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NUMERICAL SIMULATIONS OF GLACIAL REBOUND

USING PRECONDITIONED ITERATIVE SOLUTION METHODS

� � ������� 	 
 � ��� 	
, ������������� � � � ����� , Uppsala

Abstract. This paper discusses finite element discretization and preconditioning strategies
for the iterative solution of nonsymmetric indefinite linear algebraic systems of equations
arising in modelling of glacial rebound processes. Some numerical experiments for the
purely elastic model setting are provided. Comparisons of the performance of the iterative
solution method with a direct solution method are included as well.
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1. Introduction

This work deals with numerical simulations of the response of the solid Earth
to large-scale glacial advance and recession and the resulting crustal stress state.

Very large ongoing glacioisostatic recovery is registered in Central Scandinavia. The
amount of residual rebound, coupled with low and declining rates of recovery, imply

that the lithosphere may not completely reach equilibrium within itself before the
next glacial period. All evidence at hand indicates that the effect of the rebound

processes on crustal stability has to be analysed and taken into account in the context
of other problems, such as various ground and underground excavating/building

activities near the regions of rebound, and, in particular, for the safety assessment
of radioactive waste repositories.

Two main mathematical frameworks to model the dynamics of the lithosphere

during glacial advance and recession are commonly used.

Isostatic model. Isostasy adopts the concept that the elevation of the Earth’s
surface seeks a balance between the weight of lithospheric rocks and the buoyancy
of asthenospheric “fluid” (nearly-molten rock). The model describes the geophysical
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problem in terms of a system of partial differential equations (PDEs) which describe

the equilibrium state of a pre-stressed visco-elastic material body, subject to surface
and body forces. It includes a first-order term representing advection of pre-stress,
the incorporation of which has proven to be crucial for the successful modelling of

the underlying processes, see [22].

Coupled plate tectonic hypothesis and (thermo-)visco-plastic rheology.
In this second model the stresses in the lithosphere are modelled as being the result

of glaciation, superimposed on the plate tectonic processes. The problem is then for-
mulated as a contact problem with visco-plastic friction. In this setting the advection

stress corresponds to a convective term in the equation of motion. The latter model
allows for a more complex analysis of the interplay between the various processes

occurring in the different layers of the Earth mantle.

In this paper we deal with numerical simulations of the isostasy model only. This
model is broadly used by geo-scientists for numerical simulations of glaciation effects.

The models are discretized using the finite element method (FEM) and solved by a
commercial FE package at hand. It is observed, see [23], that most such packages are
not well suited for geophysical applications related to deformations of a viscoelastic

Earth. In particular, it is not possible in a straightforward manner to include the pre-
stress advection term and some modifications in the packages are necessary. Another

potential difficulty when using a standard commercial FE package is encountered
when modelling incompressible materials. Most such packages allow treatment of

almost incompressible materials only.

In this paper we address the following issues:

(i) the pre-stress advection term is included in the isostatic model and we study
its influence on the properties of the resulting FE linear system;

(ii) the original system of PDEs is reformulated as a saddle point problem in order
to treat compressible and incompressible materials in a unified manner;

(iii) we apply a preconditioned iterative solution method, in contrast to the com-

monly used direct solution methods, and discuss some preconditioning strate-
gies;

(iv) we present some numerical tests and comparisons with results obtained when
solving the same problem using a commercial FE package.

2. Description and analysis of the isostatic model

2.1. Governing equations
Consider a pre-stressed visco-elastic material body which occupies a domain

Ω ⊂ � d , d = 2, 3 with a (piecewise) smooth boundary ∂Ω. The governing balance
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equation describing the equilibrium state of a solid body subject to surface and body

forces (cf. [14]) is of the form

(1) ∇ · σ︸ ︷︷ ︸
(A)

+∇(u · ∇p(0))︸ ︷︷ ︸
(B)

− %(0)g(0)ed∇ · u︸ ︷︷ ︸
(C)

− %(0)∇ϕ(∆)

︸ ︷︷ ︸
(D)

= 0 in Ω.

In (1), the term (A) describes the force from spatial gradients in stress, u = [ui]di=1 ∈
Ω is the displacement vector and % is the density. When a large elastic solid is put in

a gravitational field, it becomes gravitationally pre-stressed with pressure p(0). This
pressure can be regarded as an initial condition imposed on the problem and does

not cause deformations. The term (B) represents the advection of this pre-stress
and describes how it is carried by the moving material. The terms (C) and (D)

describe perturbations of the gravitational force and gravitational acceleration due
to changes of density. In the present study, a non-selfgravitating (flat) Earth model is

used, which implies that the term (D) vanishes because of the constant gravitational
field.

