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1. Introduction

The search for singularities in incompressible flows has become a major challenge
in the area of non-linear partial differential equations and is relevant in applied

mathematics, physics and engineering. The existence of such singularities would
have important consequences for the understanding of turbulence. One way to make

progress in this direction is to study plausible scenarios for the singularities supported
by experiments or numerical analysis. Below we discuss two candidates, one coming

from experiments and the other from numerical simulations. The experiments show
that for high viscosity fluids, the break-up of a drop is preceded by the formation of

long filaments, which (see [28], where experimental data were collected by using a
high resolution charge-coupled device sensor) are thin uniformly up to a diameter of

the order of a micron. And for low viscosity the pinching occurs at isolated points.
At this small scale it is possible that molecular forces, which are not considered in

a continuum description, come into play, but it is important to know whether the
continuum equations predict break-up or not.

With more sophisticated numerical tools now available, the subject has recently
gained considerable momentum. In Section 3 numerical simulations indicate a poss-

ible singularity on the boundary of a patch which is a weak solution to a family of
incompressible equations.
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2. Drops

A fluid jet emerging from a faucet is the simplest example where a flow develops
a singularity. At a certain distance from the faucet, the jet breaks into drops. In

different words, a simply connected mass of incompressible fluid Ω(t) may evolve in
such a way that the domain becomes disconnected. This phenomena were studied at

the beginning of the 19th century, with the observations of Savart (1833) [36] who
performed experiments to estimate the size of drops resulting from the breaking-

up of a jet, the work of Plateau (1863) [31] and the first analytical study done by
Rayleigh (1879) [32] who showed the instability of the stationary-jet solutions to the

Navier-Stokes equations, explaining, at least partially, Savart’s observations. The
experiments have shown that viscosity plays a fundamental role in the geometry of

breakup. When the flow is highly viscous uniform thin filaments are formed and
shortly after they disappear ([37], [28]).
Let us assume we have two immiscible fluids with different parameters (density %

and viscosity ν) that occupy all the space and are separated by a surface. Mathe-
matically, it is a free boundary problem in which each fluid evolves according to the

Navier-Stokes system

%

(
∂ui

∂t
+

∑

16j63

uj
∂ui

∂xj

)
= − ∂p

∂xi
+ ν∆ui + fi, i = 1, . . . 3,(2.1)

div u :=
∑

16i63

∂ui

∂xi
= 0

where the parameters % and ν are the density and the viscosity of the fluid respec-
tively and fi denotes an external force. These equations describe the evolution of

an incompressible flow in a bounded domain Ω(t) limited by a free surface ∂Ω(t),
together with the boundary condition

(2.2)
[
−pδij + ν

( ∂vi

∂xj
+
∂vj

∂xi

)]
nj = σHni in ∂Ω(t),

where ~n is the field of outer normal vectors to Ω(t) and H is the mean curvature
of ∂Ω(t), and with the kinematic condition for the evolution of ∂Ω(t)

(2.3) VN = ~v · ~n

expressing the fact that the particles on the boundary move with a velocity whose
normal component VN equals the normal component of the velocity field defined in

it. σ denotes the surface tension coefficient of the interface which depends upon the
fluid itself and the surrounding media.
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The question we want to address here is whether one can deduce from the equations

(Navier-Stokes equations under the action of surface tension), the possible breakup
of a drop through the collapse of a fluid filament.
A filament is a thin tube that moves with the flow, and the breakup is due to the

collapse of the boundary. We can assume that the filament remains smooth up to
the time of the blow-up. More precisely:

Let Q = I1 × I2 × I3 ⊂ � 3 be a closed rectangular box (with Ij a bounded
interval), and let T > 0 be given. A regular thin tube (or a filament) is an open set
Ωt ⊂ Q parameterized by time t ∈ [0, T ), having the form Ωt = {(x1, x2, x3) ∈ Q :
θ(x1, x2, x3, t) < 0}, with θ ∈ C1(Q× [0, T )), and satisfying the following conditions

|∇x1,x2θ| 6= 0 for (x1, x2, x3, t) ∈ Q× [0, T ), θ(x1, x2, x3, t) = 0;

Ωt(x3) := {(x1, x2) ∈ I1 × I2 : (x1, x2, x3) ∈ Ωt} is non-empty

for all x3 ∈ I3, t ∈ [0, T ); the closure (Ωt(x3)) ⊂ interior (I1 × I2) for all x3 ∈ I3,

t ∈ [0, T ).
For example, a thin tubular neighborhood of a curve Γ forms a regular tube,

provided the tangent vector Γ′ stays transverse to the (x1, x2) plane.
We say that a regular thin tube Ωt moves with the velocity field u if we have

( ∂

∂t
+ u · ∇x

)
θ = 0 whenever (x, t) ∈ Q× [0, T ), θ(x, t) = 0.

