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AN ELEMENT AGGLOMERATION NONLINEAR ADDITIVE

SCHWARZ PRECONDITIONED NEWTON METHOD FOR

UNSTRUCTURED FINITE ELEMENT PROBLEMS*
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Abstract. This paper extends previous results on nonlinear Schwarz preconditioning (Cai
and Keyes 2002) to unstructured finite element elliptic problems exploiting now nonlocal
(but small) subspaces. The nonlocal finite element subspaces are associated with subdo-
mains obtained from a non-overlapping element partitioning of the original set of elements
and are coarse outside the prescribed element subdomain. The coarsening is based on a mod-
ification of the agglomeration based AMGe method proposed in Jones and Vassilevski 2001.
Then, the algebraic construction from Jones, Vassilevski and Woodward 2003 of the corre-
sponding non-linear finite element subproblems is applied to generate the subspace based
nonlinear preconditioner. The overall nonlinearly preconditioned problem is solved by an
inexact Newton method. A numerical illustration is also provided.

Keywords: algebraic multigrid, agglomeration, non-linear elliptic problem, nonlinear pre-
conditioning, Newton method, finite elements

MSC 2000 : 65F10, 65F35, 65N55, 65N30

1. Introduction

In this paper we introduce a parallel iterative method for solving a system of
nonlinear algebraic equations arising in the discretization of nonlinear elliptic partial

differential equations using finite element methods. We follow the general framework
of nonlinear additive Schwarz preconditioned inexact Newton methods, as outlined

in [4]. In the classical Schwarz type algorithms, the subproblems are “local” prob-
lems in the sense that they only cover a small portion of the computational domain.

*This work was performed under the auspices of the U.S. Department of Energy by the
University of California Lawrence Livermore National Laboratory: contract/grant num-
ber: W-7405-Eng-48. The contribution of the second author was also partially supported
by Polish Scientific Grant 2/P03A/005/24.
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Such an approach is good for distributed parallel computing since the localized sub-

problems can be solved independently on different processors, however, due to the
lack of communication among the subproblems, the convergence degenerates as the
number of processors grows without using a coarse problem that connects all the

subproblems. A new approach to the linear Schwarz algorithm was introduced in [1],
in which all “local” subproblems are made “global”, in the sense that the mesh for

the subproblem is dense (or fine) in only a small subdomain and coarse outside the
small subdomain, and the subproblem mesh effectively covers the whole domain.

In this paper, we study a parallel and optimal method for nonlinear problems by
combining the ideas of agglomeration, nonlinear Schwarz, and preconditioned New-

ton methods. Under certain assumption, we prove the optimal convergence of the
proposed algorithms, and some numerical experiments are presented to support the

theory.

To be specific, we consider a model second order elliptic problem,

(1) −∇ · (a(u)∇u) + g(u)u = f,

defined on a polygonal domain Ω with Dirichlet boundary conditions, u = 0 on ∂Ω.
The coefficient functions a = a(ξ) > 0, g = g(ξ) > 0, for any ξ ∈ * , and the
right-hand side f = f(x) are given. In what follows, we assume that they can be
analytically evaluated for any value of their argument. Otherwise, in practice, one

has to utilize interpolation. Let Th be a given triangulation of Ω with triangular
elements and let V = Vh be a conforming finite element space of piecewise linear

continuous functions associated with Th and vanishing on ∂Ω. Also, for any element
T ∈ Th, we define the averaged coefficient

aT (u) = a

(
1
3

∑

xi∈ vertices of T

u(xi)
)
.

Similarly, let

gT (u) = g

(
1
3

∑

xi∈ vertices of T

u(xi)
)
.

A general element-based procedure for averaging functions and their derivatives was
outlined in [9], see also Section 3 of the present paper.

The finite element discretization of (1) under consideration reads: Find v = uh ∈ V
such that

a(v, w) ≡
∑

T∈Th

(
aT (v)

∫

T

∇v · ∇w dx+ gT (v)
∫

T

vw dx
)

= (f, w), ∀w ∈ V.
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It is clear that the discrete nonlinear problem takes the form

(2) F (u∗)u∗ = f ,

where u∗ denotes the exact solution of the nonlinear system, and F (v) is a linear
operator (matrix) assembled from the local element matrices

aT (v)AT + gT (v)MT .

Here AT corresponds to the element matrices coming from the Laplace operator, and

MT stands for the element mass matrix; i.e.,

(3) AT =
{∫

T

∇ϕj · ∇ϕi dx
}
and MT =

{∫

T

ϕjϕi dx
}
,

where {ϕi} span the fine grid finite element space. Hence the element matrices
corresponding to F (v), for any given v ∈ V , are the linear combinations aT (v)AT +
gT (v)MT .

The objective of the present paper is an algebraic construction of a coarser version
of the original fine-grid nonlinear problem discretized on generally unstructured grids
(as described in [9]) and to study the behavior of the nonlinearly preconditioned

inexact Newton method proposed in [4]. In addition we provide some model analysis
of the method that applies to a simplified version of the coarsened away meshes

(similarly to the case of linear problems studied in [2]).
For a given subdomain G, which is a union of elements T from Th, we define a set

of agglomerated elements E, where E = T for all T outside G and E = {T}T⊂G.
Then we run the agglomeration based algorithm from [8] labeling all faces in G

as unacceptable for agglomeration. We run the agglomeration algorithm until the
number of final agglomerated elements is acceptably small. Thus, we end up with a

sequence of coarser triangulations, and at every coarsening level the original fine-grid
elements in G are still present (see Fig. 3 for an illustration). Then one is able to

define the non-local coarse nonlinear problems.

2. Generating agglomerated meshes that are coarsened away

from a given mesh domain

Given a finite element mesh (triangulation) {T} and a domain G which is a union
of finite elements one can exploit certain topological relations of the mesh to create

agglomerated elements {E}, where each E is a list of fine-grid elements and each fine-
grid element belongs to exactly one agglomerateE. More specifically, we assume that
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one has access to the relations “element face”, the adjoint one “face element” and

the “face face” connectivity (on the fine mesh). These relations “obj1 obj2” can
be viewed as boolean sparse matrices, where the rows correspond to the “obj1” and
the columns to “obj2” and non-zero entries at a position (i, j) of the respective
table indicate that ith “obj1” is “related” to the jth entry of “obj2”. For example,
if “obj1” stands for “element” and “obj2” stands for “face”, “related” means

that element i has (geometrical) face j, whereas if “obj1” stands for “face” and
“obj2” stands for “face”, “related” now means that face i intersects face j. Based

on the three relations (“element face”, “face element” and “face face”) in [8]
an element agglomeration algorithm was proposed. We can easily modify it here in

order to have the elements in G stay at all recursive applications of the agglomeration
algorithm.