In its full complexity, the model includes viscoelastic constitutive relations. How-
ever, in this paper we discuss a purely elastic material behavior only, as analyzed

in [14], for instance. Although simplified, this model serves as a reference benchmark
for the study of the above listed tasks (i)–(iv).
���! #"%$'&

2.1. It can be seen (cf. [21]) that incorporating viscoelastic constitutive
relations with particular stress-relaxation functions (of Dirichlet-Prony type) does

not lead to significant changes in the properties of the linear algebraic systems to be
solved when computing the deformation of the viscoelastic solid through time. This

topic falls, however, out of the scope of the present paper.

Under the assumptions that the displacements are small and the solid is linear

and isotropic, the Lamé-Navier formulation of Equation (1) takes the form

(2)





−2µ∆u− µ∇× (∇× u)︸ ︷︷ ︸
(A1)

−∇(u · b)︸ ︷︷ ︸
(B)

+ c(∇ · u)︸ ︷︷ ︸
(C)

− µ∇p︸︷︷︸
(A2)

= 0,

µ∇ · u− µ2

λ
p = 0,

where p = λµ−1∇ · u is the kinematic pressure, introduced as an extra variable,
and λ and µ are the Lamé coefficients. In this way the term (A) in (1) is split into

(A1)+(A2).
Equation (2) generalizes (1), since ∇p(0) and %(0)g(0)ed are replaced by arbitrary

vectors b and c. In this way, the analysis of Equation (2) is valid for a broader class
of problems. If c = 0, b is constant, and u is curl-free, we obtain a system of PDEs
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which is similar to the linearized Navier-Stokes (NS) equations. For reasons of com-

parison we include the general form of the steady-state (linearized) incompressible
NS equations (3) and compressible NS equations (4):

(3)





−µ∆u︸ ︷︷ ︸
(NA1)

− (b · ∇)u︸ ︷︷ ︸
(NB)

+ ∇p︸︷︷︸
(NA2)

= f in Ω,

∇ · u = 0 in Ω,

(4)





−µ∆u︸ ︷︷ ︸
(NA1)

+ %(p)(b · ∇)u︸ ︷︷ ︸
(NB)

− ν∇(∇ · u)︸ ︷︷ ︸
(NC)

+ ∇p︸︷︷︸
(NA2)

= f in Ω,

∇ · (%u) = g in Ω.

In (3), (4) u is the velocity, µ is the viscosity constant, p is the pressure, %(p) is
the density and ν is the so-called bulk viscosity constant. The vector b in (3), (4)
replaces u in the linearized form of the term (u · ∇)u in the nonlinear NS equations.
The boundary conditions are omitted for simplicity.
Comparing (2) with (3), three major differences can be pointed out. First, (2) is

of more general form, which can be seen from the following relation between vector

operators:

∇(u · b) = (u · ∇)b + (b · ∇)u + b× (∇× u) + u× (∇× b).

Thus, in general, the term (NB) is only one part of the term (B). Second, µ in (2) is
a material parameter which is positive and bounded away from zero, while in (3) and

(4) µ is the (scaled) inverse of the Reynolds number (Re) and, thus, becomes very
small for large Re. The latter means that (3), (4) can be seen as singularly perturbed

adection-diffusion problems, which does not hold for (2). Third, it is known (see,
for instance, [16] for the compressible NS) that the principal bilinear form in the

variational formulation of (3) and (4) is always coercive. We show in Section 2.2
that for the corresponding principal bilinear form in (2) coercivity does not hold in

general. To summarize, the problem arising in post-glacial rebound does not reduce
to NS and the known numerical solution methods and preconditioning techniques

for NS are not directly applicable. There are certain similarities, however, which
allow us to use some well-known and studied solution techniques for saddle point

problems when performing numerical simulations of the problem in question.

2.2. Variational formulation
The variational formulation of Equation (2) is defined in terms of the Sobolev

spaces V = (H1
0 (Ω))d, d = 2, 3 equipped with the norm ‖ · ‖V = ‖ · ‖1, and P =
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{
p ∈ L2(Ω);

∫
Ω

µp dΩ = 0
}
, equipped with the norm ‖ · ‖P = ‖ · ‖0. It leads to the

following mixed variable problem: Find u ∈ V and p ∈ P such that

(5)

{
a(u,v) + b(v, p) = 0 ∀v ∈ V,

b(u, q)− c(p, q) = 0 ∀ q ∈ P,

where the bilinear forms a(·, ·), b(·, ·) and c(·, ·) are defined as follows

a(u,v) =
∫

Ω

[
2µ

d∑

k=1

(∇uk) · (∇vk)− µ(∇× u) · (∇× v)

−∇(u · b) · v + (∇ · u)(c · v)
]

dΩ,

b(u, q) =
∫

Ω

µ(∇ · u)q dΩ and c(p, q) =
∫

Ω

µ2

λ
pq dΩ.

The usual way to ensure existence and uniqueness of the solution of a variational
problem is to show boundedness and coercivity of a(u,v) and then apply the Lax-
Milgram lemma. Below we show that the bilinear form a(u,v) in (5) is not coercive
in general and only weaker estimates hold.

