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Abstract. Free material optimization solves an important problem of structural engineer-
ing, i.e. to find the stiffest structure for given loads and boundary conditions. Its mathe-
matical formulation leads to a saddle-point problem. It can be solved numerically by the
finite element method. The convergence of the finite element method can be proved if the
spaces involved satisfy suitable approximation assumptions. An example of a finite-element
discretization is included.
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0. INTRODUCTION

The free material optimization solves one of the basic problems of structural en-
gineering, viz. to find the stiffest structure for given set of loads and boundary con-
ditions. Traditional methods of solution of this problem include variations of size
and shape variables (cf. [14]). With the invention of composites and other advanced
man-made materials it was natural to extend the variation to material properties.
The basic problem setting was originated by the works of Bensge et al. [6] and
Ringertz [19], where it was suggested to represent material properties as elements of
the unrestricted set of positive semi-definite constitutive tensors. The problem was
also studied in [1], [4], [5], [7]. More details on engineering background can be found
in 3], [6].

For simplicity of explanation the investigated structures are considered two-
dimensional. Three dimensional structures could be approached in a similar way.
The material properties of the structure are represented by a positive semi-definite

285



constitutive tensor function. It means that the material is supposed to be non-
homogeneous and anisotropic. For example, composite materials can have these
properties. The deformation of the body is described by the small strain tensor.
Free material optimization means to optimize the constitutive tensor so that the
optimal structure stands the static force load in the “easiest” way. This leads to a
saddle-point problem. In two dimensions the constitutive tensor has six independent
components. Yet the problem can be reformulated so that only the trace of the
constitutive tensor remains an independent variable. Then the mathematical for-
mulation of the optimization problem becomes similar to optimization of a variable
thickness of a plate in two dimensions. An interesting point is that the optimal
constitutive tensor can be reconstructed from its trace and from the deformation of
the studied structure. Numerical examples, which can be found e.g. in [20], show
that the norm of the constitutive tensor can be zero in some regions of the studied
domain. This situation is interpreted as void material.

Numerical solution of the saddle-point problem can be obtained by the finite ele-
ment method (cf. [10]). The implementation of the finite element discretization for
the free material optimization problem can be found e.g. in [20]. Similar situation
comes out of the optimization of a variable thickness of a two-dimensional plate
(cf. [18]), where the convergence of the finite element approximation of the variable
thickness optimization problem can be proved if suitable approximation properties
of the spaces involved are assumed.

This article contributes to the finite element analysis of the free material opti-
mization problem. This analysis is based on suitable approximation properties of
the spaces involved, too.

1. MATHEMATICAL FORMULATION

Let @ C R? be an open, bounded domain (an elastic body) with a Lipschitz
boundary I', which is divided into disjoint parts Iy, I'y, I. and I'g such that I' =
I Ty UT, UTR, the Hausdorff measure H;(I'z) = 0, Ip is nonempty, and Io, Iy, I
are open in I'. T represents the fixed boundary, I’y is freely deformable, I'. denotes
a region with a possible contact with an obstacle (cf. Fig. 1).

Deformation of the structure is described by a displacement vector u € V', where

V:={ve[H(Q)?: v|[r =0 on I},

where H'(f2) is the Sobolev space.
Let R C R? be a rigid foundation, which unilaterally supports the structure .
Frictionless contact between © and R can occur along I.. The contact is handled in a
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Figure 1. The loaded structure with unilateral contact.

local orthogonal coordinate system (&;,&2) with the origin at a fixed point of contact
such that the axis &; is tangent both to the domain 2 and to the rigid foundation R.
The contact boundaries are represented by continuous mappings v, ¢ € C([a, b]) such
that

.= {(£Iv£2): &L= 1/)(&1)’ & € (a’ b)}v
and the boundary © of the obstacle R is defined (cf. Fig. 1) as
0 = {(&1,&): & =9(&), & € (a,b)}.

The body 2 does not penetrate the foundation R. Let 7, £ be fixed unit vectors
such that their coordinates in the local coordinate system (§;,§2) are n = (1,0),
& =(0,-1). “Not penetrating the foundation R by the structure ” means that the
displacement u will satisfy the inequality

(u([t, (1)), &) < ¥(t) — ¢(t) ae.in (a,b),

where (-, ) stands for the scalar product in R?. Admissible displacement vectors are
elements of the set

K:={ueV: (u(lt,¥@)]),&) <¥(t) —o(t) ae.in (a,b)}.

K is closed and convex.

Assumption. K is not empty.
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The small strain tensor is defined as

1/ du; i .
é4(z) :=§(azj(z)+g:(z)), 'i,1=1,2, z€NN, u€EK.

Let & be the stress tensor with components ;; € L%(R), i, = 1,2.

Assumption. The system satisfies the linear Hooke’s law with the elastic-
ity 4-tensor (a tensor of the fourth order) E’, whose components E',-]-H € L*=(Q),
i,5,k,l=1,2.

Symmetry of the stress tensor implies E’ijk[ = Ejikl, i,7,k,1 =1,2. Without loss
of generality it can be assumed that Eijk[ = E’kuj, i,3,k,1 =1,2 (cf. [8] for rigorous
physical arguments). The elasticity tensor E is assumed to be positive semi-definite.
Thanks to the symmetry it is possible to rewrite Hooke’s law representing the small
strain tensor and the stress tensor by vectors and the elasticity tensor by a tensor of

the second order, i.e.

U u \T
€y = (e}‘l,egz,\/iei‘z) ,
A . \T

0 = (611,822, V2612)
Enn Eiz2  V2Ein:
E = Ea211 E2oz2  V2Ea2

V2E1211 V2E129:  2E1a12

Then Hooke’s law is equivalent to the equation

K

o(z) = E(z)ey(z) a.e.in Q.

Similar simplification can be found in [20].

Assumption. Gravity has little effect on deformation of the structure, and it
can be neglected. No other volume forces are considered.

The outer load will be described by f € [L?(T)]%.

Classical formulation of the contact problem for elastic bodies. Find
i1 € K such that

divé(z) =0 a.e.in Q,

6(z)n(z) = f(z) a.e. on [y,
(6(z)n(z),n) =0 a.e.on I,
(6(z)n(z),§) 20  ae. on L,

(6(z)n(z),£)((u(2),€) — () +¢(t)) =0  ae.on [,
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where n is the outer normal field of I',  and £ are defined above, and in the last
equation we have z = [t,¥(2)].

If we take into account the above assumptions about the elasticity tensor and the
choice of K, the standard theory of elliptic partial differential equations (cf. [16],
Sec. 3.2) confirms for coercive elasticity tensors existence of a displacement vector
field 4 € K which solves the force balance equations in a weak sense. Let A- B
denote the scalar product of matrices A and B. The elasticity tensor E is coercive if

/ &% (z) - E(z)é*(z) dx — / (f(z),u(z))dX = +o0 for [lu|ly = +o0, u € K.
Q Iy

Weak formulation of the contact problem for elastic bodies. Find 4 € K
such that the following inequality holds for each v € K:

/ &%) - B(z)é%(z) dz > / (f(@),v(z) — ii(z)) d5.
Q T,

If the elasticity tensor Eis coercive, the above weak formulation is equivalent to
the minimization of the potential energy:

18,0 1= 3 [ (B@eu(o)eu@de - [ (@), u(a)) a2
f
on K.

1.1. Optimal design of material
In the linear case, when there is no unilateral contact considered, the weak solution
has the potential energy

fi(B, 4(E)) = —3 /F (f(z),(z)) dS =: ~W(E).
!

The function W (E) represents the work of external loads done to deform the struc-
ture. The work W(E) can be understood as a measure of deformation of the struc-
ture. The aim of the material optimization is to find the stiffest structure possible.
To this end, W(FE) is minimized for the given load f over the particular choice of
material, i.e. the choice of E;; € L>(Q?), i,j = 1,2,3, where E;; are components of
the tensor E defined above. The set of admissible materials is given by physical and
engineering constraints. Symmetry and positive semi-definiteness of E(z) was dis-
cussed above. To express the stiffness of the structure, the trace of the matrix E(z)
is taken into account. Let £ > 0 be a real number. Let the stiffness be bounded in
this way:
0<tr(E(z)) <t ae.in Q.
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The engineering constraint (cost constraint), or figuratively speaking the limited
amount (V > 0) of the material used, is stated as follows:

/ tr(E(z))dz < V.
Q

Without this limitation the optimal structure would be attained by a material such
that tr(E(z)) =  in Q. This case is not interesting. Let U,q be the set of admissible
materials:

Ud := {E € [L=(N)]?*3: E(z) is symmetric and positive semi-definite,

0<tr(E(z)) < ae.inQ, / tr(E(z))dzr < V}.
Q

The case tr(E(z)) = 0 a.e. in A, where A C 2, meas(A) > 0, can be interpreted
as void material, because it implies E;j(z) = 0, ¢,j = 1,2,3, a.e. in A. Indeed, as
E(z) is positive semi-definite, E;;(z) > 0, ¢ = 1,2,3. Thus we have tr(E(z)) = 0
implies E;;(z) =0, i = 1,2,3. Let {a1,a2,a3} be the Euclidean base of R3. Then
the inequality (a; * aj, E(z)(a; £ a;)) 2 0, ¢, = 1,2, 3, implies

(1.1) 2|E,'j(:l:)| < Eﬁ(z) + Ejj(.’l:), i,j =1,2,3.

Thus finally E;j(z) =0,4,5 =1,2,3.

