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Abstract. In this paper, Daubechies wavelets on intervals are investigated. An analytic 
technique for evaluating various types of integrals containing the scaling functions is pro­
posed; they are compared with classical techniques. Finally, these results are applied to 
two-point boundary value problems. 
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1. INTRODUCTION 

In addition to the large theoretical interest in wavelet analysis, wavelets also play 
an important role in numerical analysis. One of these applications consists in replac­
ing piecewise polynomial test functions in finite element methods by wavelets (cf. [7], 
[10]). 

The wavelets we will consider are those with vanishing moments (see [4]). One of 
the fundamental problems in applying the wavelets is the construction of numerical 
quadratures to compute the integrals containing scaling functions. To derive such 
quadrature formulas, we apply so called moments integrals and derive formulas and 
recursions for the fast computation of the moments integrals of the form / xnip(x) dx 
and f xn(p(x — i)<p(x — j) dx, on any dyadic interval. In [15] this was done for the 

*This work was supported by Deutsche Forschungsgemeinschaft (DFG) grant 1777/2-1, 
by the grant No. 201/01/1200 of the Grant Agency of the Czech Republic and by the 
grant MSM 113200007. 
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case of J0°° xntp(x) dx, only. We exploit these moments to derive effective quadrature 
formulas. Finally, we employ these formulas to solve two-point boundary value prob­
lems. As the test functions, we have chosen anti-derivatives of the scaling function. 
These anti-derivatives are smoother and, moreover, the boundary conditions can be 
treated easily. This idea was introduced in [16]—the integrals were approximated 
by Simpson's rule. In our approach, the integrals can be effectively and precisely 
approximated and "variational crimes" can be easily treated, too. We provide a 
comparison of these two methods. 

The paper is organized as follows. First, we shortly deal with wavelets on finite 
intervals and with construction of bases for anti-derivatives of wavelets. In the next 
section, we present a procedure for evaluating the scaling moments. Finally, in the 
last part we apply this theory to two-point boundary value problems. 

Now, we briefly review the key-stones of wavelet theory—definitions and basic 
properties. 

Definition 1. Any function i/>(-) £ L2(R) which generates an orthonormal basis 
of the space L2(R) by the system of translations and dilations 

{4>jA-)}j,kei = {2j/2^(V • -*)},•,/.« 

is called an orthonormal wavelet. 
oo 

If we denote W3 = span{^ fe(-); k e _"}, we have: L2(R) = 0 Wj. 
j = — oo 

Definition 2. A multiresolution analysis . . . C V_i C Vo C V\ C . . . with scaling 

function (D _ L2(R) is an increasing sequence of subspaces of L2(R) satisfying the 

following four conditions: 

i) (density) \JVJ is dense in L2(R), 
3 

ii) (separation) f) V3 = {0}, 

iii) scaling /(•) e V3 & / (2" ' - ) G V0, 

iv) (orthonormality) {(/?(• — k)}k^z forms an orthonormal basis for VQ. 

From iii) and iv) it follows that {<fj,k}kei forms an orthonormal basis of V3, where 

(1) ^k{.):=V'\(V.-k). 

We will assume that the spaces W3 are orthogonal complements of V3 in Vj+i, so 
that Vj 0 Wj = Vj+i V j £ _. From this fact it follows that the scaling function ip 
satisfies the scaling equation (identity): 

(2) ¥>(•) = ]£MK2--* ) , 
kei 
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where hk are the corresponding scaling parameters, and the wavelet I/J satisfies the 
wavelet equation: 

(3) W = £g^(2--fc); 
kei 

gk are called wavelet parameters. 

Now, we will summarize the properties of the scaling parameters of the Daubechies 

wavelets. Let p be some positive integer and let: 

i) hk = 0 V f c £ { 0 , l , . . . , 2 p - 1 } , 
2 p - l 

ii) 0m,o = 2 - 1 52 hjh2m+j f o r 1-P<ra<p-1, 
j=0 

2 p - l 

iii) £ hk = 2, 
fc=0 

2 p - l 

iv) £ (~ l )%fc n = 0 f o r O < n < p - l . 
fc=0 

Systems {hk} satisfying the conditions above for 1 ̂  p ̂  10 can be found in [3]. 
In [12] it is proved that for a fixed p, there exists only one linear independent scaling 
function (D which satisfies the scaling equation with these scaling parameters. The 
support of this function lies in [0, 2p — 1]. 

We choose the corresponding wavelet parameters gk so that 

gk := ( - l ) % p - f c - i . 

Then the support of the wavelet lies in [0,2p — 1] too and it is well-known that this 
wavelet has p vanishing moments, i.e. 

r2p-l 

/ xi^>(x)dx = 0 Vi = 0 , . . . , p - 1 , 
Jo 

integrated over the support of the wavelet. 

Further in the text, we will deal only with the Daubechies wavelets and in the 
fourth section we will use for simplicity the Daubechies wavelet with two vanishing 
moments. However, the construction of frames and the evaluation of the moments 
integrals can be easily generalized to other types of orthonormal wavelets too. The 
only reason for the choice of the Daubechies wavelets are their good approximation 
properties (which depend on the number of vanishing moments). 
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2 . WAVELETS ON INTERVALS 

There are several ways how to construct a wavelet basis on intervals. The first 
possibility is a periodic extension of wavelets (see [4], [13]). In this case, however, the 
vanishing moments, as well as good approximation properties, are destroyed. The 
second possibility was described in [14] by Meyer. The idea is the following: We 
take all the wavelets (and scaling functions) supported in our interval and, instead 
of wavelets supported outside the interval, we construct new boundary wavelets so 
that the vanishing moments are preserved. 

We will take a closer look at the third possibility (see [16]). For convenience of 
exposition, we will use the term 'frame' for a 'basis' of a vector space in a weak sense 
(for more details see [16], [5] and [9]). 

Definition 3. Let {(/?n}^°=1 be a subset of a Banach space X. Let span {</?n}^li 
be the set of all elements Ylan(Pn (« n £ ^) which converge (strongly) in X. Then 
{(Dn}^°=1 is called a frame of X if span {(fn^-i — X. 

A frame generates the space, but the functions can be linearly dependent. By 

construction, wavelets form an orthonormal basis of L2 W , but for the application, 

a basis on a finite interval is required. First, we construct a frame. 
Let pG M be the number of vanishing moments. For simplicity, we will consider 

Q. := [0,R] = [0,2p — 1] here. We choose j — 0 as the starting level. It contains the 
scaling functions from the space V0 only. If we restrict ourselves just to wavelets and 
scaling functions with support intersecting f£, we obtain a frame of L2(-^)-

We denote: 

(4) Ij := {k e Z; 1-R^k^ 2j R - 1}, j ^ 0. 

Now, for given J G N we define: 

(5) Vj(ft) := span{^i|fc|n,<Po,*|n; 0 ^ j < J, k G Ij}. 

oo 

Obviously, we have Vj(ft) C Vj+i(fi) and | j Vj(ft) is dense in L2(ft). 
j=o 

We can easily see that the wavelets in (5) are linearly dependent in ft. That is 
why the number of wavelets in the space Wj and scaling functions in the space Vj is 
altogether 2 J + 1 H + 2H — 2 whilst the number of scaling functions in the space Vj+i 
is 2 J + 1 H - r i t - 1 . It follows that the wavelets do not form a basis for Vj(Q). The 
next Theorem shows how we can construct a basis. We define the index set by 

Dj := {k e Z; p-R^k^ 2jR - p}, j ^ 0. 
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Theorem 4. For J ^ 0, there holds dim V>(ft) = 2JR +R-1. Furthermore, the 

sets 

(6) {<PJ,k; k E Ij} and {i/>j,k,<Po,i; 0 ̂  j < J, k e Dj, I G I0} 

are bases ofVj(il). 