To address in more detail the boundedness and coercivity of the bilinear form
a(·, ·), we introduce auxiliary bilinear forms â(·, ·), ã(·, ·) and ˜̃a(·, ·) as

â(u,v) =
∫

Ω

2µ

d∑

k=1

(∇uk) · (∇vk) dΩ,

ã(u,v) =
∫

Ω

[
2µ

d∑

k=1

(∇uk) · (∇vk)− µ(∇× u) · (∇× v)
]

dΩ,

˜̃a(u,v) =
∫

Ω

−∇(u · b)v + (∇ · u)(c · v)
)

dΩ.

By construction, a(u,v) = ã(u,v)+˜̃a(u,v). We now make the following assumptions
on the coefficient vectors b(x) ∈ � d and c(x) ∈ � d : there exist constants α1, α2 and

β, independent on u and v, such that

|bi(x)| 6 α1, i = 1, . . . , d,(6)

|∇ · b| 6 α2,(7)

|c| 6 β.(8)

We also assume that the problem (5) possesses a solution, and want to show coercivity

(in some weak form) and to derive quasi-optimal error bounds for the corresponding
Galerkin finite element method.
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First we note that the dominating part ã(u,v) of a(u,v) is bounded and coercive.
The latter can be seen by using the well-known Korn inequality. It is known that
there exists a constant K(Ω), which may depend only on the domain Ω and on the
boundary conditions, such that

(9) K(Ω)â(u,u) 6 ã(u,u) 6 2â(u,u) ∀u ∈ V.

Therefore, there exist constants K1 and K2, which depend only on Ω and on the
boundary conditions, such that

(10) |ã(u,v)| 6 K1‖u‖1‖v‖1 and ã(u,u) > K2‖u‖2
1.

We consider now the first-order terms in ˜̃a(u,v). The following estimates hold:

∣∣∣∣
∫

Ω

∇(u · b)v dΩ
∣∣∣∣ 6

d∑

k=1

∫

Ω

∣∣∣ ∂

∂xk
(ukbk)vk

∣∣∣ dΩ(11)

6
d∑

k=1

∫

Ω

∣∣∣∂uk

∂xk
bkvk

∣∣∣ dΩ +
d∑

k=1

∫

Ω

∣∣∣uk
∂bk

∂xk
vk

∣∣∣dΩ

6 α1d‖u‖1‖v‖0 + α2d‖u‖0‖v‖0,
∣∣∣∣
∫

Ω

(∇ · u)(c · v) dΩ
∣∣∣∣ 6

d∑

k=1

∫

Ω

|(∇ · u)ckvk | dΩ 6 βd‖u‖1‖v‖0.(12)

Therefore,

|˜̃a(u,v)| 6 d(α1‖u‖1 + α2‖u‖0 + β‖u‖1)‖v‖0(13)

= d(α1 + β)‖u‖1‖v‖0 + dα2‖u‖0‖v‖0

6 σ‖u‖1‖v‖0,

where σ = d(α1 + α2 + β). We now use Young’s inequality (ab 6 1
2ε|a|2 + 1

2ε−1|b|2)
as follows

(14) ‖u‖1‖v‖0 6 ε

2
‖u‖2

1 +
1
2ε
‖v‖2

0 ∀ ε > 0.

Combining (13) and (14) we obtain

(15) |˜̃a(u,v)| 6 σ
ε

2
‖u‖2

1 + σ
1
2ε
‖v‖2

0.
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We want to prove a relation of the type (G̊arding inequality) a(u,u) > C (1)‖u‖2
1 −

C(2)‖u‖2
0, where C(1) > 0 holds for all u ∈ V. We show below that this is true for a

particular choice of the parameter ε in (15),

a(u,v) = ã(u,v) + ˜̃a(u,v)(16)

> K2‖u‖2
1 −

∣∣˜̃a(u,v)
∣∣

> K2‖u‖2
1 − σ

ε

2
‖u‖2

1 − σ
1
2ε
‖v‖2

0

=
(
K2 − σ

ε

2

)
‖u‖2

1 − σ
1
2ε
‖v‖2

0.

We choose now ε such that C(1) ≡ K2 − σ · 1
2ε > 0, i.e., 0 < ε < 2K2/σ. For the

latter choice of ε, C(1) > 0 and C(2) ≡ σ/2ε > 0.
Thus, we obtain that for all u ∈ V there holds

(17) a(u,u) > C(1)‖u‖2
1 − C(2)‖u‖2

0,

where C(1) > 0 and C(2) > 0 do not depend on u.
To show boundedness of a(u,v), we denote C(a) = 2K1 +σ and using the relation

‖ · ‖0 6 ‖ · ‖1, we find

|a(u,v)| 6 2|â(u,v)| + σ‖u‖1‖v‖0(18)

6 2K1‖u‖1‖v‖1 + σ‖u‖1‖v‖0

6 C(a)‖u‖1‖v‖1.

���! #"%$'&
2.2. For incompressible materials, the term c∇·u becomes zero. When

in addition b = ed, then∇·b = 0 and we see that in this case the bilinear form a(u,v)
is coercive.

