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Abstract. We characterize some G-limits using two-scale techniques and investigate a
method to detect deviations from the arithmetic mean in the obtained G-limit provided
no periodicity assumptions are involved. We also prove some results on the properties of
generalized two-scale convergence.
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1. Introduction

Convergence of linear differential operators is a matter of interest concerning a wide
variety of applications, and in this process, it is usually a defining sequence {Ah} of
matrices that plays the leading role. Proving existence of a limit operator with appro-
priate characteristics has been extensively studied for quite general cases. The prob-

lem of finding procedures for computing such limits, however, is usually restricted to
certain special cases, the most developed one being periodic homogenization. There

is no problem if we demand quite strong convergence of {Ah}. With weaker conver-
gence assumptions on the sequence {Ah}, though, we encounter difficulties. We are
going to characterize limits of sequences of operators for non trivial cases without
any periodicity demands.

A well studied and very illuminating example is the convergence of sequences of
linear elliptic operators. We study sequences {uh} of weak solutions to sequences of
equations of the type

−∇ · (Ah(x)∇uh(x)) = f(x) in Ω,(1)

uh(x) = 0 on ∂Ω.
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Assume that matrix functions

(2) Ah → A in L2(Ω)N×N (strongly),

where Ah and A ∈ L∞(Ω)N×N , satisfy the structure conditions

(3) Ah(x)ξ · ξ > C0|ξ|2

and

(4) |Ah(x)ξ| 6 C1|ξ|,

where 0 < C0 6 C1 < ∞. Then

uh ⇀ u in W 1,2
0 (Ω),

where u solves

−∇ · (A(x)∇u(x)) = f(x) in Ω,(5)

u(x) = 0 on ∂Ω

(see [3], Lemma 1.2.22). This is, however, in general not the case if the convergence

of {Ah} is somewhat less strong. In periodic homogenization (see [5] and [8]) we
study (1) for

Ah(x) = A
( x

εh

)
,

where A is periodic with respect to the unit cube Y and εh → 0 when h → ∞. We
have

(6) Ah(x) = A
( x

εh

)
⇀

∫

Y

A(y) dy in L2(Ω)N×N ,

but the matrix representing the limit problem does not coincide with the limit in (6).

We have weak convergence in L2(Ω)N×N , and this is not strong enough. A correction
term appears in the limit matrix.

The convergence of (1) to (5) is an example of G-convergence (see [8]). We say
that the sequence {Ah} of differential operators, defined by the sequence {Ah} of
matrices through the left-hand side of (1), G-converges to an operator B, represented
by a matrix B, if for each f the solutions uh to (1) converge weakly in W 1,2

0 (Ω) to
the solution u to

−∇ · (B(x)∇u(x)) = f(x) in Ω,(7)

u(x) = 0 on ∂Ω.
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However, it is not obvious how to determine B from the limit behavior of {Ah}. The
question is if there is some kind of convergence weaker than (2), yet not identical
with (6), where we do not have to bother about a correction term? How much can
we disturb the behavior of {Ah} until such a term appears?
In Section 2 we introduce a generalization of the two-scale convergence to the case

without any periodicity assumption. In Section 3 we study G-convergence for (1),

where {Ah} is obtained by certain two-scale techniques based on the ideas in [12]. It
turns out that it is possible to find an exact criterion for when we can compute the

G-limit directly.

���������	�
���
1. In general we use the Einstein tensor summation convention where

indices are repeated. In a few places, however, we want to avoid summation. Let

Aij and Bij be elements in the matrices A and B, respectively. For the product of
the elements Aij and Bij without summation we write

[AijBij ]i,j ,

while

[AijBij ]i =
N∑

j=1

AijBij

means that there is no summation over i, just over j.

2. Two-scale convergence and two-scale compatible operators

If {uh} and {νh} are bounded sequences in L2(Ω)N , we cannot be sure that

(8)
∫

Ω

uh(x) · νh(x)ϕ(x) dx →
∫

Ω

u(x) · ν(x)ϕ(x) dx

holds with u and ν the weak limits of {uh} and {νh}, respectively. We need to
strengthen the assumptions on the sequences. One way to do this is to make further
assumption that {νh} converges strongly in L2(Ω)N , and thus obtain “weak-strong”

convergence. Another option is to extend the strengthening of the convergence to
both {uh} and {νh}, like in compensated compactness, where we have certain de-
mands on the derivatives of the sequences.