This definition appears for the case n = 3 in [18]. For an n-dimensional definition
we have (see [19]):
Let Ii ⊂

�
, i = 1, . . . n be bounded intervals and let Q = ×iIi ⊂

� n be a cube. A

regular tube is a relatively open set S ⊂ Q characterized as S = {x ∈ Q : f(x) < 0}
where f : Q→ �

is a C1 function that satisfies

f(x) = 0 =⇒ ∇x1,...,xn−1f 6= 0.

For every xn ∈ In, the set S(xn) = S ∩ I1 × . . .× In−1 × {xn} is non-empty and its
closure is contained in the interior of I1 × . . .× In−1 × {xn}.
We will also consider the situation when ft is a family of functions indexed by

time, t ∈ [0, T ). We denote the Lebesgue measure of a set A by |A| and the ball
centered at x0 with radius r by Br(x0).
A vector field u experiences a tube collapse (or filament collapse) singularity at

time T when the boundary of the tube evolve with the velocity field u and

lim inf
t→T

|St| = 0.
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Let Ω ⊂ � n be an open set. We consider a C1 time dependent vector field u :
Ω× [0, T ) → � n . This vector field defines an evolution for trajectories Φt(x), where
Φt(x) denotes the position at time t of the trajectory with an initial condition x at
time t = 0. The trajectory of a particle Φt(q) is obtained by solving

dΦt(q)
dt

= u(Φt(q), t),

Φ0(q) = q;

then

(Φt(q)− Φt(p))t 6 |Φt(q)− Φt(p)| |∇u|L∞ ,
|Φt(q)− Φt(p)| > |Φ0(q)− Φ0(p)|e− �

t
0 |∇u|L∞ ds.

This simple computation leads to a criterion; in order to have two particles

(Φt(q),Φt(p)) of the filament collapse at time T the following integral has to diverge:

(2.4)
∫ T

0

|∇u|L∞ ds = ∞.

More generally, we denote by Φt,a(x) the position at time t of the trajectory
which at time t = a is at x. Note that, when both sides of the formulas make sense,
Φt(x) = Φt,0(x), Φt,a(x) = Φt ◦ Φ−1

a (x), Φt,a ◦ Φa,b(x) = Φt,b(x).
For S ⊂ Ω we denote ΦΩ

t,aS = {x ∈ Ω | x = Φt,a(y), y ∈ S, Φs,a(y) ∈
Ω, a 6 s 6 t}. That is, ΦΩ

t,a is the evolution of the set S, starting at time a,
after we eliminate the trajectories which step out of Ω. Given the fact that u has
zero divergence, we have that |Φt,aS| is independent of t and |ΦΩ

t,aS| is non-increasing
in t.

The physical intuition is that there is a region of positive volume such that the

fluid occupying it gets ejected from a slightly bigger region in finite time. In order
to generalize this we give the following definition of a squirt singularity.

Definition 1. Let Ω−, Ω+ be open and bounded sets, Ω− ⊂ Ω+. (Therefore,

dist(Ω−,
� d − Ω+ > r > 0.)

We say that u experiences a squirt singularity in Ω− at time T > 0 when for every
0 6 s < T we can find a set Ss ⊂ Ω+ such that

• Ss ∩ Ω− has positive measure, 0 6 s < T ,

• lim
t→T

∣∣ΦΩ+
t,s Ss

∣∣ = 0.
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Theorem 2.1. If u as before has a squirt singularity, then

(2.5)
∫ T

s

sup
x
|u(x, t)| dt = ∞ ∀ s ∈ (0, T ).

Note that in the argument for Theorem 2.1, some of the hypotheses can be some-

what weakened. For example, using the theory of [22], the hypothesis that u ∈ C1

can be weakened to u ∈ H1. Also note that strict volume preservation is not needed.

It suffices that the volume contraction remains bounded. That is, for some constant
C > 1 and all M ⊂ � n measurable, C−1|M | 6 |Φt(M)| 6 C|M |.
From the assumption that

∣∣ΦΩ+
t,s Ss

∣∣ → 0 we conclude that almost all trajectories
starting in Ss at time s leave the set Ω+ at a time τ ∈ (s, T ).
Therefore we conclude that for any trajectory x(t) starting in Ω− ∩ Ss at time s

we have ∣∣∣∣
∫ τ

s

u(Φt(x), t) dt
∣∣∣ > r > 0.

Therefore,

(2.6)
∫ T

s

sup
x
|u(x, t)| dt > r > 0.

Since (2.6) holds for every s ∈ (0, T ) we conclude that (2.5) holds.

