∂Ω; v → 0 for |x| → +∞

(or with P ′
2 obtained by replacing h by −h in P2) has one solution η0 (η0) in V .

Observe that ξ0 6 ξ0. Indeed, we have

(−∆ + q1 + m%1)(ξ0 − ξ0) = 2h in Ω, ξ0 − ξ0 = 0 on ∂Ω,

(ξ0 − ξ0) → 0 for |x| → +∞.

According to Theorem 1, ξ0 − ξ0 > 0. Similarly η0 − η0 6 0.
We consider now the restriction of T , denoted again by T , to the rectangle [ξ0, ξ

0]×
[η0, η

0].
We show that T admits a fixed point using Schauder’s Theorem.

(iii) We prove first that the closed convex [ξ0, ξ
0]× [η0, η

0] is invariant by T .

Let (ξ, η) ∈ [ξ0, ξ
0]× [η0, η

0]. We show that ω ∈ [ξ0, ξ
0] and υ ∈ [η0, η

0]. Combin-
ing (20) with P1, we get

(−∆ + q1 + m%1)(ξ0 − ω) = h−Ψ1(ξ, η) in Ω, ξ0 − ω = 0 on ∂Ω,

(ξ0 − ω) → 0 for |x| → +∞.

Since h − Ψ1(ξ, η) > 0 then ω 6 ξ0. In the same way, we obtain υ 6 η0. On the

other hand, we have

(−∆ + q1 + m%1)(ω − ξ0) = Ψ1(ξ, η) + h in Ω, ω − ξ0 = 0 on ∂Ω,

(ω − ξ0) → 0 for |x| → +∞.

Since Ψ1(ξ, η) + h > 0 then ξ0 6 ω. Analogously, we obtain η0 6 υ.
Consequently [ξ0, ξ

0]× [η0, η
0] is invariant by T .
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(iv) We show now that T is continuous. Let (ξn, ηn) be a sequence of [ξ0, ξ
0] ×

[η0, η
0] convergent to (ξ, η) in L2

%(Ω)× L2
%(Ω).

We put T (ξn, ηn) = (ωn, υn), T (ξ, η) = (ω, υ).
From (18) and (19), we get

(22)





(−∆ + q1 + m%1)(ωn − ω) = Ψ1(ξn, ηn)−Ψ1(ξ, η) in Ω,

(−∆ + q2 + m%4)(υn − υ) = Ψ2(ξn, ηn)−Ψ2(ξ, η) in Ω,

ωn = ω = υn = υ = 0 on ∂Ω; ωn, ω, υn, υ → 0 for |x| → +∞.

Multiplying both the first and the second equation of the system (22) by (ωn − ω)
and (υn − υ) respectively, later integrating over Ω, we obtain by virtue of Hardy’s
inequality

‖ωn − ω‖1 6 √
γ‖Ψ1(ξn, ηn)−Ψ1(ξ, η)‖L2

p
−1
1

(Ω),

‖υn − υ‖2 6 √
γ‖Ψ2(ξn, ηn)−Ψ2(ξ, η)‖L2

p
−1
1

(Ω).

Then, to prove (ωn, υn) → (ω, υ) in V × V , it suffices to show that

Ψ1(ξn, ηn) → Ψ1(ξ, η) and Ψ2(ξn, ηn) → Ψ2(ξ, η) in L2
p−1
1

(Ω).

We have

∥∥∥ %1ξn

1 + ε|ξn|
1Bε −

%1ξ

1 + ε|ξ|1Bε

∥∥∥
L2

p
−1
1

(Ω)
=

1
ε

∥∥∥ ε%1ξn

1 + ε|ξn|
1Bε −

ε%1ξ

1 + ε|ξ|1Bε

∥∥∥
L2

p
−1
1

(Ω)
.

The function l(x) = x(1 + |x|)−1 is Lipschitzian on � and verifies

(23) ∀x, y ∈ � , |l(x)− l(y)| 6 |x− y|.

Consequently,

1
ε

∥∥∥ ε%1ξn

1 + ε|ξn|
1Bε −

ε%1ξ

1 + ε|ξ|1Bε

∥∥∥
L2

p
−1
1

(Ω)
6 1

ε
‖ε%1ξn − ε%1ξ‖L2

p
−1
1

(Ω)

6 ‖%1ξn − %1ξ‖L2
p
−1
1

(Ω) → 0 for n → +∞,

since
∫

Ω

(1 + |x|2)%2
1|ξn − ξ|2 dx 6

∫

Ω

(1 + |x|2) k1

1 + |x|2 %|ξn − ξ|2 dx

6 k1‖ξn − ξ‖2
L2

%(Ω) → 0 for n → +∞.
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Similarly, we show that %2ηn(1 + ε|ηn|)−11Bε → %2η(1 + ε|η|)−11Bε for ε → 0 in
L2

p−1
1

(Ω).