P r o o f . A proof can be found e.g. in [16]. • 

3 . ANTI-DERIVATIVES OF WAVELETS 

Now, we will use anti-derivatives of wavelets to construct frames of HQ(Q), where 

we define: 

ffi(n) := {v e Hx(n); v(0) = v(R) = 0}, 

where Hm(ft) stands for the Sobolev space of functions from L2(Q.) whose distribu­

tional derivatives up to order m are square integrable. 

Let / £ Li(Q). Then / will denote its mean value, i.e. / = -̂  JQ f(x) dx. 

Lemma 5. Let {0n}n
G

=1 be a frame of L2(Q). Then 

span iA n ; An(x) := / 0n(s)ds - xdn, 0 ̂  x ^ R \ C H^(Q) 
I Jo J n=l 

forms a frame of the space HQ(Q,). 

By Theorem 4, Lemma 5, and because of the fact that integration preserves linear 

independence, we are able to construct a finite-dimensional basis for the subspaces 

of HQ(Q). However, a problem may arise because of the extra term 6n. Thus, we 

have to verify the linear independence of these functions again. 

Let us define 

®jAx) = / *l>jAs)ds ~ xlPj,k 
Jo 

and 

ФJM 
Jo 
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Using the well-known fact that ]T cp(x - k) — 1 (see [17]), we obtain 
kei 

R-l R-Ì ш—~ .L-Z. / ľx ľ™ \ 

Y] $o,k = У] í ф-k)ds-^ ф-k)dx) 
: = 1 - Я k^R^0 RJ° / 

Г R~l x ľR ß _ 1 

= / У] f{s~k)ds-- I V <fi(x - k) dx 
Jo * = i - я Л-l° *=i-д 

Thus, the set of $0,/e for k G Io is linearly dependent. The following lemma shows 

which functions must be removed. 

Lemma 6. The sets 

{*,-,*,*o,z; o^j<J, keDh Z e I 0 \ { l - I t } } and {$JX, keIj\{l-R}}, 

respectively, define bases for a subspace of HQ(Q). 

In the following, we will use the functions tpj^ and therefore we define the space 

(7) 5 0

J : = s p a n { $ j ^ ; keIj\{l-R}}. 

Furthermore, we need to characterize the approximation properties of the anti-

derivatives of wavelets with p vanishing moments. The next theorem deals with this 

problem. 

Theorem 7. Let J ^ 0, p be a number of vanishing moments and s be a fixed 

integer. Then for any function v € HQ(Q) D Hs+1(lQ) the following inequality holds 

true: 

inf \v - x| l fn < 0(hs\v\s+in), O^s^p, 
X€S() 

where h — 2~J. 

Proofs of Lemma 5, Lemma 6, and Theorem 7, as well as the construction of finite 

dimensional subspaces of H~(ft), can be found in [16]. 
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4 . APPLICATIONS TO TWO-POINT BOUNDARY VALUE PROBLEMS 

In this section we will apply the anti-derivatives of wavelets (the order p) to nu­

merical solutions of the two-point boundary value problem 

(8) -(q(x)u'(x))' = f(x) for x 6 ft, 

with Dirichlet boundary conditions 

u(0) = u(R) = 0. 

We assume that / € L2(-~-0, that the function q(-) is smooth in (0,I?), and that 

0 < q ^ q(-) ^ q in (0, R) for some positive constants q, q. The variational form 

of (8) is 

(9) 
rR rR 

/ q(x)u'(x)v'(x)dx= / /(ar)v(ar) dx VÍ; G fl^(íl). 
Jo Jo 

By the Lax-Milgram Lemma, this problem has a unique weak solution u £ Ho (ft). 

In (9), if we substitute SQ for Hg (ft), we obtain a Galerkin-wavelet method. Then 

we search for an approximation of u expressed by 

^2 UJ,k$J,ki 

keij\{i-R} 

where uj^ are unknown real parameters, and calculate 

X I Uj>k / Q(x) ( / ^Jfc(s) ds ~ xTPj,k ) f / <PJAS)
 ds ~ XTPJ,I ) dx 

J f(x)(J ipj^ds-xlpj^dx Vlelj\{l-R} 

keij\{i-R} 
rR 

with Ij defined by (4). After differentiation, 

rR 
Yl uj>k / ^ w i ^ f c W - ^j,/c)(

(pJ/(^) - <?j,i) <*x 

keij\{i-R} Jo 

= J f(x)(Jyjj(s)ds-xyj\dx Vlelj\{l-R}. 

We can see that we need to approximate three types of integrals. The first step 
is to compute the so called scaling moments. For simplicity, we will treat these 
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integrals only for the Daubechies wavelet with two vanishing moments (so p = 2) 

on the interval [0,3]. Using (1), we can transform them to integrals with (p. For 

instance 

/ xn<pj,k(x)dx = - - J (^j-^j tp(x)dx. 

Similarly, we can transform the other integrals, too. That is why we derive the 

formulas for evaluating the scaling moments only for the scaling function <p. 

When the support of the function (Dj^ lies in the interval of integration, we will 

compute the transformed integral on the interval [a,b], where a = 0 and 6 = 3. 

In the opposite case, when the support of the function <pjtk lies partly outside the 

interval [0,3], we have to compute this integral on the interval [a, 6], where a = 0 

and b G {1,2} or b = 3 and a e {1,2}. 

Consequently, we will study the following three types of integrals: 
rb 

a ) / xn(p(x) dx, 
J a 

b) / xn( f <p(s)ds--?— I y(s)ds\dx, 

c) / xn(p(x)tp(x — k) dx. 
J a 

4.1. Wavelets and numerical integrat ion 

a) Let us use the following notations: 

Г3 

Mn 

/o 

:= / xn(p(x) dx and mn := \ J hkk
n 

J o k=0 

for the continuous moments and for the discrete moments, respectively. Then the 

following lemma holds. 

Lemma 8. Let MQ = 1 and let us assume that only finitely many hk do not 

vanish. Then for any n € N, the following relation holds true: 

(W) W -=2^TT2XjG) r o J A f - - i -

P r o o f . By substitution, interchanging summation and integration, and using 

the binomial formula, we obtain 

p3 3 . 3 1 3 Z"3 

/ xn<p(x)dx= y % / xn<p(2x-k)dx=—rrV/ifc / (y + k)n
V(y)dy 

Jo fc=0 Jo l fc=o -!0 

Z
 fc_n JO ,._ft \JJ k=0 "" j=0 
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f xnф) di — t (1) f WП"V(У) ày £ hkk> 
Jo z

 j=0 \JJ Jo к=0 

= ^ Ż )m>м~->-
3=0 

From this, it follows immediately that 

M " = 2 n + l - 2 Ž ( " ) r o j ' M n 

which proves the lemma. D 

R e m a r k 9. A study of recursion stability is beyond the scope of this article, 

because we use only the first four moments, i.e. n £ {0,1,2,3}. 