2.1. Uniform collapse
The quantity

∫ T

0 sup
x
|u(x, t)| dt is bounded when we consider one single fluid in a

fixed domain Ω with the appropriate boundary conditions (see [23], [24], [41]), but
this is not the case for the free boundary problem under surface tension. Provided
we assume that singularities are somewhat more uniform, it is possible to develop

more quantitative information about the rate at which they happen.

For a uniform thin filament of a viscous flow we can take coordinates (r, z) where
z is the vertical coordinate, and r denotes the distance to the axis of symmetry. Let
us denote by h(z, t) the distance of a point of the boundary of the tube to its axis.
By a collapse of a filament at time T we understand the following situation:

lim
t→T

h(z, t) = 0 for every z ∈ I,

where I is an interval that we take to be [−L,L]. The collapse will be uniform if

(2.7)
1
C
h̄(t) 6 h(z, t) 6 Ch̄(t) for every z ∈ I,
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where C is a constant and h̄(t) is the average of h(z, t) over I . We will also assume

(2.8) |hz(z, t)| 6 C for every z ∈ I and every t.

In a tube collapse singularities of the previous section we say that the collapse is
uniform when

max |S(xn)|n−1 6 M min |S(xn)|

whereM is a constant independent of time and | · |n−1 denotes the n−1 dimensional
area.
Given a C1 set St, we denote by ∂̃St the portion of the boundary which is not

evolving with the fluid.
We note that by the incompressibility of the fluid, the change of volume is the

integral of u over ∂̃St. Hence, we always have

d
dt
|St| > −‖u‖L∞|∂̃St|n−1.

However, the rate of collapse again depends on the quantity
∫ T

0
sup

x
|u(x, t)| dt of

which, in the case of the drop, we do not have any control.
Using a different approach, see [16] for more details, we have the following theorem:

Theorem 2.2. Under the conditions (2.7), (2.8) in a given interval I , the uniform
collapse of a filament (in the sense of (2.1)) is impossible. Moreover, the volume of

fluid enclosed by the filament satisfies

V (t) > Ce−Ct4

for some positive constant C.

The proof follows by estimating the evolution of the volume V of the filament.

Given a mass of fluid in the interval [−z0, z0], the variation of its volume with time
is given by the equation

dV (t; z0)
dt

=
∫ 2 �

0

∫ h(z0,θ,t)

0

vz(z0, %, θ, t)% d% dθ

−
∫ 2 �

0

∫ h(−z0,θ,t)

0

vz(−z0, %, θ, t)% d% dθ.

Let us define

V (t) ≡ 1
L

∫ L

0

V (t; z) dz
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and make the change of variables

z′ = z, %′ =
h̄

h(z, θ, t)
%, θ′ = θ,

where h̄ denotes the average of h over the interval z ∈ [−L,L]. Then by the hypoth-
esis of a uniform collapse we can obtain the estimate

dV (t)
dt

> −C
(∫ L

−L

∫ 2 �

0

sup
%′

|vz(z′, θ′, %′, t)|
|ln %′|1/2

dθ′ dz′
)
V (t)|ln V (t)|1/2.

In the case of a fluid (with viscosity µ1 and density %1) surrounded by another fluid
(with viscosity µ2 and density %2), each fluid satisfies the Navier-Stokes equations

and the kinematic condition at the interface is

[
T

(1)
ij − T

(2)
ij

]
nj = σHni in ∂Ω(t)

with

T
(k)
ij =

[
−pδij + µk

( ∂vi

∂xj
+
∂vj

∂xi

)]

and σ being the surface tension coefficient for the interface between the two fluids.

Also, continuity of the velocity field across the interface has to be assumed (see [40]).
One can deduce the energy identity

∫

Ω(t)

1
2
%1|~v|2 dV + µ1

∫ t

0

∫

Ω(t)

|∂xivj + ∂xjvi|2 dV dt+ σ|∂Ω(t)|

+
∫
� 3\Ω(t)

1
2
%2|~v|2 dV + µ2

∫ t

0

∫
� 3\Ω(t)

|∂xivj + ∂xjvi|2 dV dt = C.

An immediate consequence of this is the following inequality:

min
i

(%i)
∫
� 3

1
2
|~v|2 dV + min

i
(µi)

∫ t

0

∫
� 3
|∂xivj + ∂xjvi|2 dV dt+ σ|∂Ω(t)| 6 C.

Integrating it over t leads to
∫ t

0

∫

Ω(t)

1
2
|~v|2 dV dt 6 Ct.