Then Ψ1(ξn, ηn) → Ψ1(ξ, η) in L2
p−1
1

(Ω) and therefore ωn → ω in V .

In the same way, υn → υ in V . Consequently, T is continuous.

(v) Next we show that T : L2
%(Ω)× L2

%(Ω) → L2
%(Ω)× L2

%(Ω) is compact.
We have the compact imbedding V ⊂ L2

%(Ω).
Indeed, let (un)n be a bounded sequence in V . (un)n is bounded in H1(Bε). Hence

the imbedding H1(Bε) into L2(Bε) is compact; there exists a subsequence denoted
again by (un)n, such that

∫

Bε

%|up − uq|2 dx 6
∫

Bε

|up − uq |2 dx → 0 when p, q → +∞.

On the other hand, since the weight % tends to 0 at infinity, we have

∫

Ω\Bε

%|up − uq|2 dx =
∫

Ω\Bε

(
1 + |x|2

)
%

1
(1 + |x|2) |up − uq|2 dx

6 k sup
|x|>1/ε

1
(1 + |x|2)α−1

‖up − uq‖2
V → 0 for ε → 0.

Consequently, (un)n is a Cauchy sequence in L2
%(Ω).

Since T : L2
%(Ω) × L2

%(Ω) → V × V is continuous, T : L2
%(Ω) × L2

%(Ω) → L2
%(Ω) ×

L2
%(Ω) is compact. According to (iii) and (v), we can apply Schauder’s fixed point
theorem. Then there exists (ξ, η) ∈ [ξ0, ξ

0]× [η0, η
0] such that T (ξ, η) = (ξ, η).

Since ξ and η depend on ε, we denote ξ = uε and η = vε.

So uε, vε verify the system

(24)





(−∆ + q1 + m%1)uε = (a + m)
%1uε

1 + ε|uε|
1Bε + b

%2vε

1 + ε|vε|
1Bε + f in Ω,

(−∆ + q2 + m%4)vε = c
%3uε

1 + ε|uε|
1Bε + (d + m)

%4vε

1 + ε|vε|
1Bε + g in Ω,

uε = vε = 0 on ∂Ω; uε, vε → 0 for |x| → +∞.

(vi) We show that (εuε)ε (as well as (εvε)ε ) is a bounded sequence in V .

We multiply the first equation of the system (24) by ε2uε and integrate over Ω,
obtaining

∫

Ω

(
|∇(εuε)|2 + (q1 + m%1)|εuε|2) dx = (a + m)

∫

Ω

ε%1uε

1 + ε|uε|
εuε1Bε dx

+ b

∫

Ω

ε%2vε

1 + ε|vε|
εuε1Bε dx +

∫

Ω

εfεuε dx.
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Since ε|uε|(1 + ε|uε|)−1 < 1, ε|vε|(1 + ε|vε|)−1 < 1, 0 < ε < 1, f ∈ L2
p−1
1

(Ω) and
α > N/2, there exists a constant M > 0 such that ‖εuε‖1 6 M .

Similarly, there exists M ′ > 0 such that ‖εvε‖2 6 M ′.

(vii) We show that εuε → 0 (as well as εvε → 0) when ε → 0 in V .
Since (εuε)ε is bounded in V , there exists a subsequence denoted again by (εuε)ε

(we denote it by writing for example ε = 1
n , n > 1) weakly convergent to u∗ in V

and hence strongly convergent to u∗ in L2
%(Ω).

We multiply the first equation of the system (24) by ε:

(−∆ + (q1 + m%1))(εuε) = (a + m)
ε%1uε

1 + ε|uε|
1Bε + b

ε%2vε

1 + ε|vε|
1Bε + εf in Ω.

Then ∀ϕ ∈ D(Ω),

∫

Ω

[∇(εuε) · ∇ϕ + (q1 + m%1)εuεϕ] dx

∫

Ω

[∇u∗ · ∇ϕ + (q1 + m%1)u∗ϕ] dx for ε → 0.

Moreover ∀ϕ ∈ D(Ω),
∫
Ω εfϕ dx → 0 for ε → 0.

On the other hand,

∫

Ω

(
1 + |x|2

)∣∣∣ ε%1uε

1 + ε|uε|
1Bε −

%1u
∗

1 + |u∗|
∣∣∣
2

dx =
∫

Bε

(
1 + |x|2

)∣∣∣ ε%1uε

1 + ε|uε|
− %1u

∗

1 + |u∗|
∣∣∣
2

dx

+
∫

Ω\Bε

(
1 + |x|2

)∣∣∣ %1u
∗

1 + |u∗|
∣∣∣
2

dx,

∫

Ω\Bε

(
1 + |x|2

)∣∣∣ %1u
∗

1 + |u∗|
∣∣∣
2

dx 6
∫

Ω\Bε

(
1 + |x|2

)
|%1u

∗|2 dx

6 k1

∫

Ω\Bε

%|u∗|2 dx → 0 for ε → 0.