At step l > 0 of the algorithm we set G0 = G and for l > 0, we define Gl =
Gl−1 ∪ {T ∈ Tl−1 is a neighbor of Gl−1}. Label all faces of T ∈ Gl as unacceptable
in the following agglomeration step. That is, every face of the elements T ∈ Tl come
with an integer weight w = w(f) which is initially 0 or −1 if f is unacceptable.

Algorithm 2.1. (Building coarsened away agglomerated elements).

1. Global search: find a face f with a maximal weight and put the elements T+

and T− which share that face on the list of the current agglomerate E; then

update the weights of the neighboring non-eliminated faces g (i.e. for which

w(g) > −1) w(g) := w(g) + 1. Here we use the relation “face face”. Also, if g

and f belong to a common element (here we use the relations “face element”

and “element face”) we increase the weight of g once more, that is, we set

w(g) := w(g) + 1 and finally we label f as eliminated (or unacceptable) by
setting w(f) = −1. If all faces have been eliminated (or unacceptable) go to
step (3).

2. Local search: loop over the faces of all elements already agglomerated in E and

find a face f with maximal weight (> −1); if the weight of that face is less than
the weight of the last eliminated face, or all local faces have weight less than

zero, the agglomerate E is completed and we go to step (1) for a global search.
Otherwise, we eliminate f and add the elements which share f to the list E.

Then we perform the weight increase of the neighboring (non-eliminated) faces g

of f as described before. Then we repeat the loop (2) again.

3. Final step: label all hanging elements which have not been agglomerated as new

agglomerates (each such agglomerate consists of one fine element).

The above agglomeration step can be efficiently implemented using double linked
lists. We also note that the original elements in G will stay at all levels as (hanging)
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agglomerated elements since their faces are labeled as unacceptable to begin with

and they are isolated from the rest.

In order to be able to recursively apply the above algorithm one needs to define
faces (AEfaces) of the agglomerated elements (AEs) and build the respective (coarse)

relations “AE AEface”, “AEface AE” and “AEface AEface”. Algorithms for this are
found in [8] and [13].

3. The Schwarz method

3.1. The construction of Schwarz subspaces

Let {G} be a partitioning of the original set of elements Th = T0. EachG is a union
of elements and each element T is contained in exactly oneG. The partitioning can be
carried out, for example, by the graph partitioning softwareMETIS, available at [10].

Then for each G we perform the algorithm from the preceding section thus ending up
with a sequence of nested triangulations Tl (which depend on G). We assume that we

have access to the element matrices AT andMT corresponding to the Laplacian and
the identity operator at the fine level (for T ∈ T0), as defined in (3). Based on the

agglomeration AMGe method from [8] one can compute the corresponding element
matrices AT and MT for the agglomerated elements T ∈ Tl for every coarse level

l > 0. The same algorithm selects coarse degrees of freedom Nl as vertices of the
agglomerated elements at every coarsening level and builds interpolation matrices

Pl : V (Nl+1) 7→ V (Nl) which map the space of coarse vectors to fine grid vectors.
Let ` be the coarsest level produced by the agglomeration Algorithm 2.1 (starting

with the subdomain G). Then we define

PG = P0P1 . . . P`−1

as the resulting interpolation from the coarsest level grid TG ≡ T` to the finest one.
We denote the coarse grid (the set of degrees of freedom-vertices) at level ` by NG

and the respective vector space by VG = V (NG).

Assume now that we are dealing with the model nonlinear operator (1) for a given
positive function a(u) and a non-negative function g(u). A coarse discretization on
the subspace VG can be defined as follows: Find u := uG ∈ VG such that

∑

T∈TG

(aT (u)wT
TAT uT + gT (u)wT

TMT uT ) = wT (P T
G f),(4)

for any w ∈ VG.
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Here, on each agglomerated element T , we use the following averages:

aT (u) = a

(
1

number of vertices of T

∑

xi∈{vertices of T}
u(xi)

)
,

and similarly

gT (u) = g

(
1

number of vertices of T

∑

xi∈{vertices of T}
u(xi)

)
.

Throughout the present paper, we use the dual notation u (a vector) and u = u(xi)
(a discrete function). That is, the ith entry of u corresponds to the ith coarse degree
of freedom—the vertex xi. Also, vT stands for the restriction of a vector v to T
(T is a set of coarse degrees of freedom). In matrix-vector notation (4) reads:

(5) FG(u)u = P T
G f .

Here, the matrix FG(u) is assembled from the element matrices:

{aT (uT )AT + gT (uT )MT }.

3.2. Setting up the nonlinearly preconditioned problem

Having the small dimensional nonlinear problems (4) defined, we are ready to
introduce a nonlinearly preconditioning method, in a similar way to the one in [5],

cf. also [4]. In the present context it is formulated as follows:

(6) 0 = F(u) ≡
∑

G

PGgG.

Here, gG solves the nonlinear problem (for any given u)

(7) FG(u∗G + gG)(u∗G + gG) = P T
GF (u)u,

where u∗G is a solution of (5), which in practice must be precomputed. It is clear
that if u is the exact solution of F (u)u = f then gG = 0 and hence F(u) = 0.
We will further show that under certain assumptions the converse statement is

also true.
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Lemma 3.1. The Jacobian J at v0 (v0) of the fine grid nonlinear operator F (v)v
is given by the expression:

wT J(v0)v =
∑

T∈Th

(
aT (v0)wT

TAT vT + gT (v0)wT
TMT vT

+ (va′(v0))T wT
TAT v0,T + (vg′(v0))T wT

TMT v0,T

)
.

Here v0,T is the restriction of v0 (or equivalently of v0) to T and

(va′(v0))T ≡ a′
(

1
3

∑

xi∈ vertices of T

v0(xi)
)(

1
3

∑

xi∈ vertices of T

v(xi)
)

= vTa
′
T (v0).

The expression for (vg′(v0))T is the same (a′ replaced by g′). It is clear that

J(v0) = F (v0) + a convective term,

which is assembled from the low-rank element matrices bT eT
T , where

bT = bT (v0) ≡
1
3
a′T (v0)aT +

1
3
g′T (v0)mT ,

aT = AT v0,T , mT = MT v0,T and eT = (1) is the constant vector of 1s restricted
to T .

The Jacobian actions of the nonlocal coarse nonlinear operators FG(uG)uG in (5)

are computed similarly

wT JG(v0)v =
∑

T∈TG

(
aT (v0)wT

TAT vT + gT (v0)wT
TMT vT

+ (va′(v0))T wT
TAT v0,T + (vg′(v0))T wT

TMTv0,T

)
.

Here v0,T is the restriction of v0 (or equivalently of v0) to T and

(va′(v0))T ≡ a′
(

1
number of vertices of T

∑

xi∈ vertices of T

v0(xi)
)

×
(

1
number of vertices of T

∑

xi∈ vertices of T

v(xi)
)

= vTa
′
T (v0).

Similarly, (vg′(v0))T = vT g
′
T (v0).