Consequently, ∫ t

0

∫ L

−L

sup
%′

|vz(z′, %′, t)|
|ln %′|1/2

dz′ dt 6 C(1 + t)

and the theorem follows.
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3. The 2D quasi-geostrophic equation

The 2D quasi-geostrophic equation (QG equation in short) that we will discuss

below, has the following form:

∂θ

∂t
+

∑

16j62

uj
∂θ

∂xj
= 0,(3.1)

u = ∇⊥ψ where θ = −(−∆)1/2ψ

with x ∈ � 2 , t ∈ � + and θ = θ(x, t) is a scalar function that represents the tempera-
ture, u(x, t) = (−∂ψ/∂x2, ∂ψ/∂x1) is the velocity field and ψ is the stream function.
The non-local operator Λγ = (−δ)γ is defined through the Fourier transform by
Λ̂γf(ξ) = |ξ|γ f̂(ξ), where f̂ is the Fourier transform of f .
This equation has applications to meteorology and oceanography, and is a special

case of the more general 3D quasi-geostrophic equation (see [25], [30] and [35]).

Due to the incompressibility of the flow, the Lp (1 6 p 6 ∞) norms of θ are
conserved for all time. That implies that the energy is also conserved because the

velocity can be written as

u = (−∂x2Λ
−1θ, ∂x1Λ

−1θ) = (−R2θ,R1θ)

where Rj represent the Riesz transforms:

Rjθ(x, t) =
1
2π

V.P.
∫
yj · θ(x + y, t)

|y|3 dy.

There has been high scientific interest to understand the behavior of the QG equa-

tion because it is a possible model to explain the formation of fronts of hot and cold
air. In a different direction Constantin, Majda and Tabak [11] proposed this system

as a 2D model for the 3D vorticity intensification and showed that there is a geomet-
ric and analytic analogy with 3D Euler equations. It is not known at this moment if

this equation can produce singularities.
The vorticity is defined by ω = ∇× u and the 3D incompressible Euler equations

can be written in terms of the vorticity ω as

ωt + u · ∇ω = (∇u)ω,(3.2)

∇ · u = ∇ · ω = 0.

By the Biot-Savart law we recover the velocity from the vorticity by the operator

u(x, t) =
1
4π

∫
� 3

y × ω(x+ y, t)
|y|3 dy.
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Similarly, the QG equation (3.1) can be written as

(∂t + u · ∇)∇⊥θ = (∇u) · ∇⊥θ,(3.3)

∇ · u = 0.

The stream function ψ is obtained from θ through the non-local operator

ψ(x, t) = −
∫
� 2

θ(x+ y, t)
|y| dy,

therefore

u(x, t) = −
∫
� 2

∇⊥θ(x+ y, t)
|y| dy.

The two equations (3.2) and (3.3) are similar: the vector ∇⊥θ = (−θx2 , θx1) plays
the role of the vector ω = ∇× u. Furthermore, the operator ∇u, in the case of the
QG equation, is a singular integral in dimension two with respect to ∇⊥θ. In (3.2),
the operator ∇u is a singular integral with respect to the vorticity ([38] and [39]).
The vectors ∇⊥θ and ω are tangential to the level sets of θ and the vortex lines

respectively. The vortex lines and the level sets of θ have the property to move with

the flow. See [3] for a more detailed description of the properties and analogies of QG
and Euler equations.

The first analytical results for (3.1) appear in [11] (for equivalent results for Euler
equations see [10], [1], [4] and [27]):

• If θ0 ∈ Hm(
� 2 ) and m > 2, then there exists a time T = T (κ, ‖Λmθ0‖L2) > 0

such that there is a unique solution to (3.1) in C1([0, T ), Hm). This local
existence result is a consequence of the estimates

1
2

d
dt
‖Λmθ‖2

L2 =
∫

Λmθ{Λm(R(θ) · ∇⊥θ)−R(θ) · ∇⊥Λmθ}

6 C‖Λmθ‖2
L2(‖θ‖L2 + ‖Λ2+εθ‖L2)

where C is a constant. Therefore, taking ε = m− 2 > 0 we get

1
2

d
dt
‖Λmθ‖2

L2 6 C(‖Λmθ‖3
L2 + ‖Λmθ‖2

L2‖θ‖L2).

• If θ0 ∈ Hk(
� 2 ), k > 3, a necessary and sufficient condition to have a singularity

at time T is that

(3.4)
∫ T

0

‖∇θ‖∞ dt = +∞.
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By using micro-local analysis techniques the criterion can be improved by sub-

stituting the L∞ norm by the BMO and the Triebel-Lizorkin spaces ([5]).

• If the direction of the vector

(3.5) ξ(x) =
∇⊥θ
|∇θ|

is smooth in regions where |∇θ| is high, then there are no singularities ([11]).

The QG equation has an extra property: that all Lp (1 < p < ∞) norms of
the velocity remain bounded by the Lp of the initial data. This does not imply an

improvement with respect to the results known for Euler equations.

Below we first discuss several singular scenarios and propose a possible scenario of

a blow-up for a weak solution to QG equations. Finally, we study the role of viscosity
in preventing the formation of singularities.