The following example illustrates the effect of the choice of sequences provided we
only require boundedness in L2(Ω).
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 ���������
�
2. Let {uh} and {νh} be two weakly convergent sequences in L2(Ω),

and let u and ν denote their weak limits. In general, it is not true that uhνh will
approach uν in any traditional sense. If we choose uh(x) = cos(x/εh), νh(x) =
sin(x/εh) and Ω = (a, b), we have

(9) u(x)ν(x) = 0

and hence

(10) uhνh ⇀ uν in D′(Ω).

If we let uh(x) = sin(x/εh) instead, we obtain

uhνh ⇀ 1/2 6= uν in D′(Ω),

so we do not have (10).

The notion of two-scale convergence, however, offers us a third alternative.

2.1. Periodic two-scale convergence
In two-scale convergence we have pairing of a sequence {uh} of functions bounded

in L2(Ω) and a sequence {νh} of test functions defined by

(11) νh(x) = v
(
x,

x

εh

)
,

where v ∈ L2(Ω×Y ) is sufficiently smooth and periodic in the second argument with
period being the unit cube Y in � N . The original result by Nguetseng reads that,
up to a subsequence, for some u0 ∈ L2(Ω× Y ), we have

lim
h→∞

∫

Ω

uh(x)v
(
x,

x

εh

)
dx =

∫

Ω

∫

Y

u0(x, y)v(x, y) dx dy.

For this kind of test function v we also know that

(12) νh(x) = v
(
x,

x

εh

)
⇀

∫

Y

v(x, y) dy in L2(Ω),

without additional differential constraints.

Periodic two-scale convergence is well established and frequently used, but can
also be viewed as a special case of the general two-scale convergence, which will be

investigated in the next section. Here we will examine in particular the relation
between the two-scale limit u0 and the weak limit in L2(Ω) in the periodic case.
Later, the corresponding investigations will be done for the general case.
Let us start with the definition of the periodic case for two-scale convergence.
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Definition 3. A sequence {uh} in L2(Ω) is said to two-scale converge to a limit
u0 ∈ L2(Ω× Y ) if

(13) lim
h→∞

∫

Ω

uh(x)v
(
x,

x

εh

)
dx =

∫

Ω

∫

Y

u0(x, y)v(x, y) dx dy

for every v ∈ L2(Ω; C#(Y )). We denote this fact by

uh ⇀⇀ u0.

Theorem 4. Let {uh} be a sequence in L2(Ω) two-scale converging to u0 ∈
L2(Ω× Y ). Then {uh} is bounded in L2(Ω) and

(14) uh ⇀

∫

Y

u0(x, y) dy in L2(Ω).

���	�����
. See [2] and [19]. �

Theorem 4 follows if (13) is true for all v ∈ L2(Ω; C#(Y )), but not necessarily if
this holds for a smaller classX , even if X is dense in L2(Ω; C#(Y )); see the discussion
in Example 5.

In other words, if a sequence {uh} in L2(Ω) two-scale converges to a function u0,
it also converges weakly to its integral mean value over Y in L2(Ω). One can think
that this is true if we assume only (13) for a smaller subset of L2(Ω; C#(Y )), like
C∞0 (Ω; C∞# (Y )) or C(Ω; C∞# (Y )), but that is not the case. The following example
from [13] shows that even though we obtain a limit as in (13), we cannot apply
Theorem 4 since {uh} is not bounded in L2(Ω).
 ���������
�

5. Let Ω = (0, 2) and define {uh} by

uh(x) =

{
ε−1

h , 0 < x < εh,

0, εh < x < 2.

Then (13) is satisfied with u0 = 0 for all v ∈ C∞0 (Ω; C∞# (Y )) while e.g. for v ≡ 1

∫

Ω

uh(x)v(x) dx → 1 6= 0.

This is due to the fact that {uh} is unbounded in L2(Ω).

If we add the condition that {uh} is bounded in L2(Ω) we may use X =
C∞0 (Ω; C∞# (Y )) in Definition 3.
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Proposition 6. Let {uh} be a bounded sequence in L2(Ω) such that

lim
h→∞

∫

Ω

uh(x)v
(
x,

x

εh

)
dx =

∫

Ω

∫

Y

u0(x, y)v(x, y) dx dy

for every v ∈ C∞0 (Ω; C∞# (Y )). Then {uh} two-scale converges to u0.

By density arguments, it can also be proved that (13) holds for test functions in

other spaces if {uh} two-scale converges, such as L2
#(Y ; C(Ω)) for example. This is

proved in [13], where a proof of Proposition 6 can also be found.
����� ���	!