To obtain the minimum of W (E) means to reach the maximum of II(E, i(E)).
When the unilateral contact is taken into account, the potential energy I1(E, @(E)) is
not equal to the work of the outer forces. Still, the potential energy (sometimes also
called compliance) of the deformed structure can be taken as a measure of response
of the structure to the outer forces. The task of the material optimization is to find
Ee f]ad such that

) in II(E,u) = inf T1(E,u).
(1.2) min I(E, u) Jnax inf (E,u)

Eventually, the optimization has got the form of a max-inf problem for II(E,u) in
0,4 x K.
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2. EXISTENCE OF A SOLUTION

The existence of a solution of the problem (1.2) is proved by means of a theorem
on the existence of a saddle-point for a functional on a product of a space which is a
topological dual of a Banach space, and a reflexive space (cf. [9]), and a lemma on the
correspondence between the saddle-point problem and the max-inf problem (cf. [11]).

Let A, B be arbitrary sets. A pair (3,4) € A x B is a saddle-point of a function

L: AxB—RES £(o,5) < L£(5,3) < L(3,u) for all (o,u) € A x B.
Korn’s inequality is necessary for the existence of a solution of problem (1.2).
Lemma 2.1. There exists Cx > 0 such that

(2.1) ||eu||[2L2(Q)]3 > Cx|lu||? forall ueV.

The proof may be found e.g. in [17]. The space V (cf. Sec. 1) is chosen so that
this inequality holds.

Let Z be an arbitrary Banach space and Z* its topological dual space. Let X be
a reflexive Banach space. A general theorem of existence of a saddle-point can be
stated as follows.

Theorem 2.1. Let A C Z* be convex, bounded, weakly* sequentially compact
and non-empty, let B C X be convex, closed and non-empty. Let a function L:
A x B — R satisfy

(2.2) forall p€ A, wuw L(p,u) is convex and continuous,

(2.3) forall u€ B, g+ L(o,u) is concave and weakly* upper semi-continuous.
Let there exist pg € A such that
(2.4) L(go,u) = +o00 for |lu|]|lx = +00, u € B.

Then the function £ possesses at least one saddle-point (3,4) € A x B.

The proof can be found in [9]. The correspondence between max-inf and the
saddle-point is the subject of the following lemma.
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Lemma 2.2. Let A, B and L be the same as in Theorem 2.1. Then

(8,4) € A X B is a saddle-point of £ in A x B

< L(p,u) = inf , ) = mi
(0,4) r;lea};gBﬁ(e,U) ggggleagﬁ(e,u),

and § is the point where the maximum in the max-inf part is achieved, and 4 is the
point where the minimum in the min-max part is achieved.

The proof can be found in [11]. The theorem on the existence of a solution of the
problem (1.2) follows.

Theorem 2.2. There exists a solution of the problem (1.2). Moreover,

max inf II(E,u) = min max II(E,u).
E€Un vEK u€K Eeln

Proof. For Z = [L'(R2)]*3*3, the set Unq C Z* is convex and non-empty. The
norm in [L>®(2)]3*3 let be defined by

||E||[Lw(9)]ux3 = eszses(tzxp Uuzl?.)és |E;j(z))-

Positive semi-definiteness of E(z) implies E;;(z) 2 0,7 = 1,2, 3. Then Equation (1.1)
implies that
[ ? ess S(l)lp tl‘(E(.’L‘)) 2 2”1‘;||[Lm(9)]3x3 .
z€

Thus U,q is bounded. Let E € [L®(Q)]3*3, and let {E"}32., C U.q be a sequence
such that l'gn [|E™ — E"[Lm(m]axa =0. As

1 n
|E™ - Bljqoypes > , max |E3(@) - Bij(2)| > 5 tr(E"(@)) — tr(E(z))|

holds for a.a. z € Q, it follows that E € U.q. Thus the set U, is closed, and the
Banach theorem implies that it is weakly* sequentialiy compact, and thus it satisfies
all the conditions for the set A of Theorem 2.1. For X = V, K satisfies those for B.
From Schwartz’s inequality and continuity of the trace operator in V' we obtain

- 1 2
[I(E,u)| < §||E||[me)]3xs||ul|t, + | fllic2apCrllullv,
where C7 is the norm of the trace operator
T: V= [LX(Ty)), T(u):=ulr,.
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Hence the mapping u — II(E, ) is continuous. It is also convex, thus the assump-
tion (2.2) is satisfied for II. The linear mapping E + II(E,u) is continuous, too.
Thus the set {(E,y) € Uaa X R; y < II(E,u)} is closed and convex for all u € V.
It is a consequence of the Hahn-Banach theorem that this set is also weakly* closed,
thus the mapping E +— II(E,u) is weakly* upper semi-continuous (cf. [11]), and the
assumption (2.3) is satisfied for II. Let

t
Eo = 0
0

S &+ O
- O O

where

Then Ey € U,q, and

N 1.
I(Eo,u) > §t||eu||[2L2(n)]3 = I fllizz@pyCrllullv.

Korn’s inequality (2.1) gives

R 1 .
I1(Eo,u) > EClct""ll%/ = flliz2@zCrllullv,

and thus the condition (2.4) is valid, too. Theorem 2.1 establishes the existence
of a saddle-point, which implies the existence of a solution of the problem (1.2) by
Lemma 2.2. Lemma 2.2 gives also the remaining statement of this theorem. a

3. SIMPLIFICATION OF THE PROBLEM

To compute the matrix E directly would mean to work with its six unknown
components. It turns out that this complication is avoidable, and the problem can
be solved by finding one unknown function which can give all six unknown material
variables. Theorem 2.2 will be a crucial result for the following sections. Some ideas
of this section can be found in [20].

Let

(3.1) Uag := {Q € L>*(N): / o(x)dz <V, 0< o(z) <t ae. in Q},
Q
where V' and £ are the same as in Sec. 1.1 above. And let for fixed g € Uaq
v, ={Ee€ Uaa: tr(E(z)) = o(z) a.e.in Q}.

The first step is the change of max and inf and the split of max.
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Proposition 3.1.

max inf I1(E,u)

EcU,4 vEK
= min mgX{ / max 3 (B@ena),eulo)) do - [ I(f(x),u(x))dﬁ}-

Proof. From Theorem 2.2 it follows that max and inf can be interchanged and

min can be written instead of inf; moreover, the set equality Ung = U UZ, implies
0€U.aa
that the max can be split so that

max inf TI(E,u) = min max max II(E,u).
E€U.q ueK u€K 0€U.a E€UY,

The last modification ol putting b{n%)(g behind fQ is possible, because the definition
€U

of UZ, involves only local properties of E. O

The following general properties of the trace of a matrix will be used in the sim-
plification calculations.

Lemma 3.1. For A,B € R¥*N and a € RN we have
(i) tr(A+ B) = tr(A) + tr(B);
(ii) tr(ABT) = Z A;i;Bij;

i,j=1

(iii) tr(AeaT) = (Aa,a);
iv) tr(aa”) = (a,a);
(v) tr(AB) = tr(BA).

All equalities are consequences of straightforward calculations.

The following calculations lead to direct evaluation of

max (E(z)eu(z), eu(z)) a.e.in Q.
ad

Let G(z) := e,(z)el (z) , let pi(z), i = 1,2,3, be eigenvalues of G(z), and let s;(z),
i = 1,2, 3, be orthonormal eigenvectors of G(z) such that

G(z)si(z) = pi(z)si(z), i=1,2,3.

G(x) is a rank-1 matrix, and it follows immediately from its definition that p;(z) =
lew(z)|?, s1(z) = eu(z)/|ew(z)|, p2(z) = 0, p3(z) = 0 a.e. in Q. Existence of or-
thonormal eigenvectors s;(z), ¢ = 1,2,3, follows from the symmetry of the real
matrix G(z). Equality (iii) of Lemma 3.1 implies that

(E(z)eu(z), eu()) = tr(E(2)G(2))-
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The simplification is based on the following estimate.

Lemma 3.2. The following inequality holds:

tr(E(2)G(2)) < tr(E(z))]eu ().

Proof. Let S(z) := (s1(z), s2(z), s3(z)) (the columns of S(z) are the eigenvec-
tors of G(z)). The eigenvectors s;(z), ¢ = 1,2,3, of G(z) are orthonormal; therefore

lex(z)]2 0 O
G(z) = S(z) ( 0 0 0) S~1(x).
0 00

Then by substitution

lew(z)? 0 O
tr(E(z)G(z)) = tr (E(:z:)S(z) ( 0 0 O) S“l(z)) .
0 00

The equality (v) of Lemma 3.1 gives
leu(z)? 0 0
tr(E(z)G(z)) = tr (S“l(z)E(a:)S(x) ( 0 0 0)) .
0 00
Let ES(z) := S~!(z)E(z)S(z), then by virtue of the equality (ii) of Lemma 3.1
tr(E(z)G(z)) = Efi (2)|eu(z)]*.

As S71(z) = ST(z) and E(z) is positive semi-definite, we have E3(z) > 0,i = 1,2,3,

and
N

tr(E(z)G(z)) < Y Ei(z)leu(z)>-

i=1

Moreover, the equality (v) of Lemma 3.1 implies
tr(E(z)) = tr(E%()),

which is the last step to complete the proof. (]
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It can be concluded from the properties of ES(z), as they were mentioned in
the course of the proof of Lemma 3.2, that if |e,(z)] # O, then tr(E(z)G(z)) =
tr(E(z))|ew(2)|? if and only if E5(z) = 0, i = 2,3. Then everything is ready for
claiming that

S 3 (E()ea(o), eu(z)) = —o(z)leu(w)|2-

Maximum is achieved, for example, when
o(z) 0 0
ESz)=( 0 o0 0).
0 00

(3.2) E() = o(a)s1 (2)s7 (x) = I—%eumeﬂz).