3.1. Hyperbolic saddle scenario
The initial data

θ(x, 0) = sin(x1) sin(x2) + cos(x2)

was proposed as a possible candidate to develop a singularity in finite time. Nu-

merical simulations indicate the formation of a front when the topology of the level
sets contains a hyperbolic saddle (an X-point configuration). The level sets tend

to collapse over a single curve and become a two Y -point configuration (see Fig. 1)
where the function θ is constant along the two time-dependent arcs Γ−(t) and Γ+(t):

(3.6) Γ± = {(x1, x2) ∈
� 2 : x2 = f±(x, t), x1 ∈ [a, b]} for 0 6 t < T.

The direction field ξ(x) = ∇⊥θ/|∇θ|, in a neighborhood of the saddle, changes
abruptly as the angle of the saddle closes in time. Therefore the criterion (3.5) does
not apply.

�
�

@
@ �

�

@
@

t < T t = T

"
"

"
"

"
"

"
"

""b
b

b
b

b
b

b
b

bb

�
Γ+

Γ−
Γ

Figure 1. Level sets of θ.
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Ohkitani and Yamada [29], with higher numerical resolution, suggested that in-

stead of a singularity there was a double exponential growth of the derivatives of θ.
Constantin, Nie and Schorghofer [12] confirmed the results of [29] numerically:

1994 in [11] sup
x
|∇xθ(x, t)| ∼

1
(8.25− t)1.66

,

1997 in [29] sup
x
|∇xθ(x, t)| ∼ ee[b(t−t0)]

,

1998 in [12] sup
x
|∇xθ(x, t)| ∼ ee[0.038(t−4.1)]

.

In order to approach the problem analytically we assume that the level sets are

“simple” hyperbolas, which are defined by the set of curves % = constant that satisfy

% = (y1β(t) + y2)(y1δ(t)− y2),

and there is a non-linear change of variables depending on time y1 = F1(x1, x2, t),
y2 = F2(x1, x2, t) in a neighborhood U of the origin with β(t), δ(t) ∈ C1([0, T∗)),
Fi ∈ C2(U × [0, T∗]), |β|, |δ| 6 C, β(t) + δ(t) > 0, |det ∂Fi/∂xj | > c > 0 for x ∈ U ,
t ∈ [0, T∗].

ρ(x)=const.

B(x , x ,t)=01 2

(t)

ρ(y)=const

x'

φ(ρ)
x

x

x'

~

~
α

B(y ,y ,t)=01 2

y=y(x ,x ,t)1 2

Non-linear change of variables depending on time.

Level sets move with the flow, therefore we assume below that the temperature

is constant along %. With these hypotheses we show in Theorem 3.1 that the angle
α(t) = β(t) + δ(t) can not close faster than a double exponential in time and that
|∇θ| is bounded by a quadruple exponential.

Theorem 3.1. Let θ(x1, x2, t) be a solution of QG (3.1). Assume that θ is
constant along the curves % = const defined above with T∗ = ∞. Assume also, for
each fixed t, that θ is not constant on any disc in U . Then

∣∣∣log log
1
α(t)

∣∣∣ 6 C1 · t+ C2.
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The proof is divided in two parts. First we write the stream function in terms

of the variables (%, σ). The variable % represents the level sets and the variable σ
satisfies the equations

∂x1

∂σ
= − ∂%

∂x2
,

∂x2

∂σ
=

∂%

∂x1
.

Making the change of variables in the original equations, with the hypothesis that

∂θ/∂% 6= 0 in U and with the condition θ(x1, x2, t) = θ̃(%, t) we obtain

u · ∇xθ =
∂θ̃

∂%
(u · ∇x%) = −∂θ̃

∂%

( ∂ψ
∂x2

∂x2

∂σ
+
∂ψ

∂x1

∂x1

∂σ

)
,

therefore
∂θ̃

∂t
+
∂θ̃

∂%

(∂%
∂t

− ∂ψ

∂σ

)
= 0,

where the velocity satisfies u = ∇⊥ψ. Then

∂ψ

∂σ
=
∂%

∂t
+E1(%, t).

Integrating with respect to σ we obtain the desired expression

(3.7) ψ(%, σ, t) = E1(%, t) · σ +
∫ σ

0

∂%

∂t
dσ +E2(%, t).

For the second part of the proof we choose two points (x, x′) in the same level set
but in different branches of the hyperbola. We evaluate the stream function at both

points, subtract one value from the other and take the limit as % tends to zero. Then
from the expression (3.7) we get

lim
%→0

[ψ(x)− ψ(x′)] = C
dα
dt

+O(α).

Since θ = −(−∆)1/2ψ the stream function can be obtained by setting

ψ(x, t) = −
∫
� 2

θ(x + y, t)
|y| dy

and we get the following estimate:

lim
%→0

|ψ(x) − ψ(x′)| 6 K|logα| |α|.

