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Abstract. In the theory of autonomous perturbations of periodic solutions of ordinary
differential equations the method of the Poincaré mapping has been widely used. For the
analysis of properties of this mapping in the case of two-dimensional systems, a result
first obtained probably by Diliberto in 1950 is sometimes used. In the paper, this result
is (partially) extended to a certain class of autonomous ordinary differential equations of
higher dimension.
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1. Introduction

The theory of dynamical systems and an important part of the qualitative theory

of differential equations is based on the concept of the phase space S and the concept
of the flow. By a flow we understand any mapping ϕ : A× S → S, where A is � or�
and S is a metric or topological space such that, for any t1, t2 ∈ A and x ∈ S
1. ϕ is continuous,

2. ϕ(t1, ϕ(t2, x)) = ϕ(t1 + t2, x), (the group property)

3. ϕ(0, x) = x.

For example, if f : � n → � n is a continuous function such that an autonomous

system ẋ = f(x) (where the dot denotes the derivative with respect to t) is complete

* This research was supported by Grant No. 201/99/0295 of the Grant Agency of the Czech
Republic.

93



and its solutions t 7→ ϕ(t, x) are uniquely determined by the initial condition x at
t = 0, then the function ϕ : (t, x) 7→ ϕ(t, x) is a flow. Here A = � and S = � n .

A very powerful tool, depending on the concept of a flow, is the “method of sec-
tions” invented by Poincaré [12], nowadays known as the method of the Poincaré

mapping or the transition mapping, which makes it possible to replace some differen-
tial equations by a suitable mapping and, at the same time, to reduce the dimension

of the phase space by one by cutting the flow transversaly by one or more hyper-
planes.

This idea is really far reaching—from the realms of global analysis [11] to
those of the generalized Poincaré operators of differential inclusions in the sense

of Carathéodory, when the flow is a set-valued map [4], [5].

While in some trivial cases the Poincaré mapping can be explicitly calculated, in
most cases it is not so and the same is true for its differential. Up to now, for an

n-dimensional case, we have had only indirect information about the characteristic
eigenvalues of the Poincaré mapping attached to a p-periodic solution. More pre-

cisely, we know that the eigenvalues are equal to the characteristic multipliers (with
one exception) of the corresponding variational equation. And there is no way how

to compute the values of those characteristic multipliers. . .

Because there is such an evident connection between the Poincaré mapping and the

variational equation, it is clear that a naive hypothesis for the differential equation
considered

(1) ẋ = f(x),

is

H1 f : Dom(f) ⊆ � n → � n is a C1 function with an open domain.

Then the Poincaré mapping is continuously differentiable, which immediately leads
to the question about the differential of such a mapping. This question was, in the
case of n = 2, successfully solved by Andronov [6] and, in a sense, by Diliberto [8].
Instead of the original Diliberto’s formulation we give here a new transcription

taken from Chicone [7], where some minor numerical errors were corrected (J is the

special symplectic matrix J :=
[

0, 1
−1, 0

]
).

Theorem 1.1. Let ϕ(t, x) denote the flow of the differential equation (1), n = 2.
Let f(x) 6= 0, and let Y (t) be the fundamental matrix of the homogeneous variational
equation ẏ = Df(ϕ(t, x))y such that Y (0) is the identity matrix. Ten for all t ∈ �
we have Y (t)f(x) = f(ϕ(t, x)), Y (t)f>(x) = a(t, x)f(ϕ(t, x)) + b(t, x)f>(ϕ(t, x)),

94



where f>(x) := Jf(x) and

b(t, x) =
‖f(x)‖2

‖f(ϕ(t, x))‖2
exp

∫ t

0

div f(ϕ(s, x)) ds,

a(t, x) =
∫ t

0

{2κ(s, x)‖f(ϕ(s, x))‖ − rot f(ϕ(s, x))} ds.

Here κ(s, x) denotes the scalar curvature along the plane curve given by the flow
ϕ(·, x).

Chicone [7] was able to obtain a nice geometric identification for the quantities

a(t, x) (in terms of the local transition time) and b(t, x) (in terms of the local transi-
tion mapping) and he posed the problem (Problem 5.13) about possible generaliza-

tion of Diliberto’s theorem to the case of n > 2.

2. Diliberto’s theorem

Clearly there is no way how to obtain the full generalization of Diliberto’s result,

because his success is based on an a priori knowledge of one nontrivial solution of
the variational equation (e.g. [10], p. 276).

In this paper we extend the theorem to three dimensional systems equipped with
some kind of two-dimensional invariant manifold. We would like to note that we

have been able to extend our considerations to n-dimensional systems [2] and that
the proof will appear elsewhere.