Then

Symmetry and positive semi-definiteness of E(x) ensures also that this maximizer is
unique. Indeed, the most general form of ES(x) could be

o(z) d(z) b(z)
ES@)=(d@) 0 c)],
b(z) c(z) O
where d,b,c € L>(12). Let {a1,az,a3} be the Euclidean base of R3. It follows that
(a2 £ a3, ES(z)(ag £ a3)) 2 0= c(z) =0 a.e.in Q.

Then the eigenvalues are

o(z) + /@7 + @ + 6@

A1 =0, Ay3= 5

Positive semi-definiteness of E°(z) now confirms that
d(z) =b(z) =0 ae. in Q.
The simplification is eventually expressed by the equation

max inf H(E u) = mm max II(p,u),
Ee€U,q v€K €K 9€U,q
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where

o = [ se@leu@l e~ [ (f(e).u(e))a

(cf. Sec. 1.1 and Equation (3.1) for definitions of U,q and U,a).
The free material optimization problem (1.2) is reduced to the problem

Find g € U,q and @ € K such that

3 (g, ) = minT1(g,u) = max inf TI(e, u)

' = T(p, @) = mi (e, u).

Inax II(p, &) = min max II(e,u)

Also II, U,q, and K satisfy the assumptions of Theorem 2.1, hence according to
Lemma 2.2 the solution (g, ) of the problem (3.3) can be found as a saddle-point
of II. The constitutive tensor E which solves the problem (1.2) can be reconstructed
by means of Equation (3.2).

4. GALERKIN APPROXIMATION AND ITS CONVERGENCE

The discretization of the problem (3.3) is a standard procedure. It will be solved
as a saddle-point problem. This treatment reminds considerably the saddle-point
problem which arises from topology optimization done by variable thickness of a
plate. The discretization is done similarly as in [18].

Let the involved sets be approximated as follows. Let h > 0 be a mesh parameter.
For each h let Uy, V}, be finite-dimensional spaces such that V, C V (cf. Sec. 1), and
Un C L>(R2). Further let K, Uaq,» be closed, convex, and non-empty sets satisfying
Ky C V, and Upg,p C Uy,

4.1. Abstract assumptions
(i) for each positive sufficiently small h let Ung,n C Usq;

(ii) for each p € U,q there exists a sequence {gn}r>0, 0n € Uaq,n such that g, — o
for h - 0+ a.e. in Q ;

(iii) for each sequence {vp}r>0, vn € K, weakly convergent in V to v € V, let
vE K,

(iv) for each v € K there exists a sequence {vk}r>0, vn € Kp, which converges to v
in V;

(v) there are constants M > 0, N > 0 and a > 0 and a set of coercive mappings
{en}r>0, 0n € Uaq,n such that for each h >0and u e V

(en,u) 2 Mlully — N.
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By (i) it is assumed that U,q, is the inner approximation of U,q. On the other
hand, usually only an external approximation K} of K is available. Therefore the
assumptions (iii) and (iv) are necessary, and they w :il not be easy to acquire. Uniform
coercivity, as stated in (v), will be needed for the existence of discrete solutions and
later for the proof of existence of a convergent subsequence of discrete solutions.

4.2. Continuity of potential energy

Lemma 4.1. Let assumptions 4.1 be satisfied. Let sequences {on}r>0, On €
Uaq,r and {vp}r>0, v € Vi converge so that

on =% for h =50+ in L*(Q) and v, v for h— 0+ in V,
where p € U,q and v € V. Then

(gn,vn) — (g,v) for h — 0+.

The proof can be found in [18], where a similar lemma is used for the analysis of
variable thickness plate optimization problem. Let

Ap(v,w) :=./Qg(:1:)(e,,(x),ew(z))dx.

Lemma 4.2. Let assumptions 4.1 be satisfied. Let sequences {gn}r>0, On €
Uad,h; {vr}r>0, Un € Vi, converge so that

on =0 for h—>0+ ae.in Q@ and v, —v for h—0+ in V,
where p € U,q, and v € V. Then for eachw € V

hl—ig)l'i- Ae;. (vhv w) = Ae(vv w),

lim inf (on,vn) > (e, v).

Proof. See [18] for the proof.

4.3. Convergence of the solutions of the discretized problem
Fix h > 0 sufficiently small. To solve the discretization of the problem (3.3) is to

find on € Uaq,n and 4, € K, such that
(4.1) I(on,tn) < TI(@h,1n) < I1(@h,un) for each on € Usqn and up € Kp.

Existence of a solution of the problem (4.1) is formulated in the following theorem.
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Theorem 4.1. Let assumption 4.1 (v) hold. Then the discretized problem (4.1)
has a solution for each sufficiently small h > 0.

Proof. The set U,q,n satisfies conditions assumed about A in Theorem 2.1,
Vi satisfies those for B. The mapping II satisfies conditions (2.2) and (2.3) con-
cerning the functional £ (cf. the proof of Theorem 2.2). As 4.1(v) is assumed, the
condition (2.4) is valid, too. Hence the proof is completed by Theorem 2.1. (]

The convergence of the discrete solutions is established by the following theorem.
Theorem 4.2. Let assumptions 4.1 be satisfied and let {(gn,%r)}r>0 be a

sequence of solutions of the discretized problem (4.1). Then there is a subsequence
{(8n',@n)}n>0 C {(&n,tn)}r>0 and elements g € U,q and @ € K such that

on—*0 for ' - 0+ in L>°(Q) and iy —a@ for h' =0+ in V.
Moreover, the couple (g,1) solves the problem (3.9), and

(gn,un) — M(@,4) for h' — 0+.

Proof. Step 1. The sequence {g}r>0 is bounded by the definition of U,4 and
assumption 4.1 (i); therefore as L>(2) is the dual space of L(2), Alaoglu Theorem
confirms the existence of a subsequence {gx }n>0 C {Br}r>0 and a mapping g €
L>(R) such that

o =% @ for K" = 0+ in L*=(N).

U.a is weakly* closed, thus g € U,g.

Step 2. As K is considered non-empty (cf. Sec. 1), assumption 4.1 (iv) guaran-
tees the existence of a bounded sequence {On}r>0, Un € Kh, ||tn]lv < C. Elements
of Ua,q,n are bounded by the definition of U,q (cf. 4.1 (i)), hence there exists a con-
stant C; such that for all sufficiently small A > 0

(g, @n) < TI(@n,0n) < C1.
Step 3. Let the set {gn}r>0 satisfy assumption 4.1 (v). Inequality
Ml@n|ly — N < T1(@p, ) < T(@h, @n) < Cr,
following from the fact that (g, @) solves the problem (4.1), the assumption 4.1 (v),

and step 2 give immediately the boundedness of {i,}r>o in V. The space V is
reflexive, hence the sequence {ix}s>0 as well as its subsequence {@n }r >0, Where
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h'" means the same choice of indexes as in step 1, is weakly sequentially compact, in
the sense that there exists a subsequence {@n }rv>0 C {@n»}r>0 and a mapping
i € V such that

apr =4 for A" = 0+ in V.

Moreover, the assumption 4.1 (iii) ensures that @ € K.
Step 4. The inequality presented in step 3 guarantees also boundedness of the
potential energy
=N < II(gpn, iinn) < Ch,

where {II(gh,@n")}n>0 is a subsequence of {II(gh,@r)}r>0, Where the choice of
indexes h” is the same as in step 3. Then the Bolzano-Weierstrass theorem yields
the existence of a real number 8 and a convergent subsequence {II(gn,%@n’)}n>0 C
{I1(8n @) }nv>o such that

(gn,an) = B for h' — 0+.

Step 5. Let (0,u) € Usq X K be arbitrary. Then 4.1 (ii) implies the existence of a
sequence {gn’ }r'>0, On' € Uaq,n’ such that

o = o for ¥ = 0+ ae.in Q,
and 4.1 (iv) leads to the existence of a sequence {un}n>0, un' € Kxs such that
up = u for ¥ 50+ in V

(indexes h' were chosen coherently with step 4). The fact that (g, @s’) solves the
problem (4.1) gives

(on, tinr) < T(Bnr, tnr) < TH(@nr, unr)-
Lemma 4.1 and step 1 imply
(Gnr, un) — I(g,u) for A’ — 0+.
Lemma 4.2 and step 3 give
(e, @) < %}I_l’l(gf (on , nr)-
The two above facts together with step 4 imply
I(e,2) < B <(g,u) foreach (o,u) € Uag x K.
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The above relation must hold for © = % and also for ¢ = 9. These two choices yield
(o, ) < 1(g, @) < I(3,u).
This must be also valid when u = % and simultaneously ¢ = g. This leads to

I(¢,u) = B.

5. EXAMPLE OF DISCRETIZATION

The aim of this section is to describe one of the possible discretizations which would
satisfy assumptions 4.1. It is constructed for implementing on rectangular domains.
The Sobolev space H!(Q2) is approximated by Q; elements. The discretization is
similar to that which is presented in [18]. In that article the use of the discretization
is demonstrated on triangles.

5.1. Discretization

Assumption. The domain 2 can be divided into m squares 2; which are all of
the same size and the sides of which are parallel to the chosen coordinate system.

(The standard iso-parametric concept can be used otherwise; cf. [10].) Let n be
the number of distinct vertices (nodes of rectangulation) of Q;,7 =1,...,m. Let A;,
i = 1,...,n., be the contact nodes, i.e. distinct vertices of Q;, i = 1,...,m, lying
on T, (cf. Sec. 1).