Putting together the two limits we have

α(t) > c1e−et

,
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which is a local estimate. In order to obtain bounds on the derivatives of θ we need to

take into account the nonlocal behavior. Let ξ(x) = ∇⊥θ/|∇⊥θ| satisfy |∇ξ| 6 Φ(t)
in (

� 2/U)× [0,∞). Then by estimating the evolution of |∇θ| along the trajectories
we obtain

|∇θ| 6 exp
(

exp
(
c

∫ t

0

(
ees

+ Φ(s)
)
ds

))

in
� 2 × [0,∞). For details of the proof see [17].

3.2. Patches
Resnick [33] studied the weak formulation of the QG equation in a periodic setting� 2 = [0, 2π]× [0, 2π]. A function θ is a weak solution if it satisfies

∫
� 2
ϕ(x)θ(x, T ) dx−

∫
� 2
ϕ(x)θ0(x) dx =

∫ T

0

∫
� 2
∇ϕθu dx dt

for all functions ϕ ∈ C∞ where u = (−R2θ,R1θ) for almost all t ∈ [0, T ]. Resnick
proved the existence of weak solutions using Galerkin approximations in the periodic
case

� 2. This solutions satisfy ‖θ(t)‖L2 6 ‖θ0‖L2 , therefore ‖u(t)‖L2 6 ‖u0‖L2 . The

problem of uniqueness is still open.
A fundamental property of QG equation is that the level sets move with the flow,

i.e. that there is no transfer of flow along a level set. Then a natural weak solution,
with finite energy, is a connected bounded region Ω(t) where the function θ satisfies

θ(~x, t) =

{
1 if ~x ∈ Ω(t),

0 if ~x ∈ � 2/Ω(t)

and evolves with the velocity preserving the initial area, |Ω(0)| = |Ω(t)|. These
solutions start initially with a front on the boundary of Ω(t) and are called patches.
This type of solutions was studied for 2D incompressible Euler equation (see [2], [7],
and [3]), where the vorticity is conserved along trajectories. In [21] we study the

dynamics of the α-patches which is a family of equations that interpolate 2D Euler
and QG ones.
An α-patch (0 < α < 1) consists in a 2D region Ω(t) (bounded and connected)

that moves with the velocity given by

(3.8) u(~x(γ, t), t) =
θ0
2π

∫

C(t)

∂~x
∂γ (γ′, t)

|~x(γ, t)− ~x(γ′, t)|α dγ′

where ~x(γ, t) is the position of C(t) which is the boundary of the domain Ω(t),
parameterized by γ. The evolution of the boundary satisfies

(3.9)
d~x(γ, t)

dt
= u(~x(γ, t), t),
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and they are weak solutions of the equation

(∂t + u · ∇)θ = 0,

u = ∇⊥ψ and θ = −(−∆)1−
1
2 αψ.(3.10)

The limiting case α = 0 (2D Euler) was studied analytically with success by
Chemin [7] and Bertozzi-Constantin [2], showing global existence. In the case α = 1,
i.e. for the (QG) equation José Luis Rodrigo [34] proved a local existence result using
a Nash-Moser scheme.
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Figure 2. The evolution of two patches with α = 0.5. In the plot for t = 16.515, the box
stands for a magnification of one of the corners displayed in Fig. 4 a).
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Figure 3. The evolution of two patches with α = 1. In the plot for t = 4.464, the box
stands for a magnification of one of the corners displayed in Fig. 4 b).

In [21] we find numerically possible candidates that lead to a singularity for the
family of equations (3.10). For the particular cases α = 0.5 and 1 (see Figs. 2 and 3)
we observe the formation of a corner that develops a high increase of the curvature
at the same point where it reaches the minimum distance between the two patches.

For a more detail scenario of the collapse of the two patches see Fig. 3.

Furthermore, by re-scaling the spatial variable in the form

~x = (t0 − t)δ~y
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where δ = α−1 and introducing a new variable τ = − log(t0− t) the contour dynamic
equations (3.8) and (3.9) become

(3.11)
∂~y

∂τ
− δ~y =

θ0
2π

∫

C(t)

∂~y
∂γ (γ′, t)

|~y(γ, t)− ~y(γ′, t)|α dγ′.

Solutions of (3.11) independent of τ represent solutions of (3.10) with the property

that the maximum curvature grows as

κ =
1
R
∼ C

(t0 − t)1/α
when t→ t0

and the minimum distance of the two patches satisfies

d ∼ C(t0 − t)1/α when t→ t0.