To keep our presentation as simple as possible, we will suppose that

H2 all solutions of (1) are defined on [0,∞),

and that (1) has a very special kind of an invariant manifold, namely a level set of

a first integral. Therefore our third hypothesis is

H3 g : Dom(f) ⊆ � 3 → � is a nondegenerate first integral [9, p. 114] of (1), g ∈ C2.

If ϕ(t, x) is the solution of (1) such that ϕ(0, x) = x then g(ϕ(t, x)) = g(x). Hence
the equation g(x) = c, c ∈ � yields a foliation of Dom(f) with two-dimensional
submanifolds M2(c) := {x ∈ Dom(f) : g(x) = c} embedded in � 3 as leaves. In the
sequel we will work with exactly one leaf ofM 2(c), so we will write simplyM instead
of M2(c).
As g is C2 and nondegenerate at any x ∈ M , the one-dimensional normal

space NxM and the two-dimensional tangent space TxM ofM at x ∈M are defined.
Clearly NxM := {αn(x) : α ∈ � }, where n(x) := grad g(x)/‖ grad g(x)‖ is the unit
normal vector (the surface normal) and n(x) is C1 on M . Because dimTxM = 2,
we may suppose ([·|·] denotes cross-product)
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H4 there are two C1 functions a1(x), a2(x) on M such that ‖a1(x)‖ = ‖a2(x)‖ = 1
and a2(x) = [n(x)|a1(x)].

The choice of a1(x), a2(x) is not unique, we will give some examples after Theo-
rem 2.2.

In our proof of Diliberto’s theorem we repeatedly use the fact that the dimension
of the phase space is n = 3. This is the only dimension, where a beautiful relation
between vectors and skew-symmetric matrices exists. This relation allows us to
replace the cross-product by matrix multiplication and vice versa. We will recall this

relation as a lemma.

Lemma 2.1. Let a, b ∈ � 3 , a = (a1, a2, a3). Then [a|b] = R(a)b, where

R(a) =




0 , −a3, a2

a3, 0 , −a1

−a2, a1, 0


 .

Finally, putting f⊥(x) := [n(x)|f(x)] for any x ∈M and denoting the usual inner
product by 〈·|·〉 we see that f(x) = 〈a1|f〉a1+〈a2|f〉a2, f⊥(x) = −〈a2|f〉a1+〈a1|f〉a2.
Now we may state Diliberto’s theorem for three-dimensional systems with a first

integral.

Theorem 2.2. Let hypotheses H1, H2, H3, H4 be fulfilled and ϕ(t, x) denote the
solution of the differential equation (1), ϕ(0, x) = x ∈ M , n = 3. Let f(x) 6= 0, and
let Y (t) be the fundamental matrix of the variational equation ẏ = Df(ϕ(t, x))y such
that Y (0) is the identity matrix. Then for all t ∈ � we have Y (t)f(x) = f(ϕ(t, x)),
Y (t)f⊥(x) = a(t, x)f(ϕ(t, x)) + b(t, x)f⊥(ϕ(t, x)), and

b(t, x) =
‖f(x)‖2

‖f(ϕ(t, x))‖2
exp

∫ t

0

{〈a1|(Df)a1〉+ 〈a2|(Df)a2〉}(ϕ(s, x)) ds,(2)

a(t, x) =
∫ t

0

{(2κg‖f‖ − 〈(Df)a1|a2〉+ 〈(Df)a2|a1〉)b}(ϕ(s, x)) ds,

where κg is the geodesic curvature of ϕ(·, x) equipped with natural parametrization
and the other functions are evaluated at ϕ(s, x).
���������

. Let x ∈ M . Then, due to the invariance of M , ϕ(t, x) ∈ M for t > 0.
With a small abuse of notation f(x), f⊥(x) ∈ TxM (more correctly we should write

here (x, f(x)), (x, f⊥(x)) ), hence Y (t)f(x), Y (t)f⊥(x) ∈ Tϕ(t,x)M for t > 0. But for
any x̃ ∈M , Tx̃M is a two-dimensional vector space and 〈f(x)|f⊥(x)〉 = 0, hence for
any t > 0

Y (t)f⊥(x) = a(t, x)f(ϕ(t, x)) + b(t, x)f⊥(ϕ(t, x)).
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Since x is fixed, due to uniqueness we may put A(t) := a(t, x), B(t) := b(t, x), so
A : � → � and B : � → � . As Y (t)f⊥(x) is the solution of ẏ = Df(ϕ(t, x))y,
y(0) = f⊥(x), we have

Df(ϕ(t, x))[A(t)f(ϕ(t, x)) + B(t)f⊥(ϕ(t, x))]

= A′(t)f(ϕ(t, x)) +A(t)Df(ϕ(t, x))f(ϕ(t, x))

+ B′(t)f⊥(ϕ(t, x)) + B(t)Df⊥(ϕ(t, x))f(ϕ(t, x))

or

B(t)Df(ϕ(t, x))f⊥(ϕ(t, x)) = A′(t)f(ϕ(t, x)) + B′(t)f⊥(ϕ(t, x))(3)

+ B(t)Df⊥(ϕ(t, x))f(ϕ(t, x)).