2.3. Finite element discretizations and error estimates

Let Vh and P h be finite element subspaces of V and P , respectively, and uh, vh,
ph and qh the discrete counterparts of u, v, p and q. The discrete formulation of (5)

reads then as follows: Find uh and ph such that relations (19) hold for all vh ∈ Vh

and for all qh ∈ P h.

a(uh,vh) + b(vh, ph) = (fh,vh) ∀vh ∈ Vh,(19)

b(uh, qh)− c(ph, qh) = 0 ∀ qh ∈ P h.
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As is well known, in order to obtain a stable discrete formulation, the finite element

spaces Vh and P h cannot be arbitrarily chosen. They have to form a stable pair,
i.e., such that the discrete analog of the inf-sup condition holds, namely,

(20) sup
uh∈Vh

b(uh, ph)
‖uh‖Vh

> γh‖ph‖P h > γ0‖ph‖P h ∀ ph ∈ P h,

for some positive constant γ0 > 0, which for practical purposes should not be very
small.
The interpretation of the discrete LBB condition (20) is that if the LBB constant γ0

is independent on the discretization parameter h, then the rate of convergence of the
FE solution uh to the solution of the continuous variational problem is bounded

uniformly with respect to the problem parameters E and ν.
There exists a variety of stable finite element pairs. A preferred choice is uh ∈ πh

2

(componentwise) and ph ∈ πh
1 , where πh

2 and πh
1 are the spaces of piecewise quadratic

and piecewise linear polynomials. The discretization error for u and p is shown to

be

‖u− uh‖V + ‖p− ph‖P 6 const
(

inf
vh∈Vh

‖u− vh‖V + inf
qh∈P h

‖p− qh‖P

)
,

for any elements vh ∈ Vh and qh ∈ P h.

2.3.1. Error estimates. As shown above, the bilinear form a(u,v) is not coer-
cive in general. Following [1], we derive quasi-optimal error bounds for the Galerkin

method, applied to the problem under consideration.
Assume that the following assumptions hold.

(A1) |a(u,v)| 6 C‖u‖1‖v‖1.
(A2) Let VhN ⊂ V, hN = 1/(Nd), N = 1, 2, . . ., be a sequence of finite di-

mensional subspaces of V. (For notational simplicity we omit the sub-
script N .) Let there exist a sequence of positive numbers {δh}∞N=1 such

that lim
N→∞

δh = 0 and that for every e ∈ Vh and z ∈ P h, satisfying

a(e,v) + b(v, z) = 0 ∀v ∈ Vh,

b(e, q)− c(z, q) = 0 ∀ q ∈ P h,

there holds

‖e‖0 6 δN‖e‖1.

Let now u ∈ V and p ∈ P be given. Let Vh and P h be finite-dimensional subspaces
of V and P , respectively, and assume that there exist u∗h ∈ Vh and p∗h ∈ P h such
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that

a(u− u∗h,vh) + b(vh, p− p∗h) = 0 ∀vh ∈ Vh,(21)

b(u− u∗h, qh)− c(p− p∗h, qh) = 0 ∀ qh ∈ P h.

Then, choosing v = u− u∗h = u− uh + uh − u∗h and qh = p− p∗h = p− ph + ph − p∗h
and subtracting the two equations in (21), we arrive at

a(uh − u∗h,uh − u∗h) + c(ph − p∗h, ph − p∗h)(22)

= a(u− uh,uh − u∗h) + b(uh − u∗h, p− ph)

− b(u− uh, ph − p∗h) + c(p− ph, ph − p∗h)

which holds for any uh ∈ Vh and any ph ∈ P h. We assume now that either

γ‖ph‖0 6 sup
uh

b(uh, ph)
‖uh‖1

or α‖ph‖2
0 6 c(ph, ph), α > 0,

is satisfied. The former option holds true for LBB-stable discretizations and the

latter option holds true for stabilized discretizations.

We combine the assumption (A2) with e = u− u∗h and (17):

a(uh − u∗h,uh − u∗h) + c(p− p∗h, p− p∗h) > a(uh − u∗h,uh − u∗h)(23)

> C(1)‖uh − u∗h‖2
1 − C(2)‖uh − u∗h‖2

0

> (C(1) − C(2)δ2
h)‖uh − u∗h‖2

1.