These singularities are self-similar and stable and occur at one single point where

the curvature blows-up at the same time as the two level sets collapse. Therefore
they are not of squirt singularity type.
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Figure 4. Close caption of the corner region at t = 16.515 for α = 0.5 (a) and t = 4.464 for
α = 1 (b). Observe that the singularity is point-like in both cases.
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4. Viscosity role

As we have seen in Section 2 viscosity plays an important role, and dissipation
helps to prevent the formation of singularities. In this section we consider the Cauchy

problem for the viscous QG equation

(∂t + u · ∇)θ = −κ(−∆)γθ,(4.1)

u = ∇⊥ψ and θ = −(−∆)
1
2ψ

which has been studied by different authors in [26], [8], [6], [9], [13], [14], [15] and

[33].
From the equation we have

1
2

d
dt
‖Λmθ‖2

L2 6
∣∣∣∣
∫

Λmθ{Λm(R(θ) · ∇⊥θ)−R(θ) · ∇⊥Λmθ}
∣∣∣∣− κ‖Λm+ 1

2 γθ0‖2
L2

6 C‖Λmθ‖2
L2(‖θ‖L2 + ‖Λ2+εθ‖L2)− κ‖Λm+ 1

2 γθ‖2
L2

for every ε > 0. Taking ε = m+ 1
2γ − 2 we get

1
2

d
dt
‖Λmθ‖2

L2 6 C
( 1
κ
‖Λmθ‖4

L2 + ‖θ‖L2‖Λmθ‖2
L2),

which yields the following local existence result for (4.1).

Theorem 4.1. Let γ > 0 and κ > 0 be given and assume that θ0 ∈ Hm(
� 2 ),

m+ 1
2γ > 2. Then there exists a time T = T (κ, ‖Λmθ0‖L2) > 0 such that there is a

unique solution to (4.1) in C1([0, T ), Hm(
� 2 )).

For κ > 0, Constantin and Wu [13] showed global existence for γ ∈ ( 1
2 , 1]. It is

an open problem to know the existence of singularities when γ 6 1
2 . It is easy to

obtain global existence results for small initial data in several functional spaces, for

example in the case of Hm(
� 2 ) we have

1
2

d
dt
‖θ‖2

L2 + ‖Λmθ‖2
L2) 6 − κ‖Λ 1

2 γθ‖2
L2 + C(‖θ‖L2‖Λmθ‖2

L2 + ‖Λmθ‖3
L2)

− κ‖Λm+ 1
2 γθ‖2

L2 .

Since

‖Λmθ‖2
L2 6 ‖Λ 1

2 γθ‖2
L2 + ‖Λm+ 1

2 γθ‖2
L2

we obtain the inequality

1
2

d
dt

(‖θ‖2
L2 + ‖Λmθ‖2

L2) 6 ‖Λmθ‖2
L2(C(‖θ‖2

L2 + ‖Λmθ‖2
L2)

1
2 − κ)
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for a fixed constant C < ∞. Then (for κ > 0 and 0 6 γ 6 1), if the initial data
satisfies ‖θ0‖Hm 6 κ/C (where m > 2), we can conclude that there exists a unique
solution to (4.1) which belongs to Hm for all time t > 0.

In the critical case γ = 1 (κ > 0), we obtain an improvement. Multiplying the
equation by ∆2θ and integrating by parts we obtain

1
2

d
dt

∫
|∆θ|2 dx = −

∫
∆2θ(R(θ) · ∇⊥θ) dx− κ

∫
|(−∆)

5
4 θ|2 dx.

Further integration by parts gives

∫
∆2θ(R(θ) · ∇⊥θ) dx = 2

∫
∇u · (∇(∇θ))∆θ dx+

∫
(∆ · ∇θ)∆θ dx.

By the Hölder inequality,

∣∣∣∣
∫

∆2θ(R(θ) · ∇⊥θ) dx
∣∣∣∣ 6 C

[
‖∇u‖L3‖∆θ‖2

L3 + ‖∆u‖2
L3‖∇θ‖L3‖∆θ‖L3

]
.

Applying the fact that the Riesz transforms are bounded in Lp spaces together with
the Gagliardo-Nirenberg inequalities we obtain

∣∣∣∣
∫

∆2θ(R(θ) · ∇⊥θ) dx
∣∣∣∣ 6 C‖θ‖L∞‖(−∆)

5
4 θ‖2

L2 .

Collecting the above estimates we arrive at

1
2

d
dt

∫
|∆θ|2 dx 6 C(‖θ‖L∞ − κ)‖(−∆)

5
4 θ‖2

L2 .

The relevance of this inequality comes from the maximum principle of (4.1); the
L∞ norm decreases in time. Resnick showed ([33]) that the solutions to the viscous

QG equation satisfy

‖θ(·, t)‖Lp 6 ‖θ0‖Lp for 1 < p 6 ∞ and for all t > 0,

which yields the following theorem
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Theorem 4.2 (Global existence for small data). Let θ be a weak solution of (4.1)
with an initial data θ0 ∈ H2 satisfying ‖θ0‖L∞ 6 κ/C (where C < ∞ is a fixed

constant). Then there is a unique global solution θ satisfying

‖θ(·, t)‖H2 6 ‖θ0‖H2

for all t > 0.