The Jacobian J of the nonlinearly preconditioned problem (6) is simply equal to

(8) J (v0) =
∑

G

PG(JG(v0
G))−1(PG)TJ(v0),
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where v0
G solves the equation

FG(v0
G)v0

G = P T
GF (v0)v0.

That is, computing the Jacobian requires solution of the above linear subdomain

problems.
+-,/.0.21

. To verify the above formula for the Jacobian of (6) we need to expand

F(v0 + g) ' F(v0) + J (v0)g.

For g = 0 we obtain that

F(v0) =
∑

G

PG(v0
G − u0

G),

where v0
G solves the nonlinear problem

FG(v0
G)v0

G = P T
GF (v0)v0

and u(0)
G is a solution of (5). Then,

F(v0 + g) '
∑

G

PG(v0
G + gG)

for a vector gG which depends linearly on g. Using the definition of the Jaco-
bian JG(v0

G) we see that

(9) FG(v0
G + gG)(v0

G + gG) ' FG(v0
G)v0

G + JG(v0
G)gG,

and, on the other hand, v0
G + gG solves (up to higher order terms) the nonlinear

problem

FG(v0
G + gG)(v0

G + gG) ' P T
GF (v0 + g)(v0 + g)(10)

' P T
GF (v0)v0 + P T

GJ(v0)g

= FG(v0
G)v0

G + P T
GJ(v0)g.

Comparing the linear parts of both expressions for FG(v0
G + gG)(v0

G + gG), (9) and
(10), we end up with the equality,

FG(v0
G)v0

G + JG(v0
G)gG = FG(v0

G)v0
G + P T

GJ(v0)g.

That is,

JG(v0
G)gG = P T

GJ(v0)g.

As a result we arrive at the desired formula (8) for J ,

J (v0)g =
∑

G

PGgG =
∑

G

PG(JG(v0
G))−1(PG)T J(v0)g.

�
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3.3. An ASPIN algorithm
Then the additive Schwarz preconditioned inexact Newton (sometimes referred to

as ASPIN) algorithm, for computing the next iterate u(k+1) from a given iterate u(k),
in the present context takes the following form:

Algorithm 3.1 (ASPIN). Given a current iterate u(k), let u(k)
G be the coarse ap-

proximations to the respective solutions of (5). Then for k = 0, 1, . . ., one computes:
1. Compute the nonlinear residual g(k) = F(u(k)) through the following steps:

a) Find g(k)
G for every subdomain G by solving the coarse nonlinear problems

FG(u(0)
G + g(k)

G )(u(0)
G + g(k)

G ) = P T
GF (u(k))u(k)

with a starting iterate g(k)
G = 0.

b) Form the global residual

g(k) = F(u(k)) =
∑

G

PGg(k)
G .

c) Check for convergence based on a norm ‖ · ‖ of g(k).

2. Find an inexact Newton direction p(k) by solving the Jacobian system approx-

imately,

(∑

G

PG

(
JG(u(0)

G + g(k)
G )

)−1(PG)T J(u(k))
)
p(k) = g(k)

in the sense that
∥∥∥∥g(k) −

∑

G

PG

(
JG(u(0)

G + g(k)
G )

)−1
(PG)T J(u(k))p(k)

∥∥∥∥ 6 ηk‖g(k)‖

for some given forcing sequence ηk ∈ [0, 1).
3. Compute the new iterate

u(k+1) = u(k) − λ(k)p(k),

where λ(k) is a damping parameter.

3.4. The general coefficient case
In practice, one may be interested in the general case of non-linear coefficients a

and g, that is,
a = a(x, u,∇u) and g = g(x, u,∇u).
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The first thing is to notice that in order to be able to perform various averages one

needs to be able to compute (approximate) derivatives of the finite element functions
on coarse discretization levels. In order to do this (as already utilized in [9]), we
assume that one has access to the coordinates of the vertices of the elements on

all grids. It is more convenient to state this, that one has access to the coordinate
vectors X = (xi) and Y = (yi) where (xi, yi) are the geometric coordinates of the
ith vertex at a given discretization level. Then, since

∂u

∂x
= ∇u · ∇x '

∫

T

∇u · ∇x
∫

T

1
=

XT
TAT uT

1T
TMT 1T

,

where ' is actually equality if u is linear over the element T . Here, 1T is the vector
of ones restricted to T . Note that here we again need access to both AT andMT , the

element matrices corresponding to the Laplacian and the identity (mass) operators.

According to the above formula, one is able to compute derivatives of functions

on every level, assuming access to the element matrices AT andMT as well as access
to the coordinate vectors X and Y. Then, first of all, the formula for the non-linear
operator at a given grid reads as before, F (u)u, where F (u) is assembled from the
following weighted combination of the element matrices AT and MT ,

a

(
(u)T ,

(∂u
∂x

)
T
,
(∂u
∂y

)
T

)
AT + g

(
(u)T ,

(∂u
∂x

)
T
,
(∂u
∂y

)
T

)
MT .

The derivative averages read as above; for example,

(∂u
∂y

)
T

=
YT

TAT uT

1T
TMT 1T

.

In order to compute the Jacobian of F (v)v at v0 (v0), J(v0), one can use the
following formulas. Let a = a(v, vx, vy) and g = g(v, vx, vy) and assume that one can
analytically compute the partial derivatives

a′ =
∂a

∂v
, a′x =

∂a

∂vx
, a′y =

∂a

∂vy
,

and

g′ =
∂g

∂v
, g′x =

∂g

∂vx
, g′y =

∂g

∂vy
.
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The corresponding formula for J(v0), for any w and v, then reads

wT J(v0)v = wTF (v0)v

+
{ ∑

T∈Th

[
(v)T a

′
(

(v0)T ,
(∂v0
∂x

)
T
,
(∂v0
∂y

)
T

)

+
(∂v
∂x

)
T
a′x

(
(v0)T ,

(∂v0
∂x

)
T
,
(∂v0
∂y

)
T

)

+
(∂v
∂y

)
T
a′y

(
(v0)T ,

(∂v0
∂x

)
T
,
(∂v0
∂y

)
T

)]
wT

TAT v0,T

+
∑

T∈Th

[
(v)T g

′
(

(v0)T ,
(∂v0
∂x

)
T
,
(∂v0
∂y

)
T

)

+
(∂v
∂x

)
T
g′x

(
(v0)T ,

(∂v0
∂x

)
T
,
(∂v0
∂y

)
T

)

+
(∂v
∂y

)
T
g′y

(
(v0)T ,

(∂v0
∂x

)
T
,
(∂v0
∂y

)
T

)]
wT

TMT v0,T

}
.

4. An abstract convergence theory for ASPIN

In this section we develop a simple general convergence theory for the nonlinear
additive Schwarz preconditioned Newton method outlined in the previous section.

The abstract theory will be based on several assumptions that will be verified in the
next section for a class of specific nonlinear problems.