Assumption. There exists a partition of [a,b], namely a = t; < t2 < ... <
tn.. = bsuch that A; = (t:,%(¢:)), ¢ = 1,...,ncn, in the local coordinate system
(§1,&2)-

Let {R1r}n>0 be a regular family of rectangulations (cf. [10]) of 2 (each of them
formed by squares ;). For each R}, let

Vi = {vn € [C(Q))?: vnla, € [Q:1(2:)]> for each Q; € Ry, vy € V},
Uy := {Qh € Loo(ﬂ) thgi (S Qo(ﬂ,) for each 2; € Rh}

(Q:(€2;) is the space of bilinear polynomials in Q;, Qo(€2;) denotes constant functions
in Q;, cf. [10]),

K = {vn € Vi (vn(A:),&(A:)) < ¥(t:) — o(ts), foreach i=1,...,n.,}
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(t; is a suitable & -coordinate in the local (£1,&) coordinate system such that
(ti,¥(t:)) = Ai, © = 1,...,Ncq, cf. Sec. 1 and Sec. 5.1). It is readily seen that in
general K, is an external approximation of K. Further let

Uad,h := {Qh €Up: 0< o <t ae. inQ, / on(z)dz < V} =U,q NU,,
Q

(cf. Sec. 3). The discretization of the problem (3.3) is:

Find pn € Uaq,n and @y € Kp, such that
II(on,un) = min II(gn,up) = max inf II(on,u
(5 1) (Qh h) up€Kp (Qh h) oh€Uad,h un €Ky (Qh h)

= max I(gnp,%r) = min max I(gn,us).
@h€Uaa,n ’ up€Kp 0n€Vaa,n ( ’ )

According to Lemma 2.2 the solution of this discrete problem solves also the discrete
problem (4.1).

5.2. Verification of assumptions 4.1
The following lemma, is important for the validity of assumption 4.1 (iii).

Lemma 5.1. Let f be a continuous function defined in [a,b], a,b € R, a < b.
Let D,: a = t§ < t} < ... <t = b be a partition of [a,b] whose norm tends to
zero asn — +o0o. Let {1,}52, be a sequence of piecewise linear continuous functions
such that

(") = f(t?) for i=0,...,n, and for all n.

Let
T» 7 for n = oo a.e. in [a,b).

Then
72> f a.e. in [a,b]

The proof can be found in [13]. For the sake of simplicity, let the coordinate
system (&1,&2) coincide with the Cartesian system (z1,z2). Then £ = (0,—1), and
the non-penetrating condition is simplified to the inequality

u(21,9(21)) 2 @(z1) —P(1) (cf. Sec. 1),
and thus

K ={v € V: v2(z1,%(21)) = p(z1) — ¥(z1), for all 7 € [a,b]},
Kh = {vh € Vh: v2,h(ti1¢(ti)) ? ‘P(t:) - ¢(t‘i)7 for each i = ly' . 7ncn}

(cf. Sec. 1).
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The verification of the assumption 4.1 (iv) is based on the next lemma on smooth
approximations in K.

Lemma 5.2. Let the coordinate system (&;,&;) coincide with the Cartesian
system (z,,z2), as described above. Let a continuous function ¢: [a,b] = R have
an extension ¢: R — R such that

(l) ¢|[a,b] =@
(ii) @ is sufficiently smooth;
(iii) there exists a neighborhood Ur, D Ty such that Ur, C RC, where

RC := {(z1,22) € R%: 25 > (1), 71 € R}.
Then for any v € K there exists a sequence {Us }s—0+, U5 € KN[C® (ﬁ)]2 such that

vs >v for 6 >0+ in V.

Proof. The proof can be found in [18].

Proposition 5.1. Let Vj, Uy, Ki, and U,q » be defined as described in Sec. 5.1.
Let the assumptions of Lemma 5.2 be satisfied. Then the assumptions 4.1 are satis-
fied.

Proof. Step 1. The assumption 4.1 (i) is satisfied by the choice of Uaq .
Step 2. For a given g € Uy let

I

1 .
0;: m[)lg(z)d$ z—l,...,m

and
m
on =Y oixa:,
=1

where xq, is the characteristic function of a square Q; € R, (cf. Sec. 5.1). It
is straightforward from the definition that g, € U,qn. The validity of assump-
tion 4.1 (ii) then follows from Lebesgue’s point theorem (cf. [12]).

Step 3. Let the sequence {v }n>0, vn € K}, converge weakly in V. The trace oper-
ator T: V — [L?(I;)]? is compact; therefore there exists a subsequence {vh }n'>0 C
{vh}h>o such that

v v for B = 0+ in [L*(TL)]%.
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For every sequence converging in [L?(I.)]? there exists a subsequence which converges
a.e. in I'.. Thus there is a subsequence {vn» }n#>0 C {Vn }ar>0 such that in the local
coordinate system (&;,&2)

o (61, 9(E0)]) = v(&,B(E)]) for A" = 0+ ae.in [a,b].

Further, continuity of the scalar product gives that

(vnr ([61,9(&0)]), &) = (v([&1,9(&)]),€) for h" — 0+ a.e. in [a,d)].

Because vy € Kpn, the mapping & +— (vp ([€1,%(£1)]), ) is piecewise linear in [a, b].
Lemma 5.1 used for {—(vn»([€1,%(&1)]),€)}n>0 as the sequence {7,}32, and for
 — 1 as the continuous function f (cf. Sec. 1) completes successfully the verification
of assumption 4.1 (iii).

Step 4. Let v be an arbitrary element of K. According to Lemma 5.2 there exists
a sequence {#s}s-0+, 95 € K N [C®(R))? such that

s v for 6 50+ in V.

Classical approximation properties of V}, supply a piecewise bilinear interpolant
mhUs € Kp such that

mpos > U5 in V for h = 0+ for all 95 € KN [C°°(ﬁ)]2.

Moreover, thanks to the boundedness of the sequence {¥s}s— 0+, the convergence of
{{mh0s}r>0}s—0+ is uniform in h. Then the sequence {vi}nr>0, va := mh1) satisfies
assumption 4.1 (iv).

Step 5. Let

On := min —V———,f , in Q for each h > 0.
meas()

The set {or}r>0 together with constants
1 1 ) v ~
a= 2, N = '2_€”f”[2L2(Ff)]2 and M = 5 (CK mln{m,t} - ECT)

verifies assumption 4.1 (v) (cf. Sec. 1.1 for definitions of V' and ). Cx comes from
Korn’s inequality (2.1). Cr is the norm of the trace operator

T:V > [L2(I‘f)]2, Tu= ’u,h*,.
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And ¢ is an arbitrary real number such that

Cx . Vv
O0<e< C_Tmm{meas(ﬂ)’t}'

Correctness of the estimate in assumption 4.1 (v) is based on Korn’s inequality and
Young’s inequality. Derivation of the estimate involves similar ideas to those used in
the proof of Theorem 2.2. O

6. NUMERICAL SOLUTION

Numerical solution of the problem (5.1) leads to a so-called semi-definite pro-
gram (cf. [15]). It can be solved by modern interior point polynomial time methods
(cf. [15]), as well as by penalty/barrier multipliers method (cf. [2]).

An example computed by penalty/barrier multipliers method is presented in
Figs. 2-4. A similar example can be found in [14, p. 325], where variable sheet thick-
ness approach is used, and also in [2], where free material optimization approach is
used.

The domain {2 is a square fixed at the top. It is pulled at the bottom by a constant
downward lineload traction. It is supported by a rigid foundation consisting of two
parts located symmetrically around the vertical axis of symmetry. The function that
determines the boundary of the left part of the obstacle is defined as ¢, (z;) = —6.4z}
in the Cartesian system with the origin at the lower left corner of the domain 2. The
function that determines the boundary of the right part of the obstacle is defined
symmetrically (cf. Fig. 2).

The calculated values of the function g, (cf. Sec. 5.1) for the mesh 30 x 30 are
shown in Fig. 3. The values of g are depicted by gradations of grey, i.e. full black
corresponds to high values of g, white corresponds to g5 equal zero, which can be
interpreted as void material (cf. Sec. 1.1). Fig. 4 presents directions and magnitudes
of principal stresses in the finite elements.

The interested reader can find more on numerical realization of the free material
optimization in [2], [15], [20].

Acknowledgments.

I would like to thank Jaroslav Haslinger, Michal Koé&vara and Tomas$ Roubi&ek for
their collaboration and helpful remarks.

305




25|

LLLLL Z

L'y Q L'y

NN

Figure 2. Boundary conditions.

ois] ~

LRI

1A ixix

. i
x

irgix
S

Jafif e B
fa < i

V
i

'«' -
L.
7

5

Figure 3. Values of the function gp. Figure 4. Principal stress directions and
magnitudes.

References

[1] G. Allaire, S. Aubry, and F. Jouve: Eigenfrequency optimization in optimal design.
Comput. Methods Appl. Mech. Engrg. 190 (2001), 3565-3579.

[2] A. Ben-Tal, M. Koévara, A. Nemirovski, and J. Zowe: Free material optimization via
semidefinite programming: the multi-load case with contact conditions. SIAM J. Optim.
9 (1999), 813-832.

[3] M. P. Bendspe: Optimization of Structural Topology, Shape and Material. Springer-Ver-
lag, Heidelberg-Berlin, 1995.

[4] M. P. Bendsge, A. Diaz Optimization of material properties for Mindlin plate design.
Structural Optimization 6 (1993), 268-270.

306



[5] M.P. Bendsge, A. Diaz, R. Lipton, and J. E. Taylor: Optimal design of material prop-
erties and material distribution for multiple loading conditions. Internat. J. Numer.
Methods Engrg. 38 (1995), 1149-1170.

[6] M. P. Bendsge, J. M. Guades, R. B. Haber, P. Pedersen and J. E. Taylor: An analytical
model to predict optimal material properties in the context of optimal structural design.
J. Appl. Mech. 61 (1994), 930-937.