In order to understand the decay of the Lp norms of θ we obtained the following

inequality (for more details see [14] and [15]).

�	��
������
�����
��� � � ���
�� �  
Let 0 6 γ 6 2, x ∈ � 2 ,

� 2 and θ ∈ S (the Schwartz
class). Then

2θΛγθ(x) > Λγθ2(x).

This local pointwise estimate or the chain rule for fractional derivatives is surpris-

ing because of the non-local nature of the operators involved. The inequality is used
together with the energy estimates to obtain

(4.2) ‖θ(·, t)‖p
Lp 6 ‖θ0‖p

Lp

(1 + εCt‖θ0‖pε
Lp)1/ε

where C = C(κ, γ, p, ‖θ0‖1) is a positive constant and ε = 1
2γ/(p− 1).

For the case p = ∞ it is not sufficient to take the limit p → ∞ of (4.2). We

have to study the evolution of the scalar θ along the trajectory xt where it reaches
its maximum (or minimum), and use the differentiability of Lipschitz functions to

justify the existence for almost all time of the derivative dxt/dt.

Theorem 4.3. Let θ and u be smooth functions in
� 2 × [0, T ) (or

� 2 × [0, T ))
satisfying θt + u · ∇θ + κΛγθ = 0 with κ > 0, 0 < γ 6 2, θ(·, t) ∈ Hs(

� 2 ), 0 6 t < T

(or Hs(
� 2)) (s > 1) and ∇ · u = 0. Then

(4.3) ‖θ(·, t)‖L∞ 6 ‖θ0‖L∞

(1 + γCt‖θ0‖γ
L∞)1/γ

, 0 6 t < T,

where θ0 = θ(·, 0) and C = C(κ, θ0) > 0. Furthermore, when γ = 0 there is an
exponential decay ‖θ(·, t)‖L∞ 6 ‖θ0‖L∞e−κt.

The previous theorem allows us to analyze the existence of solutions after a time T .

For that purpose we study weak solutions of the critical case γ = 1

θt +R(θ) · ∇⊥θ = −κΛθ
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which we define to be a viscosity solution with initial data θ0 ∈ Hs(
� 2 ) (or Hs(

� 2)),
s > 1, if it is the limit of a sequence of solutions, when ε→ 0, of the system

(4.4) θε
t +R(θε) · ∇⊥θε = −κΛθε + ε∆θε

with θε(x, 0) = θ0. The result we obtain is

Theorem 4.4. Let θ be a viscosity solution with initial data θ0 ∈ Hs(
� 2 or

� 2),
s > 3

2 , of the equation θt +R(θ) · ∇⊥θ = −κΛθ (κ > 0). Then there exist two times
T1 6 T2 depending only upon κ and the initial data θ0 such that:

1) If t 6 T1 then θ(·, t) ∈ C1([0, T1);Hs) is a classical solution of the equation
satisfying

‖θ(·, t)‖Hs 6 C‖θ0‖Hs .

2) If t > T2 then θ(·, t) ∈ C1([T2,∞);Hs) is also a classical solution and ‖θ(·, t)‖Hs

is monotonically decreasing in t, bounded by ‖θ0‖Hs , and satisfying

∫ ∞

T2

‖θ‖2
Hs dt <∞.

In particular, this implies that

‖θ(·, t)‖Hs = O(t−
1
2 ), t→∞.

The proof is based on the L∞ decay and a bootstrap mechanism associated with the
evolution of several Sobolev norms. An example of this mechanism is the following

chain of inequalities:

d
dt
‖θε‖2

L2 = 2
∫
θεR(θε) · ∇⊥θε − 2κ

∫
θεΛθε − 2ε

∫
|Λθε|2

= − 2κ‖Λ 1
2 θε‖2

L2 − 2ε‖Λθε‖2
L2 6 −2κ‖Λ 1

2 θε‖2
L2 ,

d
dt
‖Λ 1

2 θε‖2
L2 = 2

∫
Λ

1
2 θεΛ

1
2 (R(θε) · ∇⊥θε)− 2κ‖Λθε‖2

L2 − 2ε‖Λ 3
2 θε‖2

L2

6 (C‖θε(·, t)‖L∞ − 2κ)‖Λθε‖2
L2 ,

d
dt
‖Λθε‖2

L2 6 (C‖Λθε‖L2 − κ)‖Λ 3
2 θε‖2

L2 ,

d
dt
‖Λ 3

2 θε‖2
L2 6 (C‖θε‖L∞ − κ)‖∆θε‖2

L2 ,

where C is a universal constant, uniform with respect to the artificial viscosity ε.
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