Assume that we are given a finite dimensional space V and a set of spaces VG

where G runs over a finite set. The spaces V and VG are related through a set of

extension and restriction operators EG : VG → V and RG : V → VG.
Both V and VG are equipped with different pairs of norms. The norms defined

over V are denoted by ‖·‖X and ‖·‖Z , whereas the respective norms defined over VG

are denoted by ‖ · ‖X,G and ‖ · ‖Z,G. We will drop the subscript G whenever it will

not cause any confusion.
Assume that we originally want to solve the problem:

(11) F (u∗) = 0,

where F : D(F ) ⊂ V → V is in C1, and u∗ is the exact solution to be computed. To

define a nonlinearly preconditioned problem we introduce a mapping u → uG ∈ VG

as a solution of the following nonlinear system of equations defined on G:

(12) FG(uG) = RGF (u),
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where

uG = gG + u∗G

as defined in (7) and FG : D(FG) ⊂ VG → VG is a C1 function.

The abstract ASPIN algorithm then reads as follows:

Find the solution u∗ of (11) by solving the following nonlinearly preconditioned
system of equations using an inexact Newton method

(13) F(u∗) ≡
∑

G

EG(uG − u∗G) = 0,

where u∗G ∈ VG is a pre-computed solution of a sub nonlinear system of equations

(14) FG(u∗G) = 0.

It is straightforward to show that a solution of (11) is also a solution of (13). As it

will be shown, the converse is also true under certain assumptions. We next state
the assumptions for F , FG, EG, and RG.

3 4256)798:5"5 ; <>=�?/6@.BAC5
on F , FG, EG, and RG.

(A1) The problem (11) has a solution; i.e., there exists u∗ ∈ V such that
F (u∗) = 0.

(A2) In the neighborhood of u∗ there exists a nonsingular derivative of F , de-
noted by DF , with

‖DF (u∗)‖X→Z 6 C∗.

(A3) The derivative DF is Lipschitz in the neighborhood of u∗, i.e. for any u, v
in this neighborhood we have

‖DF (u)−DF (v)‖X→Z 6 L‖u− v‖X .

(A4) There is a ball about the origin (in the sense of ‖ · ‖Z,G) such that for
any fG in this ball, there exists a unique uG ∈ VG such that FG(uG) = fG

and uG is in a fixed neighborhood of u∗G (the solution of (14)).

(A5) For any v in a neighborhood of u∗G there exists a derivative DFG(v) of FG.

(A6) The derivative DFG(v) is invertible and (DFG(v))−1 is a uniformly

bounded linear operator for any v in a neighborhood of u∗G, that is,
with a constant µG (independent of v) one has

‖DFG(v)−1‖Z→X 6 µG.
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(A7) The inverse of the derivative DF−1
G is Lipschitz in a neighborhood of u∗G,

i.e., for all w, v in this neighborhood we have

‖(DFG(w))−1 − (DFG(v))−1‖Z→X 6 LG‖w − v‖X .

(A8) boundedness of the extension and restriction mapping, i.e.,

‖EG‖X→X 6 C and ‖RG‖Z→Z 6 C.

As mentioned before, we drop the subscript G whenever it does not introduce
confusion.

The following result follows directly from the above assumptions.

Theorem 4.1. Under our assumptions the function F is well defined in a neigh-
borhood of u∗ and has properly defined continuous derivative:

DF(u) = J (u) =
∑

G

EG(DFG(uG))−1RGDF (u).

Finally, we also assume that

(A9) the inverse of the derivative of F is locally bounded, i.e. there is a positive
constant βASM such that for any u in a neighborhood of u∗, one has,

∥∥∥∥
∑

G

EG(DFG(uG))−1RGDF (u)v
∥∥∥∥

X

> βASM‖v‖X ∀ v ∈ V.

By using the inverse theorem of Calculus and Assumption (A9) one easily proves

Corollary 4.1. The solution u∗ of the original nonlinear system of equations (11)
is also a locally unique solution of the nonlinearly preconditioned system of equa-

tions (13).

The next lemma represents a Lipschitz continuity property of J that ensures
quadratic convergence of the Newton method.
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Lemma 4.1. Under our assumptions, there is a positive constant LASM such that

‖DF(u)−DF(v)‖X→X 6 LASM‖u− v‖X

for any u and v in a neighborhood of u∗.

+-,/.0.21
. Since the function F is defined as a sum over allG, and we have assumed

that their number is finite, it is sufficient to show that for each G, the function u 7→
EG(DFG(uG))−1RGDF (u) satisfies the statement of the lemma; i.e. the function is
Lipschitz. By (A8) and the triangle inequality, we have

‖EG(DFG(uG))−1RGDF (u)−EG(DFG(vG))−1RGDF (v)‖X→X

6 ‖EG‖X→X‖(DFG(uG))−1RGDF (u)− (DFG(vG))−1RGDF (v)‖X→X

6 C‖(DFG(uG))−1RGDF (u)− (DFG(vG))−1RGDF (v)‖X→X

6 ‖(DFG(uG))−1RG[DF (u)−DF (v)]‖X→X

+ ‖[(DFG(uG))−1RG − (DFG(vG))−1RG]DF (v)‖X→X .

We estimate the first term by (A3), (A6) and (A8) and obtain

‖(DFG(uG))−1RG[DF (u)−DF (v)]‖X→X

6 ‖(DFG(uG))−1‖Z→X‖RG‖Z→Z‖DF (u)−DF (v)‖X→Z

6 βGL‖u− v‖X .

For the second term by (A7) and (A8) we obtain

‖[(DFG(uG))−1 − (DFG(vG))−1)]RGDF (v)‖X→X

6 ‖(DFG(uG))−1 − (DFG(vG))−1‖Z→X‖RG‖Z→Z‖DF (v)‖X→Z

6 C‖uG − vG‖X,G‖DF (v)‖X→Z

6 C‖uG − vG‖X,G{‖DF (v)−DF (u∗)‖X→Z + ‖DF (u∗)‖X→Z}.

In the last inequality, the second term is bounded by ‖DF (u∗)‖X→Z + Lδ, due

to (A2). Here δ is the diameter of the neighborhood of u∗. The Lipschitz continuity
of the mapping u 7→ uG (which follows from (A3), (A6) and (A8)) completes the

proof. �

The main results of this section are summarized in the following theorem.
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Theorem 4.2. For a properly chosen initial guess u0, the Newton iteration defined

by

un+1 = un − [DF(un)]−1F(un)

converges, and the convergence rate is quadratic; i.e.:

‖un+1 − u∗‖X 6 C‖un − u∗‖2
X

where C = LASM/βASM is a positive constant.

+-,/.0.21
. The proof is standard and follows directly from the previous lemma

and Assumption (A9), e.g. cf. Theorem 5.2.1, p. 90 in [6]. �

5. Application to second order semi-linear elliptic problems

In this section we apply the abstract convergence theory developed in the previous

section to a class of semi-linear elliptic problems, and we show that this class of
equations satisfies the assumptions proposed in the previous section, and therefore

our ASPIN algorithm converges locally and the convergence rate is quadratic.