[7] M. P. Bendsge, J. M. Guades, S. Plazton, and J. E. Taylor: Optimization of structures
and material properties for solids composed of softening material. Int. J. Solids Struct.
33 (1995), 1179-1813.

[8] M. Brdicka: Mechanics of Continuum. NCSAV, Praha, 1959. (In Czech.)

[9] J. Cea: Lectures on Optimization. Springer-Verlag, Berlin-Heidelberg-New York, 1978.

[10] P.G. Ciarlet: The Finite Element Method for Elliptic Problems. North-Holland, Ams-
terdam-New York-Oxford, 1978.

[11] I. Ekeland, R. Temam: Convex Analysis and Variational Problems. North-Holland, Am-
sterdam-Oxford, 1976.

[12] L.C. Evans, R.F. Garpiery: Measure Theory and Fine Properties of Functions.
CRC Press, London, 1992.

[13] J. Haslinger: Finite element analysis for unilateral problems with obstacles on the
boundary. Apl. Mat. 22 (1977), 180-188.

[14] J. Haslinger, P. Neittaanmdiki: Finite Element Approximation for Optimal Shape, Ma-
terial, and Topology Design. John Wiley & Sons, Chichester, 1996.

[15]) M. Koévara, J. Zowe: Free Material Optimization. Doc. Math. J. DMV, Extra Volume
ICM III (1998), 707-716.

[16] J. Necas: Les méthodes directes en théorie des équations elliptiques. Academia, Praha,
1967.

[17] J. Neéas, I. Hlavdéek: Mathematical Theory of Elastic and Elasto-Plastic Bodies: An
Introduction. Elsevier, Amsterdam-Oxford-New York, 1981.

[18] J. Petersson, J. Haslinger: An approximation theory for optimum sheet in unilateral
contact. Quart. Appl. Math. 56 (1998), 309-325.

[19] U. Ringertz On finding the optimal distribution of material properties. Structural Op-
timization 5 (1993), 265-267.

[20] J. Zowe, M. Koévara, and M. P. Bendsge: Free material optimization via mathematical
programming. Math. Program. Series B 79 (1997), 445-466.

Author’s address: J. Mach, Mathematical Institute, Charles University, Sokolovska 83,
186 75 Praha 8, Czech Republic, e-mail:mach@karlin.mff.cuni.cz.

307




49 (2004) APPLICATIONS OF MATHEMATICS No. 4, 285-307

FINITE ELEMENT ANALYSIS OF FREE MATERIAL
OPTIMIZATION PROBLEM

JAN MACH, Praha

(Received May 2, 2002, in revised version March 31, 2003)

Abstract. Free material optimization solves an important problem of structural engineer-
ing, i.e. to find the stiffest structure for given loads and boundary conditions. Its mathe-
matical formulation leads to a saddle-point problem. It can be solved numerically by the
finite element method. The convergence of the finite element method can be proved if the
spaces involved satisfy suitable approximation assumptions. An example of a finite-element
discretization is included.
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0. INTRODUCTION

The free material optimization solves one of the basic problems of structural en-
gineering, viz. to find the stiffest structure for given set of loads and boundary con-
ditions. Traditional methods of solution of this problem include variations of size
and shape variables (cf. [14]). With the invention of composites and other advanced
man-made materials it was natural to extend the variation to material properties.
The basic problem setting was originated by the works of Bensge et al. [6] and
Ringertz [19], where it was suggested to represent material properties as elements of
the unrestricted set of positive semi-definite constitutive tensors. The problem was
also studied in [1], [4], [5], [7]. More details on engineering background can be found
in [3], [6].

For simplicity of explanation the investigated structures are considered two-
dimensional. Three dimensional structures could be approached in a similar way.
The material properties of the structure are represented by a positive semi-definite
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constitutive tensor function. It means that the material is supposed to be non-
homogeneous and anisotropic. For example, composite materials can have these
properties. The deformation of the body is described by the small strain tensor.
Free material optimization means to optimize the constitutive tensor so that the
optimal structure stands the static force load in the “easiest” way. This leads to a
saddle-point problem. In two dimensions the constitutive tensor has six independent
components. Yet the problem can be reformulated so that only the trace of the
constitutive tensor remains an independent variable. Then the mathematical for-
mulation of the optimization problem becomes similar to optimization of a variable
thickness of a plate in two dimensions. An interesting point is that the optimal
constitutive tensor can be reconstructed from its trace and from the deformation of
the studied structure. Numerical examples, which can be found e.g. in [20], show
that the norm of the constitutive tensor can be zero in some regions of the studied
domain. This situation is interpreted as void material.

Numerical solution of the saddle-point problem can be obtained by the finite ele-
ment method (cf. [10]). The implementation of the finite element discretization for
the free material optimization problem can be found e.g. in [20]. Similar situation
comes out of the optimization of a variable thickness of a two-dimensional plate
(cf. [18]), where the convergence of the finite element approximation of the variable
thickness optimization problem can be proved if suitable approximation properties
of the spaces involved are assumed.

This article contributes to the finite element analysis of the free material opti-
mization problem. This analysis is based on suitable approximation properties of
the spaces involved, too.

1. MATHEMATICAL FORMULATION

Let Q C R? be an open, bounded domain (an elastic body) with a Lipschitz
boundary I', which is divided into disjoint parts I'y, I'y, I, and I'r such that I' =
Ih UTy UT, UTg, the Hausdorff measure H;(I'r) = 0, I is nonempty, and Iy, Iy, I
are open in I'. Ty represents the fixed boundary, I'y is freely deformable, I'. denotes
a region with a possible contact with an obstacle (cf. Fig. 1).

Deformation of the structure is described by a displacement vector u € V, where

Vi={ve [HY(Q)]*: v[r =0 on Iy},

where H'() is the Sobolev space.
Let R C R? be a rigid foundation, which unilaterally supports the structure (.
Frictionless contact between 2 and R can occur along I'.. The contact is handled in a
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Figure 1. The loaded structure with unilateral contact.

local orthogonal coordinate system (€7, £2) with the origin at a fixed point of contact
such that the axis &; is tangent both to the domain 2 and to the rigid foundation R.
The contact boundaries are represented by continuous mappings 1, ¢ € C([a, b]) such
that

I.= {(51752): &2 = 1/}(51)7 SRS (avb)}v

and the boundary © of the obstacle R is defined (cf. Fig. 1) as

O ={(£1,&): & =9(&), & € (ab)}.

The body €2 does not penetrate the foundation R. Let 7, £ be fixed unit vectors
such that their coordinates in the local coordinate system (&1,&2) are n = (1,0),
& =(0,-1). “Not penetrating the foundation R by the structure 2” means that the
displacement u will satisfy the inequality

(u([t, p(®)]), &) <Y(t) —¢(t) ae. in (a,b),

where (-, ) stands for the scalar product in R?. Admissible displacement vectors are
elements of the set

K= {ueV: (ullt, b(®)).€) <o) — o) ace.in (a,b)}.

K is closed and convex.

Assumption. K is not empty.
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The small strain tensor is defined as

A L 1 6’[1,1 an .o
5@ =5 (5@ + Fw). =12 a0 ek

Let & be the stress tensor with components 6;; € L*(Q), i,j = 1,2.

Assumption. The system satisfies the linear Hooke’s law with the elastic-
ity 4-tensor (a tensor of the fourth order) F, whose components Ejjx € L>(9),
i,5,k,l=1,2.

Symmetry of the stress tensor implies Eijkl = E’jikl, i,7,k,l =1,2. Without loss
of generality it can be assumed that Ejjy = E’klij, i,7,k,1 =1,2 (cf. [8] for rigorous
physical arguments). The elasticity tensor E is assumed to be positive semi-definite.
Thanks to the symmetry it is possible to rewrite Hooke’s law representing the small
strain tensor and the stress tensor by vectors and the elasticity tensor by a tensor of
the second order, i.e.

AU AU su T

€y = (611,622, \/5612) ,

A . . \T

g = (0117 022, \/50-12) 9
Eiinn Ei2s V2Fi110
E = Es11 Fasoo  V2E210
V2E1211 V2E1200  2E1919

Then Hooke’s law is equivalent to the equation
o(x) = E(x)e,(x) ae. in Q.

Similar simplification can be found in [20].

Assumption. Gravity has little effect on deformation of the structure, and it
can be neglected. No other volume forces are considered.

The outer load will be described by f € [L?(If)]?.

Classical formulation of the contact problem for elastic bodies. Find
4 € K such that

divé(z) =0 a.e. in €,

G(z)n(z) = f(z) a.e.on Iy,

(6(x)n(x),n) =0 a.e. on I,

(6(x)n(x),&) 20 a.e. on I,

{o(z)n(x), )((u(x), &) —(t) +¢(t) =0 ae on I,
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where n is the outer normal field of I',  and £ are defined above, and in the last
equation we have x = [t, ¢ (¢)].

If we take into account the above assumptions about the elasticity tensor and the
choice of K, the standard theory of elliptic partial differential equations (cf. [16],
Sec. 3.2) confirms for coercive elasticity tensors existence of a displacement vector
field @ € K which solves the force balance equations in a weak sense. Let A - B
denote the scalar product of matrices A and B. The elasticity tensor FE is coercive if

/ e (z) - E(x)é"(z) dx —/ (f(z),u(x))dE — +o00 for |Ju|ly — +o0, u € K.
Q Ty

Weak formulation of the contact problem for elastic bodies. Find @ € K
such that the following inequality holds for each v € K:

[ & @ E@et@de > [ () v(o) i) s,
Q

Ly

If the elasticity tensor E is coercive, the above weak formulation is equivalent to
the minimization of the potential energy:

f1(E,0) = [ (B enw)do— [ (@) uw)as

Ty

on K.