7 (historical). In the late 80’s, Nguetseng (see [19]) presented a rad-

ically new approach to the homogenization of partial differential equations. The
name of the method, two-scale convergence, is introduced in [2], where Allaire uses

and develops it in various ways, and also applies it to a variety of problems. More-
over, in [1] by Allaire and Briane, two-scale convergence is extended to the linear

stationary multi-scale case. The extension to the almost periodic case is found in [6]
by Casado-Diaz and Gayte. See also the careful investigation of the theoretical fun-

daments and properties of periodic two-scale convergence in [13] by Lukkassen et al.
Cioranescu et al. investigate a new approach, unfolding, closely related to two-scale

convergence, in [7], see also [18] by Nechvátal. In [14], Mascarenhas and Toader intro-
duce a concept called “scale-convergence” for Young measures. Further refinements

to the method of two-scale convergence are made by Nguetseng in [20].

2.2. General two-scale convergence
In the definition of periodic two-scale convergence the key role was played by

mapping test functions v(x, y) of two variables to functions v
(
x, x/εh

)
of one vari-

able. The generalization is based on replacing this mapping with a sequence {τh} of
transformations. We will introduce a certain kind of linear operators τh, investigate

sequences of integral expressions of the type

∫

Ω

uh(x)νh(x) dx =
∫

Ω

uh(x)τhv(x) dx,

and see that results of the same kind as (12) hold, see [12]. In the sequel we let Ω
and Y be open and bounded subsets of � N and � M , respectively.
We define general two-scale convergence.

Definition 8 (General two-scale convergence). LetX be a subspace of L2(Ω×Y )
and let {τh} be a sequence of operators

τh : X → L2(Ω).
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A sequence {uh} in L2(Ω) is said to two-scale converge to u0 ∈ L2(Ω × Y ) with
respect to {τh} if

lim
h→∞

∫

Ω

uh(x)τhv(x) dx =
∫

Ω

∫

Y

u0(x, y)v(x, y) dx dy

for all v ∈ X .

Below we specify the necessary properties of {τh} and X to obtain compactness
of a kind similar to the case traditional periodic two-scale convergence.

Definition 9 (Two-scale compatible operators). Let X be a normed linear space
X ⊂ L2(Ω × Y ). A sequence of operators {τh} is said to be two-scale compatible
with respect to X if the operators

τh : X → L2(Ω)

are linear and have the properties

(15) lim
h→∞

‖τhv‖L2(Ω) 6 C‖v‖L2(Ω×Y )

and

(16) ‖τhv‖L2(Ω) 6 C‖v‖X

for all v ∈ X . The space X will be called the space of admissible test functions with

respect to {τh}.

The conditions in Definition 9 are not sufficient to create a connection between
the limits of two-scale type that will appear, and the corresponding traditional weak

limits. We strengthen the assumptions on {τh} in the next definition.

Definition 10 (Strongly two-scale compatible operator). Let a sequence of oper-
ators {τh} be two-scale compatible with respect to X . It is called strongly two-scale
compatible if, in addition, the following two conditions are satisfied:

(i) For all v in X , we have

τhv ⇀

∫

Y

v(x, y) dy in L2(Ω).

(ii) For all sequences {uh} two-scale converging to u0 with respect to {τh}, we have

uh ⇀

∫

Y

u0(x, y) dy in L2(Ω).
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����� ���	!
11. The sequence {τh} of operators defined by

τhv(x) = v
(
x,

x

εh

)
,

where εh → 0 for h → ∞, is strongly two-scale compatible with respect to X =
L2(Ω; C#(Y )).

The next theorem means that compactness results of two-scale convergence type

can be applied also to cases which do not involve any periodicity assumptions. Note
that the admissible space X depends of the choice of {τh}.

Theorem 12. Let {uh} be a bounded sequence in L2(Ω) and X ⊂ L2(Ω × Y )
a separable Banach space. Then there exists u0 ∈ L2(Ω × Y ) such that, up to a
subsequence,

lim
h→∞

∫

Ω

uh(x)τhv(x) dx =
∫

Ω

∫

Y

u0(x, y)v(x, y) dx dy

for all v ∈ X if {τh} is two-scale compatible with respect to X .
���	�����

. See [12] and [21]. �

2.2.1. Properties of general two-scale convergence. The following proposi-
tions show how a relation between the two-scale limit u0 and the weak L2(Ω)-limit
of {uh} can be established. We state sufficient conditions for operators τh to be

strongly two-scale compatible, and hence obtain the wanted connection between the
limits.