5.1. A model problem and its discretization
We consider the following boundary value problem: Find u∗ ∈ H1

0 (Ω) such that

(15) Lu = Au− b(x, u) = f in Ω, u = 0 on ∂Ω,

where Ω is a convex polygonal domain in * 2 and f ∈ L2(Ω) and A is an H1
0 el-

liptic operator. We define L : V ≡ H1
0 (Ω) 7→ V ′ = H−1(Ω). Let Vh ⊂ V be a

sequence of finite element spaces of continuous piecewise linear polynomials such
that

⋃{Vh, h 6 h0} = V . In the present setting, for a given mesh h, Vh corresponds

to the finest level mesh from Section 2 and VG ⊂ Vh is one of the subspaces based on
a mesh coarsened away from G (i.e., VG = PGV (NG) ⊂ Vh, cf. Section 2). We also

assume that the original fine mesh is quasi-uniform, which implies certain inverse
inequalities for the finite element functions. The mesh coarsened away from G will

be specified in the next subsection (in a model situation). The Galerkin operators
induced by L on Vh, and similarly on VG, denoted by Av−b(v), are defined as follows

(Av − b(v), ϕ) = (A∇v,∇ϕ) − (b(x, v), ϕ), ∀ v, ϕ ∈ Vh (or VG),

where A(x) is uniformly positive definite in Ω.
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In the same way, the Jacobian of Av−b(v) at v, which is a linear operator denoted
by A− bu(v) (bu(v) ≡ ∂b(·, v)/∂u), is defined by

(Aξ − bu(v)ξ, ϕ) = (A∇ξ,∇ϕ) −
(∂b(x, v)

∂u
ξ, ϕ

)
, ∀ ξ, ϕ ∈ Vh (or VG).

The discrete counterpart of (15) reads as follows: Find uh ∈ Vh such that

(Lhuh, ϕ) ≡ (Auh − b(uh), ϕ)(16)

≡ (A∇uh,∇ϕ)− (b(x, uh), ϕ) = (f, ϕ), ∀ϕ ∈ Vh.

Similarly, one defines LG by replacing in (16) Vh with VG. In the notation of the
previous section, the discrete nonlinear problem (16) and its subdomain counter-part

are formulated as

Fh(uh) ≡ Lh(uh)−Qhf = 0,(17)

FG(uh) ≡ LG(uh)−QGf = 0,(18)

where Qh (or QG) : L2(Ω) 7→ Vh (or VG) is the corresponding L2-projection

onto Vh (or VG). In what follows we denote the solution of (17) by u∗h and similarly,
the solution of (18) by u∗G. The derivative F

′
h(v), v ∈ Vh, is defined variationally as

(DFh(v)ψ, ϕ) ≡ (Aψ − bu(v)ψ, ϕ), ∀ψ, ϕ ∈ Vh.

The derivative DFG is defined analogously by replacing the subscript h by G in the
previous line.

Definition 5.1 (Discrete Banach spaces).
• X = Vh with a norm ‖ · ‖, such that ‖ψ‖ 6 C‖F ′h(u∗h)ψ‖0 for any ψ ∈ Vh.

• Z = Vh equipped with ‖ · ‖ = ‖ · ‖0.

Above, ‖ · ‖s stands for the Sobolev space Hs-norms, and L∞ on Vh is actually

the maximum norm (since the functions in Vh are continuous).

It is known that under certain regularity assumptions, one has with a mesh-
independent constant C,

‖ψ‖1 6 max{‖ψ‖1, ‖ψ‖L∞} 6 C‖F ′h(u∗h)ψ‖0.

In what follows, we will consider the two (mesh-independent) norms in X

‖ψ‖X ≡ max{‖ψ‖1, ‖ψ‖∞}, and ‖ψ‖X,1 ≡ ‖ψ‖1.
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The estimates to be obtained in the first norm will be a bit weaker, i.e., they will

exhibit a very weak (logarithmic) dependence on the mesh size.

5.2. Subdomain spaces and norms
Recall that to build VG in Section 2 we first obtain a sequence of subdomains {Gk}

with G0 = G and Gk−1 ⊂ Gk for k = 0, . . . , l with a preset (fixed) value of `.
We then introduce a finite sequence of disjoint subdomains defined by S1 = G1

and Sk+1 = G2k+1 \ G2k−1, k = 1, 2, . . ., cf. Fig. 1, and consider for each Sk a

triangulation Th(Sk) inherited from Th(G2k−1), i.e., formed from the (agglomerated)
elements of Th(G2k−1) restricted to Sk.

PSfrag replacements

G

G1

G2

G3

S1 = G1
S2

Figure 1. Subdomains Gk and Sk.

We assume that the number of Sk is bounded by some constant (`/2). Because of
the graduate coarsening Th(Sk) contains elements only of T2k−1 and T2k−2; i.e., of

the size between h2k−1 and h2k−2, thus it is reasonable to assume:

8:5"5 ; <>=�?/6@.BA
5.1 (Inverse Assumption). The mesh restricted to a subdo-

main Sk, i.e. Th(Sk) is quasi-uniform. That is, the maximal diameter of an element
in Sk is of the same order as the minimal one.

DFEG<H4I,/J
5.1. We note that inverse assumption will be needed only for conver-

gence results in ‖ · ‖X .

We also want to consider different norms associated with subdomains Sk:

‖u‖∞,G =
∑

k

‖u‖∞,Sk
and ‖u‖s,G =

∑

k

‖u‖s,Sk
,
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where ‖u‖∞,Sk
= max

x∈Sk

|u(x)| and ‖u‖s,Sk
stands for the standard Sobolev norm

‖u‖Hs(Sk). Then from the classical inverse inequality (cf. [12]) and a standard argu-

ment the following inverse inequality follows:

‖u‖∞,G 6 C
∑

k

(1 + |log(h(Sk))|1/2)‖u‖1,Sk
(19)

6 C(1 + max
k
{|log(h(Sk))|1/2})‖u‖1,G.

We stress the fact that the constants in the analysis to follow generally depend on

the subdomains G and their number.

Definition 5.2 (Subdomain spaces and norms). For any subdomain G we in-
troduce the following spaces equipped with norms:
• XG = VG with the norm ‖ψ‖X,G = max{‖ψ‖∞,G, ‖ψ‖1,G} in the case of the
first norm, i.e. for (X, ‖ · ‖X), and ‖ψ‖X,1,G ≡ ‖ψ‖1,G, in the other case, for any
ψ ∈ VG,

• ZG = VG equipped with the norm ‖ψ‖Z,G = ‖ψ‖0,G, in both cases for any
ψ ∈ VG.

The subscript G is dropped in what follows, whenever this does not cause any
ambiguity.