Multiplying this equation by f⊥(ϕ(t, x)) we obtain (henceforth omitting arguments
to keep formulae in a reasonable range)

(4) B′〈f⊥|f⊥〉 = B{〈(Df)f⊥|f⊥〉 − 〈(Df⊥)f |f⊥〉}.

Clearly 〈f⊥|f⊥〉 = ‖f‖2. For the second inner product on the right-hand side of (4)

we obtain

〈(Df⊥)f |f⊥〉 =
〈 d

dt
f⊥

∣∣∣ f⊥
〉

=
1
2

d
dt
〈f⊥|f⊥〉 =

1
2

d
dt
‖f‖2,

so B(t) fulfils the differential equation

(5) B′ = B
{
〈a1|(Df)a1〉+ 〈a2|(Df)a2〉 −

d
dt

log ‖f‖2
}
,

and after integration from 0 to t we obtain the first equation from (2).
Multiplying (3) by f we obtain

(6) A′‖f‖2 = B{〈(Df)f⊥|f〉 − 〈(Df⊥)f |f〉}.

For the second inner product in (6) we have 〈(Df⊥)f |f〉 = −〈(Df)f |f⊥〉, hence

A′‖f‖2 = B{〈(Df)f⊥|f〉+ 〈(Df)f |f⊥〉}(7)

= B{2〈f⊥|(Df)f〉+ 〈f⊥|((Df)∗ − (Df))f〉}.

In order to manage the term 〈f⊥|(Df)f〉, let us denote by ψ : s 7→ ψ(s, x) the curve
ϕ : t 7→ ϕ(t, x) in its natural parametrization,

s =
∫ t

0

‖f(ϕ(ξ, x))‖ dξ.
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Then ϕ(t, x) = ψ(s(t), x), ϕt(t, x) = ψs(s(t), x)ṡ(t), ‖ψs(s, x)‖ ≡ 1 and ṡ(t) > 0.
Therefore

〈f⊥|(Df)f〉 = 〈[n|ϕt]|ϕtt〉 = (n|ϕt|ϕtt) = (n|ψs|ψss)(ṡ)3 = κg‖ϕt‖3,

where κg(t, x) = κg(ξ(s(t), x)) is the geodesic curvature [3, p. 173] of the curve
ϕ : t 7→ ϕ(t, x) ( (·| · |·) is a mixed or triple product of vectors). This together
with (7) gives

A′ = B{2κg‖f‖ − 〈(Df)a2|a1〉+ 〈(Df)a1|a2〉},

and after integration from 0 to t we obtain the second equation from (2). �

Here and now Diliberto’s theorem could be seen as a triviality, but the truth is

(quite) opposite. In the next section we will demonstrate one of possible applica-
tions—computation of the derivative of the Poincaré mapping in a direction v for

v ∈ TxM , v 6∈ span{f(x)}.
��� �"!#��$

1. The choice of a1(x), a2(x) is not unique. The most obvious, but
often not the best, is the choice a1(x) := ‖f(x)‖−1f(x), a2(x) := ‖f⊥(x)‖−1f⊥(x).

There are many important systems with a linear first integral—one of them are
kinetical systems

(8) ẋ = AG(x),

an interesting class of nonlinear differential equations used in physical chemistry and

biology (for general definition and basic asymptotic properties see e.g. [1]). In such
systems linear first integrals appear as a result of conservation laws (for mass or for

population).

On the assumptions of this paper the kinetical system (8) has one linear first

integral g(x) = 〈u|x〉 = U col(x), A is a 3×m matrix, rank(A) = 2 and UA = 0. If
we suppose that the first two columns a1 and a2 of A are orthogonal, we can choose

functions ai(x) as

ai(x) =
ai

‖ai‖
, i = 1, 2.
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3. The transition mapping

In this section we will suppose that the hypotheses H1, H2, H3 and H4 are fulfilled.
If x1 ∈M is a point such that f(x1) 6= 0, then the solution ϕ(t, x1) of (1) is defined
and belongs to M for t > 0. Let x2 = ϕ(p, x1) for some 0 < p < ∞. Let Σ1 and
Σ2 be two planes such that x1 ∈ Σ1 and x2 ∈ Σ2, respectively, which are transverse

to the vector field f(x) at x1 and x2 (that is 〈f(xi)|ni(xi)〉 6= 0, where ni(x) is a
normal to Σi at xi, i = 1, 2).
In particular, for i = 1, 2 we have Σi 6= TxiM , therefore the intersection Σxi ∩M

is locally a C1 curve with a parametrization σi : (−εi, εi) → � 3 such that σi(0) = xi,