Taking (23) into account, we have

∫

Bε

(
1 + |x|2

)∣∣∣ ε%1uε

1 + ε|uε|
− %1u

∗

1 + |u∗|
∣∣∣
2

dx 6
∫

Ω

(
1 + |x|2

)
|ε%1uε − %1u

∗|2 dx

6 k1

∫

Ω

%|εuε − u∗|2 dx → 0 for ε → 0.

Similarly, we show that ε%2vε(1 + ε|vε|)−11Bε → %2v
∗(1 + |v∗|)−1 for ε → 0

in L2
p−1
1

(Ω).
In the same manner we can establish that

εΨ2(uε, vε) → c
%3u

∗

1 + |u∗| + (d + m)
%4v

∗

1 + |v∗| for ε → 0 in L2
p−1
1

(Ω).
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We get, when ε → 0,

(25)





(−∆ + q1 + m%1)u∗ = (a + m)
%1u

∗

1 + |u∗| + b
%2v

∗

1 + |v∗| in Ω,

(−∆ + q2 + m%4)v∗ = c
%3u

∗

1 + |u∗| + (d + m)
%4v

∗

1 + |v∗| in Ω,

u∗ = v∗ = 0 on ∂Ω; u∗, v∗ → 0 for |x| → +∞.

We show now that u∗ = v∗ = 0.
We multiply the first equation of the system (25) by u∗ and integrate over Ω:
∫

Ω

(
|∇u∗|2 + (q1 + m%1)|u∗|2

)
dx = (a + m)

∫

Ω

%1|u∗|2
1 + |u∗| = dx + b

∫

Ω

%2u
∗v∗

1 + |v∗| dx

6 (a + m)
∫

Ω

%1|u∗|2 dx + |b|
∫

Ω

%2|u∗v∗| dx.

By virtue of the variational characterization of λ(q1, %1) and using (10), we get

(26) (λ(q1, %1)− a)
∫

Ω

%1|u∗|2 dx 6 |b|
(∫

Ω

%1|u∗|2 dx

)1
2

·
(∫

Ω

%4|v∗|2 dx

)1
2

.

In the same way, we prove that

(27) (λ(q2, %4)− d)
∫

Ω

%4|v∗|2 dx 6 |c|
(∫

Ω

%1|u∗|2 dx

)1
2

·
(∫

Ω

%4|v∗|2 dx

)1
2

.

Combining (26), (27) with (14), we have u∗ = v∗ = 0.

(viii) We show that the sequence (uε)ε (as well as (vε)ε) is bounded in V . We
suppose that ‖uε‖V → +∞ for ε → 0 and ‖vε‖V → +∞ for ε → 0 and define

tε = max(‖uε‖V , ‖vεt‖V ),

zε =
1
tε

uε then ‖zε‖V 6 1,

wε =
1
tε

vε then ‖wε‖V 6 1.

Since (zε)ε is a bounded sequence in V , there exists a subsequence denoted again

by (zε)ε, weakly convergent to z in V and hence strongly convergent to z in L2
%(Ω).

Similarly, (wε)ε converges to w , weakly in V and strongly in L2
%(Ω).

Taking (24) into account, we get

(28)





(−∆ + q1 + m%1)zε = (a + m)
%1zε

1 + ε|uε|
1Bε + b

%2wε

1 + ε|vε|
1Bε +

1
tε

f in Ω,

(−∆ + q2 + m%4)wε = c
%3zε

1 + ε|uε|
1Bε + (d + m)

%4wε

1 + ε|vε|
1Bε +

1
tε

g in Ω,

zε = wε = 0 on ∂Ω; zε, wε → 0 for |x| → +∞.
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We know that ∀ϕ ∈ D(Ω),
∫
Ω
(∇zε ·∇ϕ+(q1 +m%1)zεϕ) dx →

∫
Ω
(∇z ·∇ϕ+(q1 +

m%1)zϕ) dx for ε → 0 and
∫
Ω

1
tε

fϕ dx → 0 for ε → 0.
On the other hand,

∥∥∥ %1zε

1 + ε|uε|
1Bε − %1z

∥∥∥
2

L2
p
−1
1

(Ω)
=

∫

Bε

(
1 + |x|2

)∣∣∣ %1zε

1 + ε|uε|
− %1z

∣∣∣
2

dx

+
∫

Ω\Bε

(
1 + |x|2

)
|%1z|2 dx.