5.3. Problem specific assumptions and their verifications
8:5"5 ; <>=�?/6@.BA

5.2 (cf. [3]). We assume that the nonlinear boundary value prob-
lem has a solution u∗ ∈ H1

0 (Ω) ∩ H2(Ω). The latter implies that u∗ ∈ L∞(Ω) as
well.
In addition, we assume:

(i) Ω is a bounded convex polygon and the principal linear elliptic part A of L is
H2-regular; that is, for any g ∈ L2(Ω) the solution of the linear boundary value
problem

(Aw, v) = (g, v) ∀ v ∈ H1
0 (Ω),

satisfies the a priori estimate for a constant CR > 0 (independent of the r.h.s. g),

‖w‖2 6 CR‖g‖0.

Of course this is a well-known result for A = −4, i.e., for identity diffusion
coefficient matrix A = I | K 2 .

(ii) The function b(x, u) is continuously differentiable; that is, ∂b(x, u)/∂u exists in
a ball with center at u∗—the solution of (15) and is Lipschitz as a function of
u ∈ * , uniformly in x ∈ Ω.

(iii) The function |∂b(x, u)/∂u| is bounded in Ω for u close to u∗.
(iv) Finally, we assume that ∂b(x, u)/∂u 6 0.
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For the analysis in the norm ‖ · ‖X,1 we will need somewhat stronger assumptions

on the function b(·, ·):
8:5"5 ; <>=�?/6@.BA

5.3 (The case of ‖·‖X,1 norm). Let (i) and (iv) of Assumption 5.2

hold and assume that ∂b(x, u)/∂u (and b(x, u)) exists on Ω× * and
|bu(x, ξ1)− bu(x, ξ2)| 6 L(1 + |ξ1|r + |ξ2|r)|ξ1 − ξ2| ∀ ξ1, ξ2 ∈ * , ∀x ∈ Ω,(20)

|bu(x, ξ)| 6 C(1 + |ξ|s) ∀ ξ ∈ * , ∀x ∈ Ω,

where L, C are positive constants and r, s are non-negative constants.

It is clear that (20) implies (ii) and (iii) of Assumption 5.2.
DFEG<H4I,/J

5.2. We note that (20) is a type of growth assumption, and such are

commonly used in the theory of nonlinear PDEs, e.g. cf. [14].
DFEG<H4I,/J

5.3. A simple example which satisfies Assumption 5.3 is b(x, u) = −u3

which leads to the model problem: Au+ u3 = f .

The main result of the present section is the following convergence theorem:

Theorem 5.1. For an initial guess u0 in a neighborhood of u∗h the ASPIN algo-

rithm is quadratically convergent with

‖un+1 − u∗h‖X 6 C(1 + |log(h)|)1/2‖un − u∗h‖2
X

‖un+1 − u∗h‖1 6 C‖un − u∗h‖2
1.

+-,/.0.21
. We apply Theorem 4.2, for which we have to verify the assump-

tions (A1)–(A9) of Section 4 in both norms. The next section provides the necessary
lemmas where these assumptions are verified. More specifically, assumptions (A2)

and (A5) follow from Lemmas 3.3 and 4.1 in [3] and because RG ≡ QG is an L2 pro-
jection onto VG then (A8) holds. It follows from Lemma 6.2, see below, that as-

sumptions (A1) and (A4) are satisfied in the norms ‖ · ‖X and ‖ · ‖X,1. Lemma 6.4
verifies (A3) and Lemma 6.3 implies (A6) and (A7). Finally (A9) is validated (in

both norms) by Lemma 6.5. Thus the proof is complete. �

6. Technical lemmas

This section contains proofs of a few technical lemmas, which show that the as-
sumptions from Section 4 are fulfilled in both norms for our problem (already used

in the proof of Theorem 5.1). Some of the proofs here closely follow Sections 3 and
4 of [3].
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Lemma 6.1. Let w ∈ VG solve the linear problem

DFG(u)w = g

for a given u ∈ VG in a neighborhood of u∗ and g ∈ VG. Then under Assumption 5.2,

we have

‖w‖X,G 6 CF ‖g‖0,G

with a uniform constant CF .

+-,/.0.21
. We follow Lemma 3.3 in [3]. First we rewrite the problem into a

variational form:

(DFG(u)w,ψ) = (A− bu(u)w,ψ) = (g, ψ) ∀ψ ∈ VG.

The stability in H1 norm (and thus in ‖ · ‖X,G) is obtained in the standard way
by taking ψ = w:

(Aw,w) 6 (Aw,w) − (bu(u)w,w) 6 ‖g‖0‖w‖0 6 ‖g‖0‖w‖1 6 ‖g‖0‖w‖X,G.

Note that due to Assumption 5.2 (iv), the following coercivity estimate holds ‖w‖2
1 6

C(Aw,w) 6 C‖w‖2
1, which shows that ‖w‖1,G 6 C‖g‖0. It remains to show that

‖w‖∞ 6 C‖g‖0. For this purpose, we consider the differential problem:

((A− bu(u))Ψ, ϕ) = (g, ϕ) ∀ϕ ∈ H1
0 (Ω).

From Lemma 3.2 in [3] it follows that ‖Ψ‖2 6 C‖g‖0. Based on the approximation
property of the nodal interpolation in VG there exists ΨG ∈ VG such that

‖Ψ−ΨG‖H1(Sk) 6 Ch(Sk)|Ψ|H2(Sk), ‖ΨG‖∞,G 6 ‖Ψ‖∞,G

and by the standard argument:

‖w −Ψ‖1,G 6 C
∑

k

‖Ψ−ΨG‖H1(Sk) 6 C
∑

k

h(Sk)|Ψ|H2(Sk).

Now by (19) we get

‖w −ΨG‖∞,G 6
∑

k

(1 + |log(h(Sk))|1/2)‖w −ΨG‖H1(Sk).
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Then we conclude that

‖w‖∞,G 6 ‖w −ΨG‖∞,G + ‖ΨG‖∞,G

6 C

(∑

k

(1 + |log(h(Sk))|1/2)‖w −ΨG‖H1(Sk) + ‖Ψ‖∞,G

)

6 C

(∑

k

(1 + |log(h(Sk))|1/2)h(Sk)|Ψ|H2(Sk) + ‖Ψ‖2,G

)

6 C‖Ψ‖2,G 6 C‖g‖0,G.

Thus the proof is complete. �

Lemma 6.2.
1. Under Assumptions 5.2 the discrete problem (17) has a unique solution u∗h.