1.1. Optimal design of material
In the linear case, when there is no unilateral contact considered, the weak solution
has the potential energy

I(E,4(E)) = Jfr (f(2),a(z))dS = —W(E).

2
The function W (E) represents the work of external loads done to deform the struc-
ture. The work W (E) can be understood as a measure of deformation of the struc-
ture. The aim of the material optimization is to find the stiffest structure possible.
To this end, W(FE) is minimized for the given load f over the particular choice of
material, i.e. the choice of E;; € L*(Q), ,j = 1,2, 3, where E;; are components of
the tensor F defined above. The set of admissible materials is given by physical and
engineering constraints. Symmetry and positive semi-definiteness of E(z) was dis-
cussed above. To express the stiffness of the structure, the trace of the matrix E(x)
is taken into account. Let ¢ > 0 be a real number. Let the stiffness be bounded in
this way:
0<tr(E(z)) <t ae. in Q.
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The engineering constraint (cost constraint), or figuratively speaking the limited
amount (V > 0) of the material used, is stated as follows:

/ tr(E(z))dz < V.
Q

Without this limitation the optimal structure would be attained by a material such
that tr(E(z)) =  in Q. This case is not interesting. Let U,q be the set of admissible

materials:

Uad := {E € [L>=(Q)]**3: E(z) is symmetric and positive semi-definite,

0<tr(E(z)) <t ae. in, / tr(E(z))dz < V}.
Q

The case tr(E(z)) = 0 a.e. in A, where A C €2, meas(4) > 0, can be interpreted
as void material, because it implies E;;(z) = 0, i,j = 1,2,3, a.e. in A. Indeed, as
E(z) is positive semi-definite, E;;(z) > 0, ¢ = 1,2,3. Thus we have tr(F(z)) = 0
implies E;;(z) = 0, i = 1,2,3. Let {ai,az,a3} be the Euclidean base of R®. Then
the inequality (a; + a;j, E(z)(a; £ a;)) > 0, ¢,j =1, 2,3, implies

(1.1) 2|E;j(z)| < Bii(z) + Ej(z), 4,5 =1,2,3.

Thus finally E;;(x) =0, 4,5 =1,2,3.

To obtain the minimum of W (E) means to reach the maximum of II(E,@(E)).
When the unilateral contact is taken into account, the potential energy II(E, @(E)) is
not equal to the work of the outer forces. Still, the potential energy (sometimes also
called compliance) of the deformed structure can be taken as a measure of response
of the structure to the outer forces. The task of the material optimization is to find
E € U,q such that

(1.2) min [1(E, ) = max inf II(E,u).
ueK EcU,q vEK

Eventually, the optimization has got the form of a max-inf problem for f[(E, u) in

Uad x K.
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2. EXISTENCE OF A SOLUTION

The existence of a solution of the problem (1.2) is proved by means of a theorem
on the existence of a saddle-point for a functional on a product of a space which is a
topological dual of a Banach space, and a reflexive space (cf. [9]), and a lemma on the
correspondence between the saddle-point problem and the max-inf problem (cf. [11]).

Let A, B be arbitrary sets. A pair (g,%) € A x B is a saddle-point of a function

L: AxB—REL £(o,4) < £(6,7) < L(5,u) for all (o,u) € Ax B.

Korn’s inequality is necessary for the existence of a solution of problem (1.2).
Lemma 2.1. There exists Cx > 0 such that

(2.1) ||€uH[2L2(Q)]3 > Cx||lul|3 for all ue V.

The proof may be found e.g. in [17]. The space V (cf. Sec. 1) is chosen so that
this inequality holds.

Let Z be an arbitrary Banach space and Z* its topological dual space. Let X be
a reflexive Banach space. A general theorem of existence of a saddle-point can be
stated as follows.

Theorem 2.1. Let A C Z* be convex, bounded, weakly* sequentially compact
and non-empty, let B C X be convex, closed and non-empty. Let a function L:

A x B — R satisfy

(2.2) forall p€ A, wu+— L(p,u) is convex and continuous,

(2.3) forall u € B, o+~ L(p,u) is concave and weakly” upper semi-continuous.
Let there exist pg € A such that
(2.4) L(go,u) — +oo for ||u||x — 400, u € B.

Then the function L possesses at least one saddle-point (9,4) € A x B.

The proof can be found in [9]. The correspondence between max-inf and the
saddle-point is the subject of the following lemma.

291



Lemma 2.2. Let A, B and L be the same as in Theorem 2.1. Then

(0,7) € A x B is a saddle-point of L in A X B

o f o
<~ L(0,1) rgleaj(uuelBﬁ(g,u) glelgr;leafﬁ(g,u),

and ¢ is the point where the maximum in the max-inf part is achieved, and 4 is the

point where the minimum in the min-max part is achieved.

The proof can be found in [11]. The theorem on the existence of a solution of the
problem (1.2) follows.

Theorem 2.2. There exists a solution of the problem (1.2). Moreover,

max inf II(F,u) = min max II(E,u).
E€U,q uEK wEK Bel,q

Proof. For Z = [L'(Q)]**3, the set Unq C Z* is convex and non-empty. The
norm in [L>(Q2)]3*3 let be defined by

Bz~ @ = essup, nag, 1 )]
Positive semi-definiteness of E(x) implies E;;(z) > 0,4 = 1,2,3. Then Equation (1.1)
implies that

t = ess suptr(E(:E)) = 2||E||[LOO(Q)]3><3
zeQ

Thus U,q is bounded. Let E € [L>®(Q)]3*3, and let {E"}2, C Uaq be a sequence
such that lim HE” - E”[Loo(g)]sxs =0. As

n n 1 n
|B" = Bl s > | max | |E5 (@) = By (@) > 5] (B (x)) - (B))|

holds for a.a. x € (, it follows that E € Uad. Thus the set Uad is closed, and the
Banach theorem implies that it is weakly* sequentially compact, and thus it satisfies
all the conditions for the set A of Theorem 2.1. For X =V, K satisfies those for B.
From Schwartz’s inequality and continuity of the trace operator in V' we obtain

- 1
TI(E, u)| < §||E||[L°°(Q)]3X3”u||%/ + I flliz2wpyz Crllullv,
where C'r is the norm of the trace operator
T:V — [L*T))?, T(u):=ulp.
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Hence the mapping u +— f[(E, u) is continuous. It is also convex, thus the assump-
tion (2.2) is satisfied for II. The linear mapping E — II(E,u) is continuous, too.
Thus the set {(E,y) € Una x R; y < II(E,u)} is closed and convex for all u € V.
It is a consequence of the Hahn-Banach theorem that this set is also weakly* closed,
thus the mapping E — II(E, u) is weakly* upper semi-continuous (cf. [11]), and the
assumption (2.3) is satisfied for II. Let

{00
Ey=(0 ¢t 0],
0 0 ¢t

where

Then Ey € Uad, and

A 1.
H(Eo,u) > §tHeuH[2L2(Q)]3 = Ifliz2p2Crllullv.

Korn’s inequality (2.1) gives

R 1 .
(Eo,u) > §Clct||u||%/ — I flliz2 @2 Cr llull v,

and thus the condition (2.4) is valid, too. Theorem 2.1 establishes the existence
of a saddle-point, which implies the existence of a solution of the problem (1.2) by
Lemma 2.2. Lemma 2.2 gives also the remaining statement of this theorem. O

3. SIMPLIFICATION OF THE PROBLEM

To compute the matrix E directly would mean to work with its six unknown
components. It turns out that this complication is avoidable, and the problem can
be solved by finding one unknown function which can give all six unknown material
variables. Theorem 2.2 will be a crucial result for the following sections. Some ideas
of this section can be found in [20].

Let

(3.1) Uad == {Q € L>*(Q): / o(z)dz <V, 0< o(x) <t ae. in Q},
Q
where V and £ are the same as in Sec. 1.1 above. And let for fixed o € Uyq
U2 :={FE € U,a: tr(E(z)) = o(z) ae.in Q}.

The first step is the change of max and inf and the split of max.
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Proposition 3.1.

max inf II(E,u)

EcU,q wEK
. 1
= min glggz(d{ A Ene%ig(d §<E(x)eu(:1c),eu(x)> dz — /Ff<f($),u(m)) dZ}.

Proof. From Theorem 2.2 it follows that max and inf can be interchanged and

min can be written instead of inf; moreover, the set equality Upa = U UZ, implies
0€Uaa
that the max can be split so that

max inf II(E,u) = min max max II(E,u).
EeU,q vEK UEK 0€Uaa E€UE,

The last modification of putting max behind fQ is possible, because the definition
EcUE,
of U2, involves only local properties of E. ([
The following general properties of the trace of a matrix will be used in the sim-
plification calculations.
Lemma 3.1. For A, B € RV*YN and a € RN we have
(i) tr(A+ B) = tr(A) + tr(B);
(ii) tr(ABT) = Z Ai;Bij;
7,j=1
(iii) tr(Aaa”) = (Aa,a);
)
)

t
tr(aa®) = (a,a);
tr(AB) = tr(BA).

iv
(v
All equalities are consequences of straightforward calculations.

The following calculations lead to direct evaluation of

max (E(x)ey (), eu(x)) a.e.in Q.

Let G(z) == eu(z)el(z) , let pi(z), i = 1,2,3, be eigenvalues of G(x), and let s;(x),
1 =1,2,3, be orthonormal eigenvectors of G(x) such that

G(z)si(x) = pi(z)si(x), i=1,2,3.