Next we assume that a discrete LBB condition holds true (given in (20)) and obtain
the following relations:

‖p− p∗h‖0 6 ‖p− ph‖0 + ‖ph − p∗h‖0(24)

6 ‖p− ph‖0 +
1
γ

sup
vh

b(vh, ph − p∗h)
‖vh‖1

6 ‖p− ph‖0 +
1
γ

sup
vh

b(vh, ph − p)
‖vh‖1

+
1
γ

sup
vh

b(vh, p− p∗h)
‖vh‖1

6 ‖p− ph‖0 +
C(b)

γ
‖p− ph‖0 +

1
γ

sup
vh

a(u− u∗h,vh)
‖vh‖1

6
(
1 +

C(b)

γ

)
‖p− ph‖0 +

C(a)

γ
‖u− u∗h‖1,
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where we have used the first part of (21). From the boundedness estimates, applied

to (22) and from (24) we obtain

a(uh − u∗h,uh − u∗h) + c(ph − p∗h, ph − p∗h)(25)

6 C(a)‖uh − u∗h‖1‖u− uh‖1 + C(b)‖u− uh‖1‖ph − p∗h‖0

+ C(b)‖uh − u∗h‖1‖p− ph‖0 + C(c)‖p− p∗h‖0‖ph − ph‖0

6 C(a)‖u− uh‖2
1 + C(a)‖u− u∗h‖1‖u− uh‖1

+ 2C(b)‖u− uh‖1‖p− ph‖0 + C(b)‖u− uh‖1‖p− p∗h‖0

+ C(b)‖u− u∗h‖1‖p− ph‖0 + C(c)‖p− ph‖2
0

+ C(c)‖p− ph‖0‖p− p∗h‖0

6
[
α1C

(a) + α2C
(b) + α3

C(a)C(b)

γ
+ a4

C(a)C(c)

γ

]
‖u− u∗h‖2

1

+
[
C(a) +

C(a)

4α1
+ C(b) +

1
2
C(b)

(
1 +

C(b)

γ

)
+

C(a)C(b)

4α3γ

]
‖u− uh‖2

1

+
[
C(b) + C(c) +

C(b)

4α2
+

1
2
(C(b) + 2C(c))

(
1 +

C(b)

γ

)

+
C(a)C(c)

4α4γ

]
‖p− ph‖2

0.

Combining (23) and (25) we obtain

[
C(1) − C(2)δ2

h − α1C
(a) − α2C

(b) − α3
C(a)C(b)

γ
− α4

C(a)C(c)

γ

]
‖u− u∗h‖2

1(26)

6
[
C(a) +

C(a)

4α1
+ C(b) +

1
2
C(b)

(
1 +

C(b)

γ

)
+

C(a)C(b)

4α3γ

]
‖u− uh‖2

1

+
[
C(b) + C(c) +

C(b)

4α2
+

1
2
(
C(b) + 2C(c)

)(
1 +

C(b)

γ

)
+

C(a)C(c)

4α4γ

]

× ‖p− ph‖2
0

Here α1 . . . α4 are arbitrary positive constants. We see that if we choose

α1 =
C(2)δ2

h

4C(a)
, α2 =

C(2)δ2
h

4C(b)
, α3 =

C(2)δ2
hγ

4C(a)C(b)
and α4 =

C(2)δ2
hγ

4C(a)C(c)
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we obtain

(C(1) − 2C(2)δ2
h)‖u− u∗h‖2

1(27)

6
[
C(1) + C(a) +

C(a)2

C(2)δ2
h

+
C(b)

2

(
3 +

C(b)

γ

)
+

C(a)2

C(2)δ2
h

(
1 +

C(b)2

γ2

)]

× ‖u− uh‖2
1

+
[
C(b) +

1
2
(
C(b) + 2C(c)

)(
1 +

C(b)

γ

)

+
1

C(2)δ2
h

(
C(b)2 +

C(a)2C(c)2

γ2

)]
× ‖p− ph‖2

0.

We finally obtain the following error estimate, which holds for all uh ∈ Vh, ph ∈ P

and N > N0:

(28) ‖u− u∗h‖1 + ‖p− p∗h‖0 6 C1‖u− uh‖1 + C2‖p− ph‖0

and the constants C1, C2 do not depend on the discretization parameter h.
Further (see [1], for instance), it can be shown that the discrete solution u∗h, p∗h

exists and is unique for a sufficiently large N (small h), N > N0.
���! #"%$'&

2.3. For small values of γ and δh we see from the latter derivations that
the constants C1 and C2 can become large and the resulting error estimates become

quite pessimistic. In practice, for a particular solution the constraints can take more
favourable values when the solution is smooth and/or is not near incompressibility.

2.3.2. Equal order discretization for displacements and pressure. A
known approach to circumvent the use of stable pairs of finite element spaces for
saddle point problems and retain stable and locking-free solutions is to use equal
order finite elements for displacements and pressure, and some stabilized version of

the discrete problem. For example, a stabilized and consistent formulation of (19)
can be obtained in the following manner. We take divergence of the first equation

in (2), use the fact that divergence of curl of any vector function is equal to zero, and
add the resulting equation to the second equation in (2), multiplied by a stabilization

parameter σh. Formally we have the following sequence of transformations.