Moreover the following error estimates hold:

‖u∗ − u∗h‖1 6 Ch‖u∗‖2, ‖u∗ − u∗h‖∞ 6 Chα‖u∗‖2,

for some positive α (< 1).
2. The problem (16) has a unique solution u∗G and the following error estimates
hold:

‖u∗ − u∗G‖1,G 6 CH‖u‖2,G, ‖u∗ − u∗G‖∞,G 6 CHα‖u∗‖2,G,

for a positive α (< 1) and H = max
k

h(Sk). If we take QGf + δf in (18) with

δf such that ‖δf‖Z,G is sufficiently small then these estimates still hold.
+-,/.0.21

. The first statement of the present lemma is Lemma 3.1 in [3], and the

second one can be proved along the same lines, the only difference being that we
have to use our Inverse Assumption and Lemma 6.1 for the second statement of the

lemma. �

The next results deal with the inverse of DFG for a local problem associated with

a subdomain G.

Lemma 6.3. For any u1, u2 ∈ VG in a neighborhood of u∗ it holds that

‖(DFG(u1))−1‖Z→X 6 C,

‖(DFG(u1))−1 − (DFG(u2))−1‖Z→X 6 C‖u1 − u2‖X,G.

Under Assumptions (5.3) the same results hold in the H1 type norms ‖ · ‖X,1,G.
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+-,/.0.21
. For any w ∈ L2(Ω) with ‖w‖0 = 1 we have the following identities

(DFG(ui)pi, ϕ) = (Api − bu(ui)pi, ϕ) = (w,ϕ) ∀ϕ ∈ VG, i = 1, 2,

and

(DFG(u1)p2, ϕ) = (Ap2 − bu(u1)p2, ϕ) ∀ϕ ∈ VG.

The first statement of the lemma now follows from Lemma 6.1, cf. Lemma 3.3

in [3], but we give here a proof of the stability in the H1 norm. Taking ϕ = p2 we
have

(Ap2, p2)− (bu(u2)p2, p2) = (w, p2).

Thus by Assumption (iv) and the Poincaré inequality we get

‖p2‖2
1 6 ‖w‖0‖p2‖0 6 C‖w‖0‖p2‖1,

which for ‖w‖0 = 1 implies ‖p2‖1 6 C.
Next, note that for any ϕ ∈ VG we have

(Ap2, ϕ) = (w + bu(u2)p2, ϕ)

thus

(DFG(u1)(p2), ϕ) = (Ap2, ϕ)− (bu(u1)p2, ϕ)

= (w + (bu(u2)− bu(u1))p2, ϕ),

hence p1 − p2 solves,

(21) (DFG(u1)(p1 − p2), ϕ) = ((bu(u1)− bu(u2))p2, ϕ).

In the case of ‖ · ‖X norm, Lemma 6.1 yields (based on the Lipschitz continuity of
bu(·)):

max{‖p1 − p2‖1, ‖p1 − p2‖∞} 6 C‖(bu(u2)− bu(u1))p2‖0

6 C‖u2 − u1‖∞‖p2‖0

6 C‖u2 − u1‖X‖p2‖0 6 C‖u2 − u1‖X .

Equivalently, we have

∥∥(
(DFG(u1))−1 − (DFG(u2))−1

)
w

∥∥
X

6 C‖u2 − u1‖X ,

which completes the proof in the case of ‖ · ‖X norm.
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The case of the other norm is a bit different. By (ii) and (iv) in Assumption 5.3,

letting ϕ = p1 − p2 in (21), the Hölder inequality and the Sobolev embeddings
(H1(Ω) ⊂ Lq(Ω), q > 1 in 2D), we get

‖p1 − p2‖2
1 6 C

(
(bu(u2)− bu(u1))p2, p1 − p2

)

6 C

(
1 +

∑

k=1,2

‖uk‖r
Lq1r(Ω)

)
‖u1 − u2‖Lq2 (Ω)‖p2‖Lq3 (Ω)‖p1 − p2‖Lq4 (Ω)

6 C

(
1 +

∑

k=1,2

‖uk‖r
1

)
‖u1 − u2‖1‖p2‖1‖p1 − p2‖1

6 C‖u1 − u2‖1‖p1 − p2‖1,

for appropriate coefficients qi > 1 such that
4∑

i=1

1
qi

= 1, and also q1r > 1 if r from

Assumption 5.3 is positive (if r = 0 the latter is not needed). �

In the next lemma we check that the derivative of F is Lipschitz.

Lemma 6.4. For u1, u2 ∈ Vh in a neighborhood of u∗ it holds

‖DF (u1)−DF (u2)‖X→Z 6 C‖u1 − u2‖X .

Under Assumptions 5.3 the same results hold in the H1 norm ‖ · ‖X,1.
+-,/.0.21

. For any w,ψ ∈ Vh we have

(
(DF (u1)w −DF (u2))w,ψ

)
=

(
(bu(u2)− bu(u1))w,ψ

)

6 ‖bu(u1)− bu(u2)‖∞‖w‖0‖ψ‖0

6 C‖u1 − u2‖∞‖w‖0‖ψ‖0.

We utilized Assumption 5.2 (ii). Thus we can verify the statement of the lemma by

taking the maximum over all w ∈ Vh with ‖w‖X 6 1:

‖(DF (u1)w −DF (u2))w‖0 6 C‖u1 − u2‖∞‖w‖0 6 C‖u1 − u2‖X‖w‖X .

The case of ‖ · ‖X,1 can be proven with the help of the Hölder inequality and the
Sobolev embedding, in a similar way to the one utilized in the proof of Lemma 6.3.

�

The next lemma verifies the boundedness of the Jacobian of F and its coercivity
in the H1 norm, as well as the boundedness of its inverse in ‖ · ‖X .
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Lemma 6.5. For all u ∈ Vh in a neighborhood of u∗, and all v ∈ Vh we have

c‖v‖1 6 ‖DF(u)v‖1 6 C‖v‖1

β‖v‖X 6 ‖DF(u)v‖X

where β = c(1 + |log(h)|)−1/2 for positive constants c, C which are independent of

the mesh size. Under Assumptions 5.3 the first statement of the lemma holds in the

H1 norm ‖ · ‖X,1.
+-,/.0.21

. In this proof the following notation is used:

‖u‖C := (Cu, u)

for any symmetric and positive definite operator C : Vh → Vh. Let

M−1 :=
∑

G

EG(DFG(uG))−1RG,

then

DF(u) = M−1DF (u) =
∑

G

Eg(DFG(uG))−1RGDF (u).

We first consider the case of the ‖ ·‖X norm. Note that for u ∈ Vh in a neighborhood

of u∗h we have that uG = EGF
−1
G (RF (u)) is close to u∗G, cf. Lemma 6.3, and thus

‖bu(uG)‖∞ (and ‖bu(u)‖∞) is bounded by Assumption 5.2 (iii). It follows that

(DFG(uG)ψ, ψ) 6 C(Aψ,ψ) ∀ψ ∈ VG,(22)

(DF (u)ϕ, ϕ) 6 C(Aϕ,ϕ) ∀ϕ ∈ Vh.(23)

Next note that for u and uG in the neighborhood of u∗ we have by Assumption 5.2 (iv)
−bu(u) > 0 and −bu(uG) > 0, and since DF (u) = A− bu(u), the following estimates
are straightforward

(Aϕ,ϕ) 6 (DF (u)ϕ, ϕ) 6 C(Aϕ,ϕ) ∀ϕ ∈ Vh,(24)

(Aψ,ψ) 6 (DFG(uG)ψ, ψ) 6 C(Aψ,ψ) ∀ψ ∈ VG.