Unfortunately, the formula for computing the moments integrals we have just 

derived is not usable for evaluation of these moments in the case when the support 

of the scaling function exceeds the interval. In the case of Daubechies wavelets with 

two vanishing moments, we have two integrals on both sides with support out of the 

interval [0,3]. These integrals must be examined separately. Let us denote 

An := / xnip(x + l)dx and Bn := / xn(p(x + 2) dx. 
Jo .10 

Now, we apply the scaling equation to the scaling function (p(-): 

/»2 /*1.5 

An = h3 / xnip(2x - 1) dx + h2 / xnip(2x) dx 
Jo Jo 

pi /-0.5 

+ hi / xnip(2x + l)dx + h0 / xn(p(2x + 2) dx, 
Jo Jo 

/•l /»0.5 

Bn = h3 xn(p(2x + 1) dx + h2 / xnip(2x + 2) dx. 
Jo Jo 

After the transformation, we obtain 

. h3 h2 __ h\ . ho _ 
An = ^ M ^ + 2„--fMn,o + 2Z+1 An + ^ i B n 

aлd 

R - _ _ _ _ „ I h 2 я 
D n - 2 n + 1 2 n + 1 
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where 

/*3 n 
f3 /*3 n / \ n / \ 

Mn,j := / (x + l)n(p(x)dx = I ]T rJFxn-V(^dx = ]£ r Jr'Mn-i. 

(Here we take 0° = 1.) Together we have: 

Lemma 10. For any n EN, the following relations hold true: 

(2 n + 1 - h{)An - h0Bn = ft3Mna + ft2Mn,0, 

-ft3An + (2 n + 1 - ft2)£n = 0. 

Thus, for any n £ N we obtain a regular system of linear equations. The mo­

ments that exceeded the right end of the interval [0,3] can be expressed as a linear 

combination of the already known moments. Let us denote 

Cn := / xnip(x - 1) dx and Dn := I xn(p(x - 2) dx. 

After the transformation, we obtain 

Cn= f (x + 3)n(p(x + 2)dx 

= f (x + 3)n(p(x + 2)dx- I (x + 3)n(p(x + 2)dx 
J-2 JO 

= f (x + l)n(p(x) dx- f (x + 3)n(p(x + 2) dx = ] £ (U\ (Mn-i - 3'B^i). 

After treating Dn analogously, we can summarize the results. 

Lemma 11. For any n £ N, the following equalities hold true: 

Cn = f2 (U) (Mn-i ~ 3^n-z) and Dn = f2 (U) (2'Mn'i ~ 3'An_i). 
i—n V / ,—n \ / i=0 ч ' i=0 

R e m a r k 12. We also have: 

/»1 /*2 /*3 

(11) / (p(x)dx = D0, / <p(x)dx = 1 - D0 — B0, / (p(x)dx = B0. 
Jo Jl J2 
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From this, we get the following fast and effective way to compute the integrals on 

any dyadic interval, for j G N and 0 ^ k ^ 3 • 2jf — 1: 

r(k+l)2~j 3 r(k+l)2-j 
p(K+L)-Z ' " MK+L)Z ' 

/ <p(x) dx = S_J hi / cp(2x — l) dx 
Jk2~i t__Q Jk2~i 

1 3 p(k+l)2{~j+1)-l 
= o Ylhi / ^ ) á y -

Repeating this succession j-times, we come to the already known integrals (11). 

Let us now focus on integrals b). We have to compute only the first term, because 

the second term is the integral of the scaling function from a to 6, which is already 

known. For a,6 G {0,1,2,3}, a < 6, let us denote 

/

b rx pb n+1 pb 

xnJ V(s)dsdx-J ^^dxj v(s)ds. 
By integrating by parts, we obtain 

Lemma 13 . For any n £N, the following equality holds true: 

_ lf(b)bn+1 - tp(q)an+1 rb//^n+l „ » + l \ „ n + l ,6 

'a'b ~ .7+1 f.((ťż^т1Һ')+^f.ф)i')i*-
R e m a r k 14. How can we compute the values of <D(a) from Lemma 13? For 

/ G {0,1,2,3}, the scaling equation (2) implies 

21 

(12) vM = X>*¥>(2'- fc) = __Z hi-Mk). 
k=0 k=2l-3 

Furthermore, for given scaling parameters there exists a unique scaling function (up 

to a multiplicative constant). After a normalization __]<p(k) = 1, the system of 
k 

equations (12) has only one solution. 

Using results in a) and Remark 14, we see that In
b is computable. 

c) Let us again consider the case when the support of both scaling functions lies 

in the interval of integration. We will use the following notation: 

J / xn<p(x)<p(x-k)dx for k G {-2, -1 ,0 ,1 ,2} , 
Ln,k '•= \ Jo 

I 0 otherwise. 

475 



Lemma 15. For any n eN and k G {-2, -1 ,0 ,1 ,2} , the following relation holds 
true: 

Ln,k = 2~n~ ( 2 ^ hrrihiLn^k+i-m+ 2 _ hmhi 2 _ ( . jmlLn-i,2k+i-m )• 
\n,Z=0 m,/=0 i=l^1' ' 

P r o o f . By substitution, interchanging summation and integration, and using 
the binomial formula, we obtain 

Ln,k = / xn(p(x)(p(x — k) dx 
Jo 

3 fZ 

= y ^ hmhi \ xn(p(2x - m)(p(2x — 2k — I) dx 
m,l=0 J° 

3 ,3 

_ 2 - n - l ~p ^ ^ / (y + m)ntp(y)(p(y + m-2k-l)dy 
m,/=0 J° 

= 2~n~l T hmhi [ ^{^]rniyn-i(p(y)(p(y + m-2k-l)dy 
m,/=0 J° i=0 W 

= 2~n~ ( 2_j hmhlLn,2k+l-m + 2 ^ hmhl ^ ( . 1 mlLn-i,2k+l-m ) , 
\ n , / = 0 m,/=0 i=l ^ ' ' 

which proves the lemma. • 

So, for any fixed n we obtain a regular system of linear equations (of dimension 5). 
This system was already considered in [11], [15] and it is well-conditioned. Again, 
this formula cannot be employed for computing these moments when the support 
of a scaling function does not lie in the interval. In the case of wavelets with two 
vanishing moments, we have three integrals at both sides, with their support not in 
the interval [0,3]. Let us denote 

En:= [ xn(p2(x + l)dx, 
Jo 

Fn:= I xn(p2(x + 2)dx1 
Jo 

Gn:= I xn(p(x + 2)(p(x + l)dx. 
Jo 
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Again, we apply the scaling equation. Thus 

p2 /»1.5 /.l 

En = h2 xn(p2(2x -\)dx + hl xn<p2(2x) dx + h\ \ xn<p2(2x + 1) dx 
JO.5 JO JO 

/•0.5 /»1.5 

+ hl \ xn(p2(2x + 2) da; + 2h2h3 \ xn(p(2x - \)<p(2x) dx 
JO JO.5 

+ 2hih3 / xn<p(2x - \)<p(2x + 1) dx + 2h2hi / xn<p(2x + \)<p(2x) dx 
J0.5 JO 

/»0.5 /»0.5 

+ 2hxh0 \ xn<p(2x + \)(p(2x + 2) dx + 2h2h0 \ xn<p(2x + 2)(p(2x)dx, 
Jo Jo 

Fn = h2 xn<p2(2x + \)dx + h\ \ xn<p2(2x + 2) dx 
Jo Jo 

/•0.5 

+ 2li2^3 / xn<p(2x + \)<p(2x + 2) dx, 
Jo 

rl /-0.5 

Gn = h2
3 \ xn<p(2x - \)<p(2x + 1) dx + h\ \ xn<p(2x)<p(2x + 2) dx 
JO.5 JO 

rl /»0.5 

+ h2h3 \ xn(p(2x + \)<p(2x) dx + h3h0 / xn<p(2x + \)(p(2x + 2) dx 
Jo Jo 

/•l rO.b 

+ hxh3 / xn<p2(2x + \)dx + h2hx \ xn<p(2x + \)(p(2x + 2) dx 
Jo Jo 

/•0.5 

+ h2ho \ xn(p2(2x + 2)dx. 
Jo 

After the transformation, we obtain 

2n+1En = h2
3 f (x + \)n<p2(x)dx + h2 í xn<p2(x)dx + h2 Í xn<p2(x + \)dx 
Jo Jo Jo 