−2µ∇ ·∆u− µ∇ · (∇× (∇× u))− ξ(u,b, c) − µ∇ · ∇p = ∇ · f ,
−2µ∆(∇ · u)− µ∆p− ξ(u,b, c) = ∇ · f ,

−µ
(
1 +

2µ

λ

)
∆p = ∇ · f + ξ(u,b, c),

µ∇ · u− σhµ
(
1 +

2µ

λ

)
∆p− µ2

λ
p = σh∇ · f + σhξ(u,b, c),
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where ξ(u,b, c) = ∇ · (∇u · b)−∇ · c∇ · u. Then we consider the problem

−2µ∆u− µ∇× (∇× u)−∇u · b + c∇ · u− µ∇p = f ,(29)

µ∇ · u− σhµ
(
1 +

µ

λ

)
∆p− µ2

λ
p = σh∇ · f + σhξ(u,b, c).

By using a similar technique as in [2] one can show that discrete LBB condition
holds for problem (29) discretized by standard piecewise linear finite elements. The

choice of the stabilization parameter σh = O(h2) can be justified as in [3]. There, a
defect-correction algorithm is described in order to handle the term σhξ(u,b, c).

3. Preconditioning strategies

The finite element discretization of (19) leads to a linear algebraic system

(30) A
[
uh

ph

]
≡

[
M BT

B −C

] [
uh

ph

]
=

[
rh

sh

]
.

The system matrix A admits a saddle point form and is nonsymmetric indefinite.
The nonsymmetricity is due to the discretized first order (advection) terms in the
block M .

Much research has been devoted to iterative solution methods and preconditioning
for saddle point problems. A recent comprehensive survey of numerical methods for

saddle point problems is found in [5]. To summarize briefly, almost all preconditioners
suggested for matrices of saddle point form utilize the block structure of the matrix

and originate from the exact factorization

[
A11 A12

A21 A22

]
=

[
I 0

A21A
−1
11 I

][
A11 0
0 S

] [
I A−1

11 A12

0 I

]
(31)

or
[

A11 A12

A21 A22

]
=

[
A11 0
A21 S

] [
I A−1

11 A12

0 I

]
=

[
I 0

A21A
−1
11 I

] [
A11 A12

0 S

]
,(32)

where S is the exact Schur complement with respect to A11, S = A22 −A21A
−1
11 A12.

The most successful preconditioners are block-diagonal, block upper- or lower-

triangular and indefinite (sometimes of a factorized form as in [2], for example). The
particular nonsymmetric case (A12 = AT

21, A11 6= AT
11) has been studied mostly in

the context of incompressible NS, see for instance [7], [9], [8], [13], [11], [17] and more
references in [5]. Less experience is available for compressible NS (e.g. [16]).
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To precondition A in (30), most often one of the following two-by-two block pre-
conditioners have been used:

B0 =
[

D1 0
0 D2

]
, B1 =

[
D1 0
B −D2

]
,(33)

B2 =
[

D1 BT

B −R

]
=

[
D1 0
B N1

] [
I1 D−1

1 BT

0 −N2

]
,

where D1, D2, R and N1, N2 are some approximation matrices to be constructed.

From the factorizations (31) and (32) it is easily seen that to obtain a good precon-
ditioner to A, D1, D2 and R have to be approximations of M , C + BD−1

1 BT and

C, respectively. In the extreme case when D1 = M and D2 = C + BM−1BT , all
eigenvalues of the preconditioned matrix B−1

1 A are equal to 1 and a preconditioned
iterative solution method with B2 will converge within one or two iterations. In the

special case when D1 = M and D2 = (BBT )(BMBT )−1(BBT ), under a certain ad-
ditional condition, all eigenvalues of B−1

1 A are equal to one and no Jordan block has
order higher than two (cf. [7]). Since to choose D1 = M and to construct S explicitly
is not feasible in practice, a suitable approximation of these has to be used. We note

here that some of the proposed approximations of S are symmetric while the true
Schur complement is not, and these have shown to work well only in certain cases.

An observation has been made (see [2] for symmetric problems) that the conver-
gence of an iterative method using the block-preconditioners in (33) is more sensitive

to the quality of the block D1 than to that of the block D2. If D1 and D2 are optimal
order preconditioners toM and S with respect to discretization and problem param-

eters, then the block preconditioners will also be of optimal order. The question how
to construct such optimal D1 and in particular D2 is answered in some special cases.

Optimal approximations for S are derived for the Stokes, the generalized Stokes and
the Oseen problems (see [5] and the references therein). For the linear elasticity we

refer to [12] and [4]. As noted in [5], incomplete factorizations of M in the nonsym-
metric case remain a feasible option. Multigrid preconditioners for the block M are

also used, after a fair tuning of the multigrid ingredients (see for instance [19]). To
use an indefinite preconditioner of a factorized form, as in [2], is appealing only if we

can easily (cheaply) compute explicitly a good approximation for S.

���! #"%$'&
3.1. Denote M = K + N , where K is symmetric positive definite and

corresponds to the terms (A1) and (NA1), respectively, N is the nonsymmetric part

in the stiffness matrix, due to the first order terms (B)+(C) and (NB), respectively.
In NS, the analysis of the corresponding rate of convergence utilizes the fact that

N is skew-symmetric. We note that in our case this does not hold. However, N is
‘component-wise’ skew-symmetric. Namely, in separate displacement ordering (when
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the displacements in the ‘x’-direction are ordered first), the following holds:

N =
[

N11 N12

N21 N22

]
, NT =

[D1 −N11 −N21

−N12 D2 −N22

]
,

where Di, i = 1, 2, are diagonal.