Introduce AG : VG → VG defined by

(AGϕ, ψ) = (A∇ϕ,∇ψ) ∀ϕ, ψ ∈ VG.

Then B−1 :=
∑
G

EGA
−1
G RG is invertible over Vh and we have

c(Aϕ,ϕ) 6 (Bϕ,ϕ) 6 C(Aϕ,ϕ), ∀ϕ ∈ Vh,
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see [2]. From the standard additive Schwarz method (ASM) theory (e.g., [11]) and

(24) we get that if we replace AG by DFG(uG) (i.e. B−1 by M−1) then it holds

(25) (Aϕ,ϕ) 6 C(Mϕ,ϕ) 6 C(DF (u)ϕ, ϕ) 6 C(Aϕ,ϕ), ∀ϕ ∈ Vh,

and by a standard argument, cf. e.g. [7], we get

(26) c(A−1ϕ, ϕ) 6 (M−1ϕ, ϕ) 6 C(DF (u)−1ϕ, ϕ) 6 C(A−1ϕ, ϕ), ∀ϕ ∈ Vh.

This is equivalent to saying that the norms ‖u‖M , ‖u‖DF (u) are equivalent to ‖u‖A

over Vh. The latter one (based on Poincaré’s inequality) is equivalent to ‖u‖1.

Figure 2. The figure shows a mesh of 6400 fine elements partitioned into 16 subdomains.
Each shade represents a subdomain of fine mesh elements.

Define p = F(u)v = M−1DF (u)v, for any u in the neighborhood of u∗ and any
v ∈ Vh, i.e., let DF (u)v = Mp. Then, (25) and (26) yield

‖v‖1 6 C(Av, v) 6 C(DF (u)v, v) = C‖DF (u)v‖DF (u)−1(27)

6 C‖Mp‖DF (u)−1 6 C‖Mp‖M−1 = C(Mp, p) 6 C(Ap, p) 6 C‖p‖1.

The converse is also true, i.e., ‖p‖1 6 C‖v‖1. By an inverse inequality, e.g. cf. [12],

and (27) we get

‖v‖∞ 6 C(1 + |log(h)|)1/2‖v‖1 6 C(1 + |log(h)|)1/2‖p‖X .
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To handle the case of the H1 norm, we have to use Assumption 5.3, then apply

Hölder’s inequality, use the Sobolev embedding and Poincaré’s inequality. Thus, we
get

(DF (u)ϕ, ϕ) 6 (Aϕ,ϕ) + (bu(u)ϕ, ϕ)

6 (Aϕ,ϕ) + C(1 + ‖u‖r
Lrp(Ω))‖ϕ‖2

L2q(Ω)

6 (Aϕ,ϕ) + C(1 + ‖u‖r
1)‖ϕ‖2

1

6 (Aϕ,ϕ) + C‖ϕ‖2
1 6 C(Aϕ,ϕ)

for any coefficients p, q > 0 such that 1/p + 1/q = 1, rp > 1 (if r = 0 the latter is
not needed) and any ϕ ∈ V , i.e., (22) and (23) hold. The rest of the proof follows
the lines of the case of ‖ · ‖X . �

Figure 3. The figure shows an agglomeration based coarsened away mesh containing
6400 fine elements, 456 agglomerated elements and 400 subdomain elements,
cf. Fig. 2.
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7. Numerical experiments

In this section, we report a series of numerical experiments for the model prob-
lem (1) with the functions a, g : * → * defined by

a(u) =
√

1 + u2 and g(u) = u2.

Nsub Nonlin iter Lin iter Average lin
24 3 35 11
29 3 30 10
16 3 35 11
64 3 45 15

Table 1. 400 elements, 231 degrees of freedom; Nsub—number of subdomains, Nonlin iter—
number of nonlinear iterations, Lin iter—number of linear iterations, Average lin—
average number of linear iterations per Newton iteration.

We are interested in the number of linear and nonlinear iterations, and how they
change with respect to the number of subdomains, as well as the fine-grid mesh size

(or number of fine-grid elements).

Nsub Nonlin iter Lin iter Average lin
24 3 37 12
29 3 42 14
16 3 52 17
64 4 61 15

Table 2. 1600 elements, 861 degrees of freedom; Nsub—number of subdomains, Nonlin
iter—number of nonlinear iterations, Lin iter—number of linear iterations, Average
lin—average number of linear iterations per Newton iteration.

Nsub Nonlin iter Linear iter Average lin
4 3 34 11
29 4 71 17
16 4 62 15
64 4 71 17

Table 3. 6400 elements, 3321 degrees of freedom; Nsub—number of subdomains, Nonlin
iter—number of nonlinear iterations, Lin iter—number of linear iterations, Average
lin—average number of linear iterations per Newton iteration.
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NU SUB SN NE NDoF
4 0 1699 952
4 1 1705 980
4 2 1680 944
4 3 1663 943
9 0 781 469
9 4 764 456
9 5 793 479
9 8 792 504
16 0 456 287
16 4 459 291
16 10 484 320
16 14 438 279
64 3 152 119
64 14 147 122
64 36 142 116
64 59 145 121

Table 4. Number of degrees of freedom and of elements of a few subdomains for the mesh
with 6400 elements and 3321 degrees of freedom. NUSUB—number of subdo-
mains, SN—subdomain number, NE—number of elements, NDoF—number of de-
grees of freedom.

The stopping criterion is to reduce the L2-norm of the initial nonlinear residual

by a factor of 10−4. In the following three tables we show the global number of
nonlinear Newton iterations, the global number of linear iterations and the average

number of linear iterations necessary for one Newton iteration for three meshes and
different number of subdomains. In Tab. 1 we present the results for a mesh with

400 elements. Tab. 2 refers to a mesh with 1600 elements, whereas Tab. 3 stands for
a mesh with 6400 elements, cf. Fig. 3. Lastly, Tab. 4 presents the distribution of the

degrees of freedom and number of elements corresponding to various partitioning of
the original mesh with 6400 elements which gives an indication about the complexity

of the subdomain solvers (shown in Tab. 3).

The numerical results show that overall the number of nonlinear iterations and

the average number of linear iterations per nonlinear step are stable and nearly
independent of the mesh size and the number of subdomains. Note that our discrete
subdomain problems are obtained by the non-linear element agglomeration AMGe

method summarized in Section 2 and Section 3 (originally described in [9] which is
an extension of the linear one from [8]) which should explain the certain increase of

the number of the linear iterations with the number of subdomains.
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