+ h^ i xn(p2(x + 2) drr + 2h2h3 [ (x + \)n<p(x)<p(x + 1) dx 
Jo Jo 

+ 2hih3 / (x + \)n(p(x)<p(x + 2)dx + 2h2hi / xn<p(x)(p(x + \) dx 
Jo Jo 

+ 2hih0 xn(p(x + \)(p(x + 2)dx + 2h2h0 xn<p(x + 2)<p(x) dx, 
Jo Jo 

2n+1Fn = h2
3 í xn<p2(x + \)dx + h2

2 f xn<p2(x + 2)dx 
Jo Jo 

+ 2h2h3 / xn<p(x + \)<p(x + 2) dx, 
Jo 
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2 n + 1 G n = h2
3 J (x + l)n(p(x)(p(x + 2) dx + h\ f xn<p(x)(p(x + 2) dx 
Jo Jo 

+ h2h3 xn(p(x)(p(x + l)dx + h3h0 xn(p(x + l)(p(x + 2) dx 
Jo Jo 

+ hih3 xn(p2(x + l)dx + h2hi xn(p(x + l)(p(x + 2) dx 
Jo Jo 

+ h2ho \ xn(p2(x + 2) dx. 
Jo 

Together: 

Lemma 16. For any n G N , and fc, / £ {0,1,2}, the following equalities hold true: 

(2n — h^En — h0Fn — 2hoh\Gn = A3Ln?o,i + A2Ln,o,o + 2A2A3Ln,ifi 

+2AiA3Lnf2fi + 2A2AiLn,i,o + 2AoA2Lnf2?o, 

~h\En + (2 n + 1 - h\)Fn - 2h2h3Gn = 0, 

-hxh3En - h2h0Fn + (2 n + 1 - hxh2 - h0h3)Gn = A|Ln,2,i + h\Ln,2,o + A2A3Lnfl?0, 

where 
p3 n , v 

Lnik,l= / (x + / ) Vx)(/?(x + k) dx = ^ f n )PLn- i - fe . 
ѓ=0 

The following lemma shows that moments exceeding the right end of the inter­

val [0,3] can be again transformed to already known moments. 

L e m m a 17. For any n eN, the following relations hold true: 

f xn(p2(x -1) dx = _ r (n) (Ln_ i f0 - yFn_o, 
J l i=0 ^ ' 

/ * V ( * - 2) dx = £ ( n ) (2'Ln_ i f0 - 3f"_5n-i), 

y xn(p2(x - l)(p2(x - 2) dx = £ ( " ) (2*Ln_if_i - 3 ^ - 0 . 

Using Lemmas 8, 10, 11, 13, 15, 16, and 17, we are able to compute moment 
integrals for all three required types of integrals (namely a), b), and c)). 

Our next goal is to integrate a general function q weighted by, roughly speeking, 
the scaling function (D; see the Galerkin-wavelet method at the beginning of Section 4. 
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To this end, we derive quadrature formulas that are exact for the respective mo­
ment integrals a)-c) up to a given order. For example, fQ q(x)p(x) dx can be approx­
imated by a formula aq(c) + bq(d), where a, b are parameters and c, d are points in 
[0,3]. The values of a, 6, c, and d are delivered through solving a system of nonlinear 
equations determined by the requirement of exact integration of moment integrals up 
to order three. Treating the scaling function (or functions) as a weight function en­
ables to avoid potential negative effect of lacking smoothness of the scaling function 
on the accuracy of the quadrature formulas. 

The quadrature formulas are derived only once. They are ready for future use, so 
that the GaJerkin-wavelet "stiffness" matrix is calculated efficiently. 

4 .2. Numerical examples 
Using Daubechies wavelet with two vanishing moments, we have an error of order 

2~3J where J is the resolution level. Of course, this holds only when the solution 
is sufficiently smooth. Besides its good approximation properties, the advantage of 
this wavelet is its relatively small support. 

Let us compare our method with the approach used in [16]. In [16], the authors 
implemented the functions <D and ip (and also $ and \£) by their values at dyadic 
points in [0,3] (at x = k/2D, for 0 ^ k ^ 2D3) . The integration was done numeri­
cally by Simpson's quadrature formula. The accuracy of numerical quadratures was 
therefore affected by the choice of D. In their computations, they set D between 8 
and 12. Here, in computations using their approach, we set D = 10. The need of 
relatively large D is caused by the lack of smoothness of the scaling function (for 
p = 2, the scaling function <p(-) G C0,Qt(fi), where a < 0.55; for fractional order 
Sobolev spaces, <p € Hs(£l), where s < 1). 

On the contrary, the scaling function is used as a weight function in our quadrature 
formulas. Then we can avoid the effect of the lacking smoothness of the scaling 
function. Thus, to approximate arising integrals with a sufficient accuracy, we need 
significantly less function values. Furthermore, during computations we actually 
need no function values of the scaling function; we need only scaling parameters. 

To calculate the exact errors, we choose such an example where the analytic solu­
tion is known, 

-u" = -x + l/2 for xe (0,3), 

u(0) = u(3) = 0. 

The computational results are summarized in Tab. 1. The first column contains the 
results computed by Simpson's rule; the second column shows the results computed 
by the wavelet quadrature rules. 
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Another, this time more complicated boundary value problem, 

- ( e 2 V ) ' = 4 - 4z for x 6 (0,3), 

ti(0) = u(3) = 0. 

The computational results are summarized in Tab. 2. Again, the first column con­

tains the results computed by Simpson's rule and the second column presents the 

results computed by the wavelet quadrature rules. 

J 
2 З Ј | | u - г x j | | 0 J 

Method 1 Method 2 

0 0.030520 0.030520 

1 0.029869 0.029869 

2 0.029541 0.029541 

3 0.029375 0.029375 

4 0.029293 0.029292 

5 0.029253 0.029250 

6 0.029256 0.029224 

J 
2 З Ј | | г i - г i j | | 0 J 

Method 1 Method 2 

0 0.015550 0.028228 

1 0.079219 0.078086 

2 0.128423 0.179214 

3 0.146847 0.319862 

4 0.151953 0.360131 

5 0.153100 0.236514 

6 0.152963 0.172772 

7 0.153117 0.157064 

Table 1. Table 2. 

To conclude: In the first, simpler example, the wavelet quadrature rules led to 

the exact evaluation of the relevant integrals. In the second example, the results 

computed by Simpson's rule are slightly better. However, the order of error is the 

same as in the case of the wavelet quadrature rules and, moreover, our approach 

requires significantly less number of function values. 
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Abstract. In this paper, Daubechies wavelets on intervals are investigated. An analytic
technique for evaluating various types of integrals containing the scaling functions is pro-
posed; they are compared with classical techniques. Finally, these results are applied to
two-point boundary value problems.
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1. Introduction

In addition to the large theoretical interest in wavelet analysis, wavelets also play

an important role in numerical analysis. One of these applications consists in replac-
ing piecewise polynomial test functions in finite element methods by wavelets (cf. [7],

[10]).