G(z) is a rank-1 matrix, and it follows immediately from its definition that p(z) =
lew(2)]?, s1(z) = eu(x)/]ewn(x)|, pa(x) = 0, usz(z) = 0 a.e. in Q. Existence of or-
thonormal eigenvectors s;(x), i« = 1,2,3, follows from the symmetry of the real
matrix G(z). Equality (iii) of Lemma 3.1 implies that

(E(r)ew(r), eu(r)) = tr(E(z)G(2)).
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The simplification is based on the following estimate.

Lemma 3.2. The following inequality holds:

tr(E(2)G(2)) < tr(B(x))]ew ().

Proof. Let S(z):= (s1(z),s2(x), s3(x)) (the columns of S(z) are the eigenvec-
tors of G(x)). The eigenvectors s;(z), i = 1,2,3, of G(z) are orthonormal; therefore

lew(@)]* 00
G(z) = S(x) 0 0 0]S ).
0 0 0
Then by substitution
lew(@)]* 0 0
tr(E(x)G(z)) =tr | E(z)S(x) 0 0 0]S ()
0 0 0
The equality (v) of Lemma 3.1 gives
lew(z)” 0 0
tr(E(x)G(x)) = tr [ S~ (z)E(x)S(x) 0 0 0
0 0 0

Let ES(x) := S~'(z)E(x)S(x), then by virtue of the equality (ii) of Lemma 3.1

tr(B(2)G(2)) = By (w)]eu()|*.

As SY(x) = ST (x) and F(x) is positive semi-definite, we have E: (x) > 0,i = 1,2, 3,
and

N
tI‘( Z |€u
Moreover, the equality (v) of Lemma 3.1 implies
tr(E(w)) = tr(B5(x)),

which is the last step to complete the proof. O
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It can be concluded from the properties of E°(z), as they were mentioned in
the course of the proof of Lemma 3.2, that if |e,(z)| # 0, then tr(E(z)G(z)) =
tr(E(x))|ew(2)|? if and only if Ef(x) = 0, i = 2,3. Then everything is ready for

claiming that

1 1 )
o 5 (E(@)eu(z), eu(2)) = So(z)leu ()]

Maximum is achieved, for example, when

o) 0 0O
ES@@ =] 0 0 0
0 0 0
Then
(3.2) E(x) = olx)s (2)sT (z) = %emef(w).

Symmetry and positive semi-definiteness of E(x) ensures also that this maximizer is
unique. Indeed, the most general form of £ (x) could be

where d,b,c € L>(2). Let {a1, a2, a3} be the Euclidean base of R3. It follows that
(ag + a3, BS(x)(ag £ a3)) > 0= c(z) =0 a.e.in Q.

Then the eigenvalues are

Positive semi-definiteness of £°(z) now confirms that
d(z) =b(z) =0 a.e. in Q.
The simplification is eventually expressed by the equation
2o e TIEw) = mip mgx Teru),
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where 1
o) = [ Fo@leue) do ~ [ (@) u(w)as
Q Iy
(cf. Sec. 1.1 and Equation (3.1) for definitions of U,q and U,q).
The free material optimization problem (1.2) is reduced to the problem

Find 0 € U,q and 4@ € K such that
II(g,u) = min II(o = inf IT
s (0,%) = minII(g,u) = max inf TI(e, u)
' = (g, @) = mi (o, u).
G
Also II, U,q, and K satisfy the assumptions of Theorem 2.1, hence according to
Lemma 2.2 the solution (g, @) of the problem (3.3) can be found as a saddle-point
of II. The constitutive tensor E which solves the problem (1.2) can be reconstructed

by means of Equation (3.2).

4. GALERKIN APPROXIMATION AND ITS CONVERGENCE

The discretization of the problem (3.3) is a standard procedure. It will be solved
as a saddle-point problem. This treatment reminds considerably the saddle-point
problem which arises from topology optimization done by variable thickness of a
plate. The discretization is done similarly as in [18].

Let the involved sets be approximated as follows. Let h > 0 be a mesh parameter.
For each h let Uy, V}, be finite-dimensional spaces such that V3, C V' (cf. Sec. 1), and
Ui, € L>™(Q). Further let Kp, Uaqg, be closed, convex, and non-empty sets satisfying
Ky Cc V, and Uad,h C Up,.

4.1. Abstract assumptions
(i) for each positive sufficiently small h let Uaqp, C Uag;
(ii) for each g € U,q there exists a sequence {gn}r>0, 0n € Uadq,n such that g, — o
for h — 0+ a.e. in Q ;
(iii) for each sequence {vp}ns0, vn € Kp, weakly convergent in V to v € V, let
v e K;
(iv) for each v € K there exists a sequence {vp, }r>0, vn € Kp, which converges to v
in V;
(v) there are constants M > 0, N > 0 and o > 0 and a set of coercive mappings
{0n}n>0, 0n € Uaq,n such that for each h >0 and u € V

(on, u) = M|ullj, — N
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By (i) it is assumed that Uyq s is the inner approximation of U,q. On the other
hand, usually only an external approximation K of K is available. Therefore the
assumptions (iii) and (iv) are necessary, and they will not be easy to acquire. Uniform
coercivity, as stated in (v), will be needed for the existence of discrete solutions and
later for the proof of existence of a convergent subsequence of discrete solutions.

4.2. Continuity of potential energy

Lemma 4.1. Let assumptions 4.1 be satisfied. Let sequences {on}n>0, 0n €
Uadn and {vp}n>o0, vn € V), converge so that

on =" o for h— 0+ in L*(Q) and v, —wv for h— 0+ in V,
where o € Uyq and v € V. Then

II(op,vn) — (o, v) for h — 0+.

The proof can be found in [18], where a similar lemma is used for the analysis of
variable thickness plate optimization problem. Let

Ap(v,w) == /Q o(z){ey(x), e (x)) da.

Lemma 4.2. Let assumptions 4.1 be satisfied. Let sequences {on}r>0, 0n €
Uad,h, {Vn}h>0, Ui € Vi, converge so that

on — o0 for h— 0+ ae in Q and vy, v for h — 0+ in V,
where o € Uyq, and v € V. Then for each w € V

hl_i)rg+ AQh (’Uhv w) = AQ(U’ w)?

and

lilrg(i]rif (on,vn) = (o, v).

Proof. See [18] for the proof.

4.3. Convergence of the solutions of the discretized problem
Fix h > 0 sufficiently small. To solve the discretization of the problem (3.3) is to

find gy, € Uaq,r and up € Kp, such that
(4.1) H(Qh,ﬂh) < H(@h,ﬂh) < H(éh,uh) for each oy € Uad,h and up € K,

Existence of a solution of the problem (4.1) is formulated in the following theorem.
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Theorem 4.1. Let assumption 4.1 (v) hold. Then the discretized problem (4.1)
has a solution for each sufficiently small h > 0.

Proof. The set Uyq,p satisfies conditions assumed about A in Theorem 2.1,
V}, satisfies those for B. The mapping II satisfies conditions (2.2) and (2.3) con-
cerning the functional £ (cf. the proof of Theorem 2.2). As 4.1 (v) is assumed, the
condition (2.4) is valid, too. Hence the proof is completed by Theorem 2.1. (]

The convergence of the discrete solutions is established by the following theorem.
Theorem 4.2. Let assumptions 4.1 be satisfied and let {(on,ur)}n>0 be a

sequence of solutions of the discretized problem (4.1). Then there is a subsequence
{(0n',an) >0 C {(0n,Tn)}n>0 and elements g € U,q and @ € K such that

op—*0 for K — 0+ in L>®(Q) and ap —a for ' — 0+ in V.
Moreover, the couple (g, 1) solves the problem (3.9), and

(on, un) — (g, a) for h' — 0+.

Proof. Step 1. The sequence {g}r>0 is bounded by the definition of U,q and
assumption 4.1 (i); therefore as L°>°((2) is the dual space of L'(2), Alaoglu Theorem
confirms the existence of a subsequence {gp }p~o C {0n}r>0 and a mapping ¢ €
L>°(Q) such that

o —* 0 for B — 0+ in LOO(Q)

U.q is weakly™ closed, thus g € Uyg.

Step 2. As K is considered non-empty (cf. Sec. 1), assumption 4.1 (iv) guaran-
tees the existence of a bounded sequence {04 }n>0, On € Kp, ||0n|lv < C. Elements
of Uaa,p are bounded by the definition of Unq (cf. 4.1 (1)), hence there exists a con-
stant C7 such that for all sufficiently small A > 0

H(on, ) < 1(@n, on) < Ch.
Step 3. Let the set {gn}r>0 satisfy assumption 4.1 (v). Inequality
Man|y — N < (g, @n) < I(on, an) < C1,

following from the fact that (gp, @) solves the problem (4.1), the assumption 4.1 (v),
and step 2 give immediately the boundedness of {@p}rso in V. The space V is
reflexive, hence the sequence {i}r>0 as well as its subsequence {@p }pmi~0, where
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h"" means the same choice of indexes as in step 1, is weakly sequentially compact, in
the sense that there exists a subsequence {up» }p7s0 C {@p tp>o and a mapping
u € V such that

pr — @ for B — 0+ in V.

Moreover, the assumption 4.1 (iii) ensures that @ € K.
Step 4. The inequality presented in step 3 guarantees also boundedness of the
potential energy
—N < I(gpr,ap) < Ch,

where {II(gp, Up) >0 is a subsequence of {II(gn,Ur)}r>0, where the choice of
indexes h” is the same as in step 3. Then the Bolzano-Weierstrass theorem yields
the existence of a real number 3 and a convergent subsequence {II(ap’, tp/) } >0 C
{H(n~, tnrr) tr>0 such that

H(@h/,ah/) — 3 for K — 0+.