We have
∫
Ω\Bε

(
1 + |x|2

)
|%1z|2 dx 6 k1

∫
Ω\Bε

%|z|2 dx → 0 for ε → 0, and

∫

Bε

(
1 + |x|2

)∣∣∣ %1zε

1 + ε|uε|
− %1z

∣∣∣
2

dx 6
∫

Ω

(
1 + |x|2

)∣∣∣ %1zε

1 + ε|uε|
− %1z

∣∣∣
2

dx

6
∫

Ω

(
1 + |x|2

)∣∣∣%1(zε − z)− ε%1z|uε|
1 + ε|uε|

∣∣∣
2

dx

62
∫

Ω

(
1 + |x|2

)(∣∣∣%1(zε − z)
1 + ε|uε|

∣∣∣
2

+
∣∣∣ ε%1z|uε|
1 + ε|uε|

∣∣∣
2)

dx.

So

∫

Ω

(
1 + |x|2

)∣∣∣%1(zε − z)
1 + ε|uε|

∣∣∣
2

dx 6
∫

Ω

(
1 + |x|2

)
|%1(zε − z)|2 dx

6 k1

∫

Ω

%|zε − z|2 dx → 0 for ε → 0.

Moreover,

∣∣∣ ε1z|uε|
1 + ε|uε|

∣∣∣
2

→ 0 for ε → 0 a.e. in Ω,

(
1 + |x|2

)∣∣∣ ε%1z|uε|
1 + ε|uε|

∣∣∣
2

6
(
1 + |x|2

)
|%1z|2 6 k1%|z|2.

Since z ∈ L2
%(Ω), by virtue of the Lebesgue dominated convergence theorem we

deduce that ∫

Ω

(
1 + |x|2

)∣∣∣ ε%1z|uε|
1 + ε|uε|

∣∣∣
2

dx → 0 for ε → 0.

Hence ∥∥∥ %1zε

1 + ε|uε|
1Bε − %1z

∥∥∥
L2

p
−1
1

(Ω)
→ 0 for ε → 0.
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Analogously, we obtain

∥∥∥ %3zε

1 + ε|uε|
1Bε − %3z

∥∥∥
L2

p
−1
1

(Ω)
→ 0 for ε → 0

and
∥∥∥ %iwε

1 + ε|vε|
1Bε − %iw

∥∥∥
L2

p
−1
1

(Ω)
→ 0 for ε → 0 (i = 2, 4).

When ε → 0, we get

(29)





(−∆ + q1)z = a%1z + b%2w in Ω,

(−∆ + q2)w = c%3z + d%4w in Ω,

z = w = 0 on ∂Ω; z, w → 0 for |x| → +∞.

By virtue of Lemma 1, we have z = w = 0, which is in contradiction with the fact that
at least one sequence ((zε) or (wε)) has the norm equal to one. The sequence (uε)
(as well as (vε)) is bounded in V .

(ix) We extract a sequence denoted again by (uε) ((vε)) weakly convergent to u0

(or v0) in V and hence strongly convergent to the same limit in L2
%(Ω).

We have ∀ϕ ∈ D(Ω),

∫

Ω

(∇uε · ∇ϕ + (q1 + m%1)uεϕ) dx →
∫

Ω

(∇u0 · ∇ϕ + (q1 + m%1)u0ϕ) dx, for ε → 0
∫

Ω

(∇vε · ∇ϕ + (q2 + m%4)vεϕ) dx →
∫

Ω

(∇v0 · ∇ϕ + (q2 + m%4)v0ϕ) dx for ε → 0.

In the same way as in (viii), we show that

∥∥∥ %iuε

1 + ε|uε|
1Bε − %iu

0
∥∥∥

2

L
p
−1
1

(Ω) → 0 for ε → 0 (i = 1, 3),

∥∥∥ %ivε

1 + ε|vε|
1Bε − %iv

0
∥∥∥

L2
p
−1
1

(Ω)
→ 0 for ε → 0 (i = 2, 4).

When ε → 0, we get

(S)





(−∆ + q1)u0 = a%1u
0 + b%2v

0 + f in Ω,

(−∆ + q2)v0 = c%3u
0 + d%4v

0 + g in Ω,

u0 = v0 = 0 on ∂Ω; u0, v0 → 0 for |x| → +∞.

We conclude that (u0, v0) is a solution of (S). �
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The uniqueness of the solution follows from Lemma 1. Indeed, let
(
u1, v1

)
be

another solution of the system (S). We put w = u0−u1 and z = v0− v1, then (w, z)
is a solution of the system (15). Lemma 1 gives (w, z) = (0, 0).
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