The wavelets we will consider are those with vanishing moments (see [4]). One of

the fundamental problems in applying the wavelets is the construction of numerical
quadratures to compute the integrals containing scaling functions. To derive such

quadrature formulas, we apply so called moments integrals and derive formulas and
recursions for the fast computation of the moments integrals of the form

∫
xnϕ(x) dx

and
∫
xnϕ(x − i)ϕ(x − j) dx, on any dyadic interval. In [15] this was done for the

*This work was supported by Deutsche Forschungsgemeinschaft (DFG) grant 1777/2-1,
by the grant No. 201/01/1200 of the Grant Agency of the Czech Republic and by the
grant MSM 113200007.
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case of
∫ ∞
0
xnϕ(x) dx, only. We exploit these moments to derive effective quadrature

formulas. Finally, we employ these formulas to solve two-point boundary value prob-
lems. As the test functions, we have chosen anti-derivatives of the scaling function.
These anti-derivatives are smoother and, moreover, the boundary conditions can be

treated easily. This idea was introduced in [16]—the integrals were approximated
by Simpson’s rule. In our approach, the integrals can be effectively and precisely

approximated and “variational crimes” can be easily treated, too. We provide a
comparison of these two methods.

The paper is organized as follows. First, we shortly deal with wavelets on finite
intervals and with construction of bases for anti-derivatives of wavelets. In the next

section, we present a procedure for evaluating the scaling moments. Finally, in the
last part we apply this theory to two-point boundary value problems.

Now, we briefly review the key-stones of wavelet theory—definitions and basic
properties.

Definition 1. Any function ψ(·) ∈ L2( � ) which generates an orthonormal basis
of the space L2( � ) by the system of translations and dilations

{ψj,k(·)}j,k∈ � = {2j/2ψ(2j · −k)}j,k∈ �

is called an orthonormal wavelet.

If we denote Wj = span{ψj,k(·); k ∈ � }, we have: L2( � ) =
∞⊕

j=−∞
Wj .

Definition 2. A multiresolution analysis . . . ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ . . . with scaling

function ϕ ∈ L2( � ) is an increasing sequence of subspaces of L2( � ) satisfying the
following four conditions:
i) (density)

⋃
j

Vj is dense in L2( � ),
ii) (separation)

⋂
j

Vj = {0},

iii) scaling f(·) ∈ Vj ⇔ f(2−j ·) ∈ V0,

iv) (orthonormality) {ϕ(· − k)}k∈ � forms an orthonormal basis for V0.

From iii) and iv) it follows that {ϕj,k}k∈ � forms an orthonormal basis of Vj , where

(1) ϕj,k(·) := 2j/2ϕ(2j · −k).

We will assume that the spaces Wj are orthogonal complements of Vj in Vj+1, so
that Vj

⊕
Wj = Vj+1 ∀ j ∈ � . From this fact it follows that the scaling function ϕ

satisfies the scaling equation (identity):

(2) ϕ(·) =
∑

k∈ �
hkϕ(2 · −k),
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where hk are the corresponding scaling parameters, and the wavelet ψ satisfies the

wavelet equation:

(3) ψ(·) =
∑

k∈ �
gkϕ(2 · −k);

gk are called wavelet parameters.

Now, we will summarize the properties of the scaling parameters of the Daubechies
wavelets. Let p be some positive integer and let:

i) hk = 0 ∀ k /∈ {0, 1, . . . , 2p− 1},

ii) δm,0 = 2−1
2p−1∑
j=0

hjh2m+j for 1− p 6 m 6 p− 1,

iii)
2p−1∑
k=0

hk = 2,

iv)
2p−1∑
k=0

(−1)khkk
n = 0 for 0 6 n 6 p− 1.

Systems {hk} satisfying the conditions above for 1 6 p 6 10 can be found in [3].
In [12] it is proved that for a fixed p, there exists only one linear independent scaling
function ϕ which satisfies the scaling equation with these scaling parameters. The

support of this function lies in [0, 2p− 1].
We choose the corresponding wavelet parameters gk so that

gk := (−1)kh2p−k−1.

Then the support of the wavelet lies in [0, 2p− 1] too and it is well-known that this
wavelet has p vanishing moments, i.e.

∫ 2p−1

0

xiψ(x) dx = 0 ∀ i = 0, . . . , p− 1,

integrated over the support of the wavelet.

Further in the text, we will deal only with the Daubechies wavelets and in the

fourth section we will use for simplicity the Daubechies wavelet with two vanishing
moments. However, the construction of frames and the evaluation of the moments

integrals can be easily generalized to other types of orthonormal wavelets too. The
only reason for the choice of the Daubechies wavelets are their good approximation

properties (which depend on the number of vanishing moments).
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2. Wavelets on Intervals

There are several ways how to construct a wavelet basis on intervals. The first
possibility is a periodic extension of wavelets (see [4], [13]). In this case, however, the

vanishing moments, as well as good approximation properties, are destroyed. The
second possibility was described in [14] by Meyer. The idea is the following: We

take all the wavelets (and scaling functions) supported in our interval and, instead
of wavelets supported outside the interval, we construct new boundary wavelets so

that the vanishing moments are preserved.
We will take a closer look at the third possibility (see [16]). For convenience of

exposition, we will use the term ‘frame’ for a ‘basis’ of a vector space in a weak sense
(for more details see [16], [5] and [9]).

Definition 3. Let {ϕn}∞n=1 be a subset of a Banach space X . Let span {ϕn}∞n=1

be the set of all elements
∑
αnϕn (αn ∈ � ) which converge (strongly) in X . Then

{ϕn}∞n=1 is called a frame of X if span {ϕn}∞n=1 = X .

A frame generates the space, but the functions can be linearly dependent. By

construction, wavelets form an orthonormal basis of L2( � ), but for the application,
a basis on a finite interval is required. First, we construct a frame.

Let p ∈ � be the number of vanishing moments. For simplicity, we will consider
Ω := [0, R] = [0, 2p− 1] here. We choose j = 0 as the starting level. It contains the
scaling functions from the space V0 only. If we restrict ourselves just to wavelets and
scaling functions with support intersecting Ω, we obtain a frame of L2(Ω).
We denote:

(4) Ij := {k ∈ � ; 1−R 6 k 6 2jR− 1}, j > 0.

Now, for given J ∈ � we define:

(5) VJ (Ω) := span{ψj,k|Ω, ϕ0,k|Ω; 0 6 j < J, k ∈ Ij}.

Obviously, we have VJ (Ω) ⊂ VJ+1(Ω) and
∞⋃

J=0

VJ(Ω) is dense in L2(Ω).

We can easily see that the wavelets in (5) are linearly dependent in Ω. That is
why the number of wavelets in the spaceWJ and scaling functions in the space VJ is

altogether 2J+1R+ 2R− 2 whilst the number of scaling functions in the space VJ+1

is 2J+1R + R − 1. It follows that the wavelets do not form a basis for Vj(Ω). The
next Theorem shows how we can construct a basis. We define the index set by

Dj := {k ∈ � ; p−R 6 k 6 2jR− p}, j > 0.
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Theorem 4. For J > 0, there holds dim VJ(Ω) = 2JR+R− 1. Furthermore, the
sets

(6) {ϕJ,k; k ∈ IJ} and {ψj,k, ϕ0,l; 0 6 j < J, k ∈ Dj , l ∈ I0}

are bases of VJ (Ω).

���������
. A proof can be found e.g. in [16]. �

3. Anti-derivatives of wavelets

Now, we will use anti-derivatives of wavelets to construct frames of H1
0 (Ω), where

we define:

H1
0 (Ω) := {v ∈ H1(Ω); v(0) = v(R) = 0},

where Hm(Ω) stands for the Sobolev space of functions from L2(Ω) whose distribu-
tional derivatives up to order m are square integrable.

Let f ∈ L1(Ω). Then f will denote its mean value, i.e. f = 1
R

∫ R

0 f(x) dx.

Lemma 5. Let {θn}∞n=1 be a frame of L2(Ω). Then

span
{

∆n; ∆n(x) :=
∫ x

0

θn(s) ds− xθn, 0 6 x 6 R

}∞

n=1

⊂ H1
0 (Ω)

forms a frame of the space H1
0 (Ω).