4. Numerical experiments

In the numerical tests below we apply the preconditioners B1 and B2 to the fol-

lowing realistic benchmark problem, used for comparison with a commercial finite
element package.
()$'*,+.-/�! 

4.1. A 2D flat Earth model, which is symmetric with respect to

x = 0, is subjected to a Heaviside load of a 1,000km wide and 2km thick ice sheet.
The size of the domain is 10,000km width and 4,000km depth, and the boundary

conditions are the homogenous Dirichlet conditions on the boundary y = −4,000km
and the symmetry conditions on the boundary y = 0, and the homogenous Neumann
conditions on the boundary x = 10,000km and on the boundary segment y = 0,
x > 1,000km. The Young modulus of the solid is 400 GPa, the Poisson ratio is 0.5
(the material is incompressible), and its density is 3,000kgm−3. The density of the
ice is 981kgm−3.

For this problem, the corresponding bilinear form a(u,v) in (5) is coercive, thus
the discrete solution exists and is unique.

The domain is discretized with quasi-regular quadrilateral finite elements and bi-
linear basis functions. For the finite element discretization we use the C++ package

deal.II [6], and for the numerical linear algebra the package PETSc [24]. The tests
were performed on a Sun Ultra-Sparc III 900MHz processor running under Sun
Solaris 9.

In the experiments we use GMRES as an iterative scheme, preconditioned by

either B1 or B2 in (33). The iterations are terminated when the residual norm is
decreased by six orders of magnitude compared to the initial residual.

Two approximations for the (negative) Schur complement matrix S are tested, one
symmetric and one nonsymmetric. The symmetric approximation (Sm) is chosen as
Sm = C + Mp, where Mp is the pressure mass matrix. To form a nonsymmetric
approximation for S we assemble a matrix Sa, obtained from the exact Schur com-

plement of the local element stiffness matrices. This approach was first used in [15]
to construct coarse level matrices in the context of an algebraic multilevel precondi-

tioner. The construction is computationally cheap and numerical tests show that it
produces a relatively good approximation for S.

196



D1 and D2 are formed as incomplete LU factorizations of M and Si, i = m, a,

employing the ILUT-routine from PETSc. In this routine, the memory consumption
of the L- and U -factors is controlled via a limit n on the number of fill-in elements
and a column pivot tolerance, beside the drop tolerance τ . In these experiments, we

have chosen n related to the size of D1 and D2, and the number of fill-in elements
was 1.8% of the number of columns/rows in M for D1 and 0.9% of the number of

columns/rows in S for D2. The column pivot tolerance was chosen as 0.01. In the
tables of the next subsection, ILUT(A, τ) denotes ILUT-factorization of the matrix A

with drop-tolerance τ , and τ = 0 corresponds to a complete factorization.

4.1. Iteration counts
The dependence of the iteration counts on the choice of the drop tolerances q

for D1 and t for D2 is presented in Tab. 1. Here S is replaced by Sm. The figures

correspond to one solve in the defect-correction algorithm for (29).

D1 = ILUT(M, q), D2 = ILUT(Sa, t)
t = 0.01 t = 0.001 t = 0.0001
B1 B2 B1 B2 B1 B2

N = 8019
q = 0.01 49 38 49 38 49 38
q = 0.001 21 16 21 16 21 16
q = 0.0001 18 14 18 14 18 14

N = 31395
q = 0.01 206 156 208 153 207 153
q = 0.001 38 28 38 28 38 28
q = 0.0001 23 18 23 18 23 18

N = 124227
q = 0.01 857 587 856 767 863 823
q = 0.001 131 118 131 118 131 118
q = 0.0001 29 24 29 24 29 24

Table 1. Iteration counts for GMRES preconditioned with B1 and B2.

It is evident from Tab. 1 that the quality of the factorization of the approximated

Schur complement does not affect the iteration count significantly (the numbers of
iterations required for B1 and B2, respectively, are nearly constant for different t).

The choice of the accuracy of the factorization for M (the size of q) is more crucial,
and this observation is similar to that in [2].

The observed growth in the iteration counts with increasing problem size is due
to the choice of D1 and D2 as incomplete factorizations ofM and S. The increase of

the number of iterations can be stabilised with a better choice of the preconditioner
for M and S (of multilevel or (algebraic) multigrid type).