Step 5. Let (9,u) € Uaq X K be arbitrary. Then 4.1 (ii) implies the existence of a
sequence {op' }r'>0, On € Uagn such that

on — o for K — 0+ a.e.in ,
and 4.1 (iv) leads to the existence of a sequence {up: }p/~0, up € Kp such that
upy —u for ¥ -0+ in V

(indexes h’ were chosen coherently with step 4). The fact that (gp/, @) solves the
problem (4.1) gives

(on, ) < TL(n, nr) < (0, un).
Lemma 4.1 and step 1 imply
(op/, up) — (g, u) for A" — 0+.
Lemma 4.2 and step 3 give
(e, %) < lim inf I(en:, dn).
The two above facts together with step 4 imply
(o, a) < B <II(g,u) foreach (g,u) € Unq x K.
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The above relation must hold for u = @ and also for ¢ = g. These two choices yield
(o, u) < 1II(0, 1) < II(0, u).
This must be also valid when u = @ and simultaneously o = ¢. This leads to

II(g,u) = f.

5. EXAMPLE OF DISCRETIZATION

The aim of this section is to describe one of the possible discretizations which would
satisfy assumptions 4.1. It is constructed for implementing on rectangular domains.
The Sobolev space H!(Q) is approximated by @1 elements. The discretization is
similar to that which is presented in [18]. In that article the use of the discretization
is demonstrated on triangles.

5.1. Discretization

Assumption. The domain () can be divided into m squares €2; which are all of
the same size and the sides of which are parallel to the chosen coordinate system.

(The standard iso-parametric concept can be used otherwise; cf. [10].) Let n be
the number of distinct vertices (nodes of rectangulation) of Q;, i =1,...,m. Let A;,
i =1,...,n¢, be the contact nodes, i.e. distinct vertices of Q;, i = 1,...,m, lying
on [, (cf. Sec. 1).

Assumption. There exists a partition of [a,b], namely a = t; < t2 < ... <
tn., = b such that A; = (¢;,¢(t;)), i = 1,...,ncp, in the local coordinate system

c

(€1, &2).

Let {Ri}r>0 be a regular family of rectangulations (cf. [10]) of Q (each of them
formed by squares ;). For each R, let

Vi, = {Uh € [C(Q)F Vh|Q,; € [Ql(Ql)]Z for each Q; € Ry, vy € V},
Up :={on € L=(Q): onla, € Qo(Q;) for each Q; € Ry}

(Qi(€;) is the space of bilinear polynomials in ©;, Qo(2;) denotes constant functions
in ;, cf. [10]),

Ky :={vp € Vs (un(Ay),E(A:)) <(ti) — @(t;), foreach i=1,...,n¢c}
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(t; is a suitable &j-coordinate in the local (&1,&2) coordinate system such that
(tiy¥(t;)) = Ai, i = 1,...,n¢p, cf. Sec. 1 and Sec. 5.1). It is readily seen that in
general K} is an external approximation of K. Further let

Uaa,n := {Qh €U,: 0< o, <t aee. in Q, /Qh(x)dx < ‘7} =UaNUy
Q

(cf. Sec. 3). The discretization of the problem (3.3) is:

Find 05 € Uaq,n, and 4y € K, such that
II(on, up) = in II(o f II
. (On, i) Jin. (On,un) = pmax o2 (on,un)

= max II(gp,ap)= min max I(opn,un).
0n€Uaa,n un€Kp en€Uaa,n

According to Lemma 2.2 the solution of this discrete problem solves also the discrete
problem (4.1).

5.2. Verification of assumptions 4.1
The following lemma is important for the validity of assumption 4.1 (iii).

Lemma 5.1. Let f be a continuous function defined in [a,b], a,b € R, a < b.
Let Dy: a =t <t} < ... <t = b be a partition of [a,b] whose norm tends to
zero as n — +oo. Let {1,}52; be a sequence of piecewise linear continuous functions
such that

() = f(t!) for i=0,...,n, and for all n.

Let

o — 7 for n — oo a.e. in [a,b].

Then
T2 f ae in [a,b].

The proof can be found in [13]. For the sake of simplicity, let the coordinate
system (€1, &2) coincide with the Cartesian system (z1,z2). Then £ = (0,—1), and
the non-penetrating condition is simplified to the inequality

ug (w1, (21)) = @(x1) — ¥(a1)  (cf. Sec. 1),
and thus

K={veV: v(z,¥(x1)) = ¢(x1) — ¢¥(x1), for all 1 € [a,b]},
K, = {vp € Vit van(ti, (t:)) = p(t:s) — (t;), foreach i =1,... nen}

(cf. Sec. 1).
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The verification of the assumption 4.1 (iv) is based on the next lemma on smooth

approximations in K.

Lemma 5.2. Let the coordinate system (£1,&2) coincide with the Cartesian
system (x1,x2), as described above. Let a continuous function ¢: [a,b] — R have
an extension ¢: R — R such that

() Plia,p) = s
(ii) ¢ is sufficiently smooth;
(iii) there exists a neighborhood Ur, D Ty such that U, C R, where

RY := {(z1,22) € R?: 29 > @(x1), =1 € R}.
Then for any v € K there exists a sequence {s}s—o+, 05 € K N[C>(Q)]? such that

vs — v for 6 — 0+ in V.

Proof. The proof can be found in [18].

Proposition 5.1. Let V}, Uy, K, and Unq,p, be defined as described in Sec. 5.1.
Let the assumptions of Lemma 5.2 be satisfied. Then the assumptions 4.1 are satis-
fied.

Proof. Step 1. The assumption 4.1 (i) is satisfied by the choice of Uynq p.-
Step 2. For a given g € Uyq let

1

= dz i=1,...,
e meas(2;) /Qi olw)da i "

and
m
oni= Y oixas
=1

where xq, is the characteristic function of a square Q; € Ry (cf. Sec. 5.1). It
is straightforward from the definition that o5, € U,q,. The validity of assump-
tion 4.1 (ii) then follows from Lebesgue’s point theorem (cf. [12]).

Step 3. Let the sequence {vp, }r>0, vn € Kp, converge weakly in V. The trace oper-
ator T: V — [L?(T.)]? is compact; therefore there exists a subsequence {vp }n/~o C
{vn}r>0 such that

vp — v for B’ — 04 in [L*(T.)]%.
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For every sequence converging in [L?(T)]? there exists a subsequence which converges
a.e. in T.. Thus there is a subsequence {vp» }r7>0 C {Vn }rr>0 such that in the local
coordinate system (£1,&2)

o ([€1,%(€1)]) — v([é1,w(&1)]) for A" — O+ a.e. in [a,b].

Further, continuity of the scalar product gives that

(onr (&1, 9(&)]), &) = ([, ¥ (&))),€)  for k" — 0+ ace. in [a,b].

Because vj,» € Kp, the mapping & — (vpr ([€1,%(£1)]), €) is piecewise linear in [a, b].
Lemma 5.1 used for {—{vp~([€1,9(&1)]),€) trr>0 as the sequence {7,}22; and for
© — 1 as the continuous function f (cf. Sec. 1) completes successfully the verification
of assumption 4.1 (iii).

Step 4. Let v be an arbitrary element of K. According to Lemma 5.2 there exists
a sequence {05 }s—o+, 95 € K N [C>(Q)]? such that

vs — v for § — 0+ in V.

Classical approximation properties of V} supply a piecewise bilinear interpolant
7p0s € Kj such that

Tps — U5 in V for h — 0+ for all 95 € K N[C™®(Q)]?.
Moreover, thanks to the boundedness of the sequence {¥;5}s—0+, the convergence of
{705} h>0}s—0+ is uniform in h. Then the sequence {vp, }r>0, vn := 7,0y satisfies

assumption 4.1 (iv).
Step 5. Let

Op := min L,f , in Q for each h > 0.
meas(Q)

The set {or}h>0 together with constants

L, 1 , Voo
o = 2, N = %”f”[l/zawf)]z and M = §<C]C mln{m,t} — ECT)

verifies assumption 4.1 (v) (cf. Sec. 1.1 for definitions of V and #). Cx. comes from
Korn’s inequality (2.1). Cr is the norm of the trace operator

T:V — [L*(Ty)]°, Tu=ulp.
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And € is an arbitrary real number such that

0<e< %min L t
Cr meas(Q)” |

Correctness of the estimate in assumption 4.1 (v) is based on Korn’s inequality and
Young’s inequality. Derivation of the estimate involves similar ideas to those used in
the proof of Theorem 2.2. |

6. NUMERICAL SOLUTION

Numerical solution of the problem (5.1) leads to a so-called semi-definite pro-
gram (cf. [15]). It can be solved by modern interior point polynomial time methods
(cf. [15]), as well as by penalty/barrier multipliers method (cf. [2]).

An example computed by penalty/barrier multipliers method is presented in
Figs. 2-4. A similar example can be found in [14, p. 325], where variable sheet thick-
ness approach is used, and also in [2], where free material optimization approach is
used.

The domain 2 is a square fixed at the top. It is pulled at the bottom by a constant
downward lineload traction. It is supported by a rigid foundation consisting of two
parts located symmetrically around the vertical axis of symmetry. The function that
determines the boundary of the left part of the obstacle is defined as 1 (z1) = —6.4 27
in the Cartesian system with the origin at the lower left corner of the domain 2. The
function that determines the boundary of the right part of the obstacle is defined
symmetrically (cf. Fig. 2).

The calculated values of the function g5 (cf. Sec. 5.1) for the mesh 30 x 30 are
shown in Fig. 3. The values of g5, are depicted by gradations of grey, i.e. full black
corresponds to high values of gj, white corresponds to g, equal zero, which can be
interpreted as void material (cf. Sec. 1.1). Fig. 4 presents directions and magnitudes
of principal stresses in the finite elements.

The interested reader can find more on numerical realization of the free material
optimization in [2], [15], [20].
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