By Theorem 4, Lemma 5, and because of the fact that integration preserves linear

independence, we are able to construct a finite-dimensional basis for the subspaces
of H1

0 (Ω). However, a problem may arise because of the extra term θn. Thus, we

have to verify the linear independence of these functions again.

Let us define

Ψj,k(x) =
∫ x

0

ψj,k(s) ds− xψj,k

and

ΦJ,k(x) =
∫ x

0

ϕJ,k(s) ds− xϕJ,k for x ∈ [0, R].
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Using the well-known fact that
∑
k∈ �

ϕ(x− k) = 1 (see [17]), we obtain

R−1∑

k=1−R

Φ0,k =
R−1∑

k=1−R

(∫ x

0

ϕ(s− k) ds− x

R

∫ R

0

ϕ(x− k) dx
)

=
∫ x

0

R−1∑

k=1−R

ϕ(s− k) ds− x

R

∫ R

0

R−1∑

k=1−R

ϕ(x − k) dx

= x− x

R
R = 0.

Thus, the set of Φ0,k for k ∈ I0 is linearly dependent. The following lemma shows

which functions must be removed.

Lemma 6. The sets

{Ψj,k,Φ0,l; 0 6 j < J, k ∈ Dj , l ∈ I0 \ {1−R}} and {ΦJ,k; k ∈ IJ \ {1−R}},

respectively, define bases for a subspace of H1
0 (Ω).

In the following, we will use the functions ϕj,k and therefore we define the space

(7) SJ
0 := span{ΦJ,k; k ∈ IJ \ {1−R}}.

Furthermore, we need to characterize the approximation properties of the anti-

derivatives of wavelets with p vanishing moments. The next theorem deals with this
problem.

Theorem 7. Let J > 0, p be a number of vanishing moments and s be a fixed
integer. Then for any function v ∈ H1

0 (Ω) ∩Hs+1(Ω) the following inequality holds
true:

inf
χ∈SJ

0

|v − χ|1,Ω 6 O(hs|v|s+1,Ω), 0 6 s 6 p,

where h = 2−J .

Proofs of Lemma 5, Lemma 6, and Theorem 7, as well as the construction of finite
dimensional subspaces of H1(Ω), can be found in [16].
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4. Applications to two-point boundary value problems

In this section we will apply the anti-derivatives of wavelets (the order p) to nu-
merical solutions of the two-point boundary value problem

(8) −(q(x)u′(x))′ = f(x) for x ∈ Ω,

with Dirichlet boundary conditions

u(0) = u(R) = 0.

We assume that f ∈ L2(Ω), that the function q(·) is smooth in (0, R), and that
0 < q 6 q(·) 6 q in (0, R) for some positive constants q, q. The variational form
of (8) is

(9)
∫ R

0

q(x)u′(x)v′(x) dx =
∫ R

0

f(x)v(x) dx ∀ v ∈ H1
0 (Ω).

By the Lax-Milgram Lemma, this problem has a unique weak solution u ∈ H1
0 (Ω).

In (9), if we substitute SJ
0 for H

1
0 (Ω), we obtain a Galerkin-wavelet method. Then

we search for an approximation of u expressed by

∑

k∈IJ\{1−R}
uJ,kΦJ,k,

where uJ,k are unknown real parameters, and calculate

∑

k∈IJ\{1−R}
uJ,k

∫ R

0

q(x)
(∫ x

0

ϕJ,k(s) ds− xϕJ,k

)′(∫ x

0

ϕJ,l(s) ds− xϕJ,l

)′
dx

=
∫ R

0

f(x)
(∫ x

0

ϕJ,l(s) ds− xϕJ,l

)
dx ∀ l ∈ IJ \ {1−R}

with IJ defined by (4). After differentiation,

∑

k∈IJ\{1−R}
uJ,k

∫ R

0

q(x)(ϕJ,k(x)− ϕJ,k)(ϕJ,l(x)− ϕJ,l) dx

=
∫ R

0

f(x)
(∫ x

0

ϕJ,l(s) ds− xϕJ,l

)
dx ∀ l ∈ IJ \ {1−R}.

We can see that we need to approximate three types of integrals. The first step
is to compute the so called scaling moments. For simplicity, we will treat these
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integrals only for the Daubechies wavelet with two vanishing moments (so p = 2)
on the interval [0, 3]. Using (1), we can transform them to integrals with ϕ. For
instance ∫ 3

0

xnϕJ,k(x) dx =
1
2J

∫ 3

0

(x+ k

2J

)n

ϕ(x) dx.

Similarly, we can transform the other integrals, too. That is why we derive the
formulas for evaluating the scaling moments only for the scaling function ϕ.

When the support of the function ϕJ,k lies in the interval of integration, we will
compute the transformed integral on the interval [a, b], where a = 0 and b = 3.
In the opposite case, when the support of the function ϕJ,k lies partly outside the
interval [0, 3], we have to compute this integral on the interval [a, b], where a = 0
and b ∈ {1, 2} or b = 3 and a ∈ {1, 2}.
Consequently, we will study the following three types of integrals:

a)
∫ b

a

xnϕ(x) dx,

b)
∫ b

a

xn

(∫ x

a

ϕ(s) ds− x

b− a

∫ b

a

ϕ(s) ds
)

dx,

c)
∫ b

a

xnϕ(x)ϕ(x − k) dx.

4.1. Wavelets and numerical integration
a) Let us use the following notations:

Mn :=
∫ 3

0

xnϕ(x) dx and mn :=
3∑

k=0

hkk
n

for the continuous moments and for the discrete moments, respectively. Then the

following lemma holds.

Lemma 8. Let M0 = 1 and let us assume that only finitely many hk do not

vanish. Then for any n ∈ � , the following relation holds true:

(10) Mn =
1

2n+1 − 2

n∑

j=1

(
n

j

)
mjMn−j .

���������
. By substitution, interchanging summation and integration, and using

the binomial formula, we obtain

∫ 3

0

xnϕ(x) dx =
3∑

k=0

hk

∫ 3

0

xnϕ(2x− k) dx =
1

2n+1

3∑

k=0

hk

∫ 3

0

(y + k)nϕ(y) dy

=
1

2n+1

3∑

k=0

hk

∫ 3

0

n∑

j=0

(
n

j

)
kjyn−jϕ(y) dy
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∫ 3

0

xnϕ(x) dx =
1

2n+1

n∑

j=0

(
n

j

) ∫ 3

0

yn−jϕ(y) dy
3∑

k=0

hkk
j

=
1

2n+1

n∑

j=0

(
n

j

)
mjMn−j .

From this, it follows immediately that

Mn =
1

2n+1 − 2

n∑

j=1

(
n

j

)
mjMn−j ,

which proves the lemma. �
���! #"$��%

9. A study of recursion stability is beyond the scope of this article,

because we use only the first four moments, i.e. n ∈ {0, 1, 2, 3}.

Unfortunately, the formula for computing the moments integrals we have just

derived is not usable for evaluation of these moments in the case when the support
of the scaling function exceeds the interval. In the case of Daubechies wavelets with

two vanishing moments, we have two integrals on both sides with support out of the
interval [0, 3]. These integrals must be examined separately. Let us denote

An :=
∫ 2

0

xnϕ(x+ 1) dx and Bn :=
∫ 1

0

xnϕ(x+ 2) dx.