197



D1 = ILUT(M, q), D2 = ILUT(S, t)
S = Sm S = Sa

t = 0.001 t = 0.0001 t = 0 t = 0.001 t = 0.0001 t = 0
N = 8019

q = 0.001 21 16 21 16 21 16 21 16 21 16 21 16
q = 0.0001 18 14 18 14 18 14 18 14 18 14 18 14
q = 0 9 9 9 9 9 9 9 9 9 9 9 9

Ne = 31395
q = 0.001 38 27 38 27 38 27 38 27 38 27 38 27
q = 0.0001 23 18 23 18 23 18 23 18 23 18 23 18
q = 0 9 9 9 9 9 9 9 9 9 9 9 9

Table 2. Iteration counts for Problem 4.1 with different Schur complement approximations.

Tab. 2 shows iteration counts for B1 and B2 with different Schur complement
approximations. The iteration counts do not change for the different approximations

of S (symmetric Sm and nonsymmetric Sa), which is due to the fact that that the
nonsymmetric part of M is relatively small. The properties of the approximations

of S are also illustrated in Fig. 1, where the real and imaginary parts of the spectra of
the exact Schur complement S, Sa and Sm are shown (for a small matrix of size 567).
The imaginary part of the spectrum of Sm is zero and is not plotted for clarity.
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Figure 1. Real and imaginary parts of the spectrum of S, Sm and Sa.

Tab. 3 illustrates the behaviour of the methods for different values of the Poisson
number ν. The iterations grow slowly with increasing ν. The slight discrepancy

between Tab. 1 and Tab. 3 for ν = 0.5 and q = 0.001, 0.0001, and t = 0.001, 0.0001
is explained by a difference in the parameters in (2). For the results in Tab. 1,

c = 0 since the material is incompressible and the term (C) can be neglected in the
continuous equations. In the experiments presented in Tab. 3, c = [0 %(0)g(0)]T .
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D1 = ILUT(M, q), D2 = ILUT(Sa, t)
t = 0.001 t = 0.0001 t = 0 t = 0.001 t = 0.0001 t = 0

ν = 0.2 ν = 0.3
N = 8019

q = 0.001 15 13 15 13 15 13 17 14 17 14 17 14
q = 0.0001 13 12 13 12 13 12 15 12 15 12 15 12
q = 0 6 5 6 5 6 5 7 6 7 6 7 6

N = 31395
q = 0.001 23 21 23 22 23 22 26 23 26 23 26 23
q = 0.0001 15 14 15 14 15 14 18 15 18 15 18 15
q = 0 6 5 6 5 6 5 7 7 7 6 7 6

ν = 0.4 ν = 0.5
N = 8019

q = 0.001 19 15 19 15 19 15 20 16 20 16 20 16
q = 0.0001 16 13 16 13 16 13 18 15 18 15 18 15
q = 0 8 8 8 8 8 8 10 9 10 9 10 9

N = 31395
q = 0.001 29 25 29 25 29 25 38 27 38 27 38 27
q = 0.0001 20 16 20 16 20 16 22 18 22 18 22 18
q = 0 8 8 8 8 8 8 10 9 10 9 10 9

Table 3. Iteration counts for Problem 4.1 with different values of ν.

4.2. CPU time comparison
Tab. 4 is a comparison between the performance of our code and that of a commer-

cial FEM package, solving Problem 4.1 with identical geometry, mesh and physical
parameters. The only slight difference is in the boundary conditions. On the far

boundaries (x = 10,000 and y = −4,000) the package imposes bilinear, infinite ele-
ments while we use standard homogeneous Neumann and Dirichlet conditions. The

package was run on two different systems, an AMD Athlon 2.5GHz processor, and
a dual Itanium 1.5GHz processor.

PETSc implementation Commercial FE package
Size Sun Ultra-Sparc III 900 MHz Itanium 1.5 GHz AMD Athlon 2.5 GHz
12675 6 20 22
49923 53 77 82

Table 4. Time comparison with a commercial FEM package solving Problem 4.1 (sec.).

It is important to note that the commercial package implements the problem (2)
in the Lamé-Navier formulation, instead of the Stokes formulation we use. Due to

the latter, the size of the problem solved by the commercial package is (two-thirds)
smaller than the size in the saddle-point formulation. Nevertheless, the benefit from
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using an appropriately preconditioned iterative method instead of a direct solver is

clearly seen from the timing results.

5. Conclusions

We present an analysis of a stabilized saddle-point formulation of the discretized

isostatic model of glacial rebound and numerical simulations using a preconditioned
iterative solution method. It is shown that the bilinear form a(·, ·), associated with
the displacements, is not coercive in general. The numerical experiments illustrate
that the known block-triangular and indefinite preconditioners exhibit a robust be-

haviour, provided that good approximations for the pivot blockM and the (negative)
Schur complement matrix S can be computed. A cheap nonsymmetric approximation

for S has been constructed. The question how to preconditionM efficiently, utilizing
the properties of the particular problem, is not fully answered. However, efficient

preconditioners both for the elasticity and the scalar advection-diffusion problems
have been devised (including multilevel and multigrid techniques) and using such

will provide us with an optimal order (problem parameters- and mesh-independent)
method for the class of problems considered in this work.

Acknowledgement. The authors thank the anonymous referee for the valuable
comments.
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