0 6= σ′i(0) =: vi ∈ TxiM . We will henceforth use the notation {σi} := {σi(t) ∈
� 3 : −εi < t < εi} for i = 1, 2.
Due to H1 there is a real C1 function τ defined on a neighborhood of x1 such that

τ(x1) = p, ϕ(τ(x1), x1) = ϕ(p, x1) = x2 and ϕ(τ(x), x) ∈ Σ2. The function τ is

called the transition time (or the return time if Σ1 = Σ2).
Let V1 be a neighborhood of x1 and U1 = V1 ∩ Σ1, then the mapping

Ψ: U1 ⊆ Σ1 → Σ2,(9)

Ψ: x 7→ ϕ(τ(x), x),

is called the transition map (or the Poincaré map or the first return map if Σ1 = Σ2).

Obviously Ψ(x1) = x2. Our aim is to compute DΨ(x1)v1.
To this end we will use the fact that DΨ(x1)v1 = d

dsΨ(σ1(s))|s=0. From (9) we

obtain
Ψ(σ1(s)) = ϕ(τ(σ1(s)), σ1(s)).

Differentiating both sides with respect to s we obtain

DΨ(σ1(s))σ′1(s) = D1ϕ(τ(σ1(s)), σ1(s))
d
ds
τ(σ1(s)) +D2ϕ(τ(σ1(s)), σ1(s))σ′1(s)

= f(ϕ(τ(σ1(s)), σ1(s)))(Dτ(σ1(s))σ′1(s))

+D2ϕ(τ(σ1(s)), σ1(s))σ′1(s).

Putting s = 0 we obtain

DΨ(x1)v1 = f(x2)(Dτ(x1)v1) +D2ϕ(p, x1)v1.

Because σ1(0) = x1 and {σ1} ∈M we have v1 ∈ Tx1M . Therefore there are α, β ∈ �
such that

DΨ(x1)v1 = f(x2)(Dτ(x1)v1) +D2ϕ(p, x1)[αf(x1) + βf⊥(x1)]

= f(x2)(Dτ(x1)v1) + αD2ϕ(p, x1)f(x1) + βD2ϕ(p, x1)f⊥(x1)

= f(x2)(Dτ(x1)v1) + αD2ϕ(p, x1)f(x1) + β[A(p)f(x2) + B(p)f⊥(x2)],
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where A(t) := a(t, ϕ(t, x1)), B(t) := b(t, ϕ(t, x1)) are the functions used in Diliberto’s
theorem.

Finally, using D2ϕ(p, x1)f(x1) = f(ϕ(p, x1)) = f(x2) we obtain

DΨ(x1)v1 = [Dτ(x1)v1 + α+ βA(p)]f(x2) + βB(p)f⊥(x2).

Suppose that the second curve {σ2} is orthogonal to the curve ϕ(t, x1) at x2,

i.e. 〈f(x2)|v2〉 = 0. Since {σi} ⊂ Σi, Ψ: {σ1} → {σ2} and xi ∈ {σi} for i = 1, 2, we
have DΨ: Tx1{σ1} → Tx2{σ2}, but Tx2{σ2} = {γv2 : γ ∈ � } and f(x2) 6∈ Tx2{σ2}.
Hence Dτ(x1)v1 + α + βA(p) = 0 and DΨ(x1)v1 = βB(p)f⊥(x2) and we have

proved the following theorem.

Theorem 3.1. Let the hypotheses H1, H2, H3 and H4 be fulfilled. Let x1 ∈M ,
f(x1) 6= 0 and x2 = ϕ(p, x1), where 0 < p < ∞ is the first time with this property.
Let Σ1, Σ2 be planes such that Σ1 is transverse to ϕ(t, x) at t = 0 and Σ2 is

orthogonal to ϕ(t, x) at t = p. Let Ψ: U ⊂ Σ1 → Σ2 be the Poincaré mapping. If

v1 ∈ Tx1Σ1 ∩ Tx1M , then

DΨ(x1)v1 =
〈v1|f⊥(x1)〉
‖f(x1)‖2

b(p, x2)f⊥(x2),

where b(t, x) is the function defined in (2).

Acknowledgment. The author is indebted to anonymous referees for invaluable
suggestions that helped to improve the paper and for pointing out an error in the
original proof.
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