Now, we apply the scaling equation to the scaling function ϕ(·):

An = h3

∫ 2

0

xnϕ(2x− 1) dx+ h2

∫ 1.5

0

xnϕ(2x) dx

+ h1

∫ 1

0

xnϕ(2x+ 1) dx+ h0

∫ 0.5

0

xnϕ(2x+ 2) dx,

Bn = h3

∫ 1

0

xnϕ(2x+ 1) dx+ h2

∫ 0.5

0

xnϕ(2x+ 2) dx.

After the transformation, we obtain

An =
h3

2n+1
Mn,1 +

h2

2n+1
Mn,0 +

h1

2n+1
An +

h0

2n+1
Bn

and

Bn =
h3

2n+1
An +

h2

2n+1
Bn,
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where

Mn,l :=
∫ 3

0

(x + l)nϕ(x) dx =
∫ 3

0

n∑

i=0

(
n

i

)
lixn−iϕ(x) dx =

n∑

i=0

(
n

i

)
liMn−i.

(Here we take 00 = 1.) Together we have:

Lemma 10. For any n ∈ � , the following relations hold true:

(2n+1 − h1)An − h0Bn = h3Mn,1 + h2Mn,0,

−h3An + (2n+1 − h2)Bn = 0.

Thus, for any n ∈ � we obtain a regular system of linear equations. The mo-
ments that exceeded the right end of the interval [0, 3] can be expressed as a linear
combination of the already known moments. Let us denote

Cn :=
∫ 3

1

xnϕ(x − 1) dx and Dn :=
∫ 3

2

xnϕ(x − 2) dx.

After the transformation, we obtain

Cn =
∫ 0

−2

(x+ 3)nϕ(x+ 2) dx

=
∫ 1

−2

(x+ 3)nϕ(x+ 2) dx−
∫ 1

0

(x + 3)nϕ(x+ 2) dx

=
∫ 3

0

(x+ 1)nϕ(x) dx−
∫ 1

0

(x + 3)nϕ(x+ 2) dx =
n∑

i=0

(
n

i

)
(Mn−i − 3iBn−i).

After treating Dn analogously, we can summarize the results.

Lemma 11. For any n ∈ � , the following equalities hold true:

Cn =
n∑

i=0

(
n

i

)
(Mn−i − 3iBn−i) and Dn =

n∑

i=0

(
n

i

)
(2iMn−i − 3iAn−i).

���! #"$��%
12. We also have:

(11)
∫ 1

0

ϕ(x) dx = D0,

∫ 2

1

ϕ(x) dx = 1−D0 −B0,

∫ 3

2

ϕ(x) dx = B0.
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From this, we get the following fast and effective way to compute the integrals on

any dyadic interval, for j ∈ � and 0 6 k 6 3 · 2j − 1:

∫ (k+1) 2−j

k 2−j

ϕ(x) dx =
3∑

l=0

hl

∫ (k+1) 2−j

k 2−j

ϕ(2x− l) dx

=
1
2

3∑

l=0

hl

∫ (k+1) 2(−j+1)−l

k 2(−j+1)−l

ϕ(y) dy.

Repeating this succession j-times, we come to the already known integrals (11).

Let us now focus on integrals b). We have to compute only the first term, because

the second term is the integral of the scaling function from a to b, which is already
known. For a, b ∈ {0, 1, 2, 3}, a < b, let us denote

In
a,b :=

∫ b

a

xn

∫ x

a

ϕ(s) ds dx−
∫ b

a

xn+1

b− a
dx

∫ b

a

ϕ(s) ds.

By integrating by parts, we obtain

Lemma 13. For any n ∈ � , the following equality holds true:

In
a,b =

ϕ(b)bn+1 − ϕ(a)an+1

n+ 1
−

∫ b

a

((
xn+1 − an+1

n+ 1

)
ϕ(x) +

xn+1

b− a

∫ b

a

ϕ(s) ds
)

dx.

���! #"$��%
14. How can we compute the values of ϕ(a) from Lemma 13? For

l ∈ {0, 1, 2, 3}, the scaling equation (2) implies

(12) ϕ(l) =
3∑

k=0

hkϕ(2l − k) =
2l∑

k=2l−3

h2l−kϕ(k).

Furthermore, for given scaling parameters there exists a unique scaling function (up

to a multiplicative constant). After a normalization
∑
k

ϕ(k) = 1, the system of

equations (12) has only one solution.

Using results in a) and Remark 14, we see that In
a,b is computable.

c) Let us again consider the case when the support of both scaling functions lies

in the interval of integration. We will use the following notation:

Ln,k :=





∫ 3

0

xnϕ(x)ϕ(x − k) dx for k ∈ {−2,−1, 0, 1, 2},

0 otherwise.
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Lemma 15. For any n ∈ � and k ∈ {−2,−1, 0, 1, 2}, the following relation holds
true:

Ln,k = 2−n−1

( 3∑

m,l=0

hmhlLn,2k+l−m +
3∑

m,l=0

hmhl

n∑

i=1

(
n

i

)
miLn−i,2k+l−m

)
.

���������
. By substitution, interchanging summation and integration, and using

the binomial formula, we obtain

Ln,k =
∫ 3

0

xnϕ(x)ϕ(x − k) dx

=
3∑

m,l=0

hmhl

∫ 3

0

xnϕ(2x−m)ϕ(2x− 2k − l) dx

= 2−n−1
3∑

m,l=0

hmhl

∫ 3

0

(y +m)nϕ(y)ϕ(y +m− 2k − l) dy

= 2−n−1
3∑

m,l=0

hmhl

∫ 3

0

n∑

i=0

(
n

i

)
miyn−iϕ(y)ϕ(y +m− 2k − l) dy

= 2−n−1

( 3∑

m,l=0

hmhlLn,2k+l−m +
3∑

m,l=0

hmhl

n∑

i=1

(
n

i

)
miLn−i,2k+l−m

)
,

which proves the lemma. �

So, for any fixed n we obtain a regular system of linear equations (of dimension 5).
This system was already considered in [11], [15] and it is well-conditioned. Again,

this formula cannot be employed for computing these moments when the support
of a scaling function does not lie in the interval. In the case of wavelets with two

vanishing moments, we have three integrals at both sides, with their support not in
the interval [0, 3]. Let us denote

En :=
∫ 2

0

xnϕ2(x+ 1) dx,

Fn :=
∫ 1

0

xnϕ2(x+ 2) dx,

Gn :=
∫ 1

0

xnϕ (x+ 2)ϕ (x + 1) dx.
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Again, we apply the scaling equation. Thus

En = h2
3

∫ 2

0.5

xnϕ2(2x− 1) dx+ h2
2

∫ 1.5

0

xnϕ2(2x) dx+ h2
1

∫ 1

0

xnϕ2(2x+ 1) dx

+ h2
0

∫ 0.5

0

xnϕ2(2x+ 2) dx+ 2h2h3

∫ 1.5

0.5

xnϕ(2x− 1)ϕ(2x) dx

+ 2h1h3

∫ 1

0.5

xnϕ(2x− 1)ϕ(2x+ 1) dx+ 2h2h1

∫ 1

0

xnϕ(2x+ 1)ϕ(2x) dx

+ 2h1h0

∫ 0.5

0

xnϕ(2x+ 1)ϕ(2x+ 2) dx+ 2h2h0

∫ 0.5

0

xnϕ(2x+ 2)ϕ(2x) dx,

Fn = h2
3

∫ 1

0

xnϕ2(2x+ 1) dx+ h2
2

∫ 0.5

0

xnϕ2(2x+ 2) dx

+ 2h2h3

∫ 0.5

0

xnϕ(2x+ 1)ϕ(2x+ 2) dx,

Gn = h2
3

∫ 1

0.5

xnϕ(2x− 1)ϕ(2x+ 1) dx+ h2
2

∫ 0.5

0

xnϕ(2x)ϕ(2x+ 2) dx

+ h2h3

∫ 1

0

xnϕ(2x+ 1)ϕ(2x) dx+ h3h0

∫ 0.5

0

xnϕ(2x+ 1)ϕ(2x+ 2) dx

+ h1h3

∫ 1

0

xnϕ2(2x+ 1) dx+ h2h1

∫ 0.5

0

xnϕ(2x+ 1)ϕ(2x+ 2) dx

+ h2h0

∫ 0.5

0

xnϕ2(2x+ 2) dx.

After the transformation, we obtain

2n+1En = h2
3

∫ 3

0

(x+ 1)nϕ2(x) dx+ h2
2

∫ 3

0

xnϕ2(x) dx+ h2
1

∫ 2

0

xnϕ2(x+ 1) dx

+ h2
0

∫ 1

0

xnϕ2(x+ 2) dx+ 2h2h3

∫ 2

0

(x+ 1)nϕ(x)ϕ(x + 1) dx

+ 2h1h3

∫ 1

0

(x+ 1)nϕ(x)ϕ(x + 2) dx+ 2h2h1

∫ 2

0

xnϕ(x)ϕ(x + 1) dx

+ 2h1h0

∫ 1

0

xnϕ(x + 1)ϕ(x+ 2) dx+ 2h2h0

∫ 1

0

xnϕ(x+ 2)ϕ(x) dx,

2n+1Fn = h2
3

∫ 2

0

xnϕ2(x+ 1) dx+ h2
2

∫ 1

0

xnϕ2(x+ 2) dx

+ 2h2h3

∫ 1

0

xnϕ(x + 1)ϕ(x+ 2) dx,
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2n+1Gn = h2
3

∫ 1

0

(x+ 1)nϕ(x)ϕ(x + 2) dx+ h2
2

∫ 1

0

xnϕ(x)ϕ(x + 2) dx

+ h2h3

∫ 2

0

xnϕ(x)ϕ(x + 1) dx+ h3h0

∫ 1

0

xnϕ(x+ 1)ϕ(x + 2) dx

+ h1h3

∫ 2

0

xnϕ2(x+ 1) dx+ h2h1

∫ 1

0

xnϕ(x+ 1)ϕ(x + 2) dx

+ h2h0

∫ 1

0

xnϕ2(x+ 2) dx.

Together:

Lemma 16. For any n ∈ � , and k, l ∈ {0, 1, 2}, the following equalities hold true:

(2n+1 − h2
1)En − h2

0Fn − 2h0h1Gn = h2
3Ln,0,1 + h2

2Ln,0,0 + 2h2h3Ln,1,1

+2h1h3Ln,2,1 + 2h2h1Ln,1,0 + 2h0h2Ln,2,0,

−h2
3En + (2n+1 − h2

2)Fn − 2h2h3Gn = 0,

−h1h3En − h2h0Fn + (2n+1 − h1h2 − h0h3)Gn = h2
3Ln,2,1 + h2

2Ln,2,0 + h2h3Ln,1,0,

where

Ln,k,l =
∫ 3

0

(x + l)nϕ(x)ϕ(x + k) dx =
n∑

i=0

(
n

i

)
liLn−i,−k.

The following lemma shows that moments exceeding the right end of the inter-
val [0, 3] can be again transformed to already known moments.

Lemma 17. For any n ∈ � , the following relations hold true:
∫ 3

1

xnϕ2(x− 1) dx =
n∑

i=0

(
n

i

)
(Ln−i,0 − 3iFn−i),

∫ 3

2

xnϕ2(x− 2) dx =
n∑

i=0

(
n

i

)
(2iLn−i,0 − 3iEn−i),

∫ 3

2

xnϕ2(x− 1)ϕ2(x− 2) dx =
n∑

i=0

(
n

i

)
(2iLn−i,−1 − 3iGn−i).

Using Lemmas 8, 10, 11, 13, 15, 16, and 17, we are able to compute moment
integrals for all three required types of integrals (namely a), b), and c)).

Our next goal is to integrate a general function q weighted by, roughly speeking,
the scaling function ϕ; see the Galerkin-wavelet method at the beginning of Section 4.
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To this end, we derive quadrature formulas that are exact for the respective mo-

ment integrals a)–c) up to a given order. For example,
∫ 3

0 q(x)ϕ(x) dx can be approx-
imated by a formula aq(c) + bq(d), where a, b are parameters and c, d are points in
[0, 3]. The values of a, b, c, and d are delivered through solving a system of nonlinear
equations determined by the requirement of exact integration of moment integrals up
to order three. Treating the scaling function (or functions) as a weight function en-

ables to avoid potential negative effect of lacking smoothness of the scaling function
on the accuracy of the quadrature formulas.

The quadrature formulas are derived only once. They are ready for future use, so

that the Galerkin-wavelet “stiffness” matrix is calculated efficiently.

4.2. Numerical examples
Using Daubechies wavelet with two vanishing moments, we have an error of order

2−3J where J is the resolution level. Of course, this holds only when the solution
is sufficiently smooth. Besides its good approximation properties, the advantage of

this wavelet is its relatively small support.
Let us compare our method with the approach used in [16]. In [16], the authors

implemented the functions ϕ and ψ (and also Φ and Ψ) by their values at dyadic
points in [0, 3] (at x = k/2D, for 0 6 k 6 2D3). The integration was done numeri-
cally by Simpson’s quadrature formula. The accuracy of numerical quadratures was
therefore affected by the choice of D. In their computations, they set D between 8

and 12. Here, in computations using their approach, we set D = 10. The need of
relatively large D is caused by the lack of smoothness of the scaling function (for

p = 2, the scaling function ϕ(·) ∈ C0,α(Ω), where α < 0.55; for fractional order
Sobolev spaces, ϕ ∈ Hs(Ω), where s < 1).
On the contrary, the scaling function is used as a weight function in our quadrature

formulas. Then we can avoid the effect of the lacking smoothness of the scaling
function. Thus, to approximate arising integrals with a sufficient accuracy, we need

significantly less function values. Furthermore, during computations we actually
need no function values of the scaling function; we need only scaling parameters.

To calculate the exact errors, we choose such an example where the analytic solu-

tion is known,

−u′′ = −x+ 1/2 for x ∈ (0, 3),

u(0) = u(3) = 0.

The computational results are summarized in Tab. 1. The first column contains the

results computed by Simpson’s rule; the second column shows the results computed
by the wavelet quadrature rules.
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Another, this time more complicated boundary value problem,

−(e2xu′)′ = 4− 4x for x ∈ (0, 3),

u(0) = u(3) = 0.

The computational results are summarized in Tab. 2. Again, the first column con-
tains the results computed by Simpson’s rule and the second column presents the

results computed by the wavelet quadrature rules.

23J‖u− uJ‖0
J
Method 1 Method 2

0 0.030520 0.030520

1 0.029869 0.029869

2 0.029541 0.029541

3 0.029375 0.029375

4 0.029293 0.029292

5 0.029253 0.029250

6 0.029256 0.029224

Table 1.

23J‖u− uJ‖0
J
Method 1 Method 2

0 0.015550 0.028228

1 0.079219 0.078086

2 0.128423 0.179214

3 0.146847 0.319862

4 0.151953 0.360131

5 0.153100 0.236514

6 0.152963 0.172772

7 0.153117 0.157064

Table 2.

To conclude: In the first, simpler example, the wavelet quadrature rules led to
the exact evaluation of the relevant integrals. In the second example, the results

computed by Simpson’s rule are slightly better. However, the order of error is the
same as in the case of the wavelet quadrature rules and, moreover, our approach

requires significantly less number of function values.
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