Proposition 13. Assume that {τh} is two-scale compatible with respect to X ,

where C∞0 (Ω) ⊂ X ⊂ L2(Ω × Y ), and that τh is working as an identity operator

while acting on any v ∈ X that is independent of the variable y. Assume further

that the sequence {uh} is bounded in L2(Ω) and two-scale converging with respect
to {τh} to some u0 ∈ L2(Ω× Y ). Then

(17) uh ⇀

∫

Y

u0(x, y) dy in L2(Ω).

���	�����
. Suppose {uh} is bounded in L2(Ω) and two-scale converging to u0 ∈

L2(Ω× Y ) with respect to {τh}. Then
∫

Ω

uh(x)v(x) dx =
∫

Ω

uh(x)τhv(x) dx

→
∫

Ω

∫

Y

u0(x, y)v(x) dx dy =
∫

Ω

(∫

Y

u0(x, y) dy

)
v(x) dx
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for any v ∈ C∞0 (Ω). Since {uh} is bounded in L2(Ω), this means that

uh ⇀

∫

Y

u0(x, y) dy in L2(Ω)

and the proposition is proved. �

If we assume that {uh} converges strongly in L2(Ω) then the second scale in the
two-scale limit is lost, as proved in the proposition below.

Proposition 14. Let {τh} be two-scale compatible with the additional condition

νh = τhv ⇀ ν =
∫

Y

v(x, y) dy in L2(Ω).

Assume further that

uh → u in L2(Ω).

Then

lim
h→∞

∫

Ω

uh(x)τhv(x) dx =
∫

Ω

∫

Y

u(x)v(x, y) dx dy =
∫

Ω

u(x)ν(x) dx

for all admissible v.
���	�����

. The “weak-strong” convergence immediately yields

∫

Ω

uh(x)τhv(x) dx →
∫

Ω

u(x)
∫

Y

v(x, y) dy dx =
∫

Ω

u(x)ν(x) dx

and the proof is complete. �

The following example from [12] introduces a construction of sequences {τh} of
two-scale compatible operators without involving any periodicity demands.
 ���������
�

15. Let {wh} be a bounded sequence in L4(Ω × Y ) such that the
conditions

∫

Y

wh(x, y) dy = 1,(18)

wh ⇀ w in L4(Ω× Y )(19)

and

(20) w2
h ⇀ W in L2(Ω× Y )
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hold with W in L∞(Ω× Y ). Then the operators {τh} defined by

(21) νh(x) = τhv(x) =
∫

Y

wh(x, y)v(x, y) dy

form a two-scale compatible sequence of operators with respect to L4(Ω× Y ). If in
addition w = 1 and |Y | = 1, we have

νh(x) = τhv(x) ⇀

∫

Y

v(x, y) dy in L2(Ω)

and hence {τh} is strongly two-scale compatible.

Our next example introduces a particular choice of wh to define a certain kind of
two-scale convergence.
 ���������
�

16. Let

sn =
n∑

k=1

2
k

with
s0 = 0;

clearly sn →∞. Let us introduce an auxiliary function ϕ defined on [0,∞),

ϕ(y) =





2, y ∈
[
sn, sn +

1
n + 1

)
,

0, otherwhise.

We shall study a sequence {τh} of two-scale operators defined by (21) for

(22) wh(x, y) = ϕ(y + ph(x)),

where y ∈ Y = (0, 1), x ∈ Ω = (a, b) and ph is piecewise smooth. The sequence {wh}
is bounded in L∞(Ω × Y ) and picking a suitable subsequence, it is not difficult to
see that {τh} defined by (22) yields two-scale convergence with respect to {τh}. It
is also easy to find sequences {ph} such that the key property (17) holds. Further, if
we choose e.g.

ph(x) = h

we get
wh(x, y) = wh(y) = w(y + h) ⇀ 1 in L2(Y )

and hence (see Section 3.1)

νh(x) =
∫

Y

wh(y)v(x, y) dy → ν(x) =
∫

Y

v(x, y) dy in L2(Ω).

294



Thus we obtain the conventional limit and arrive at

lim
h→∞

∫

Ω

uh(x)νh(x) dx =
∫

Ω

u(x)ν(x) dx

if
uh ⇀ u in L2(Ω).

In the next section we study how the convergence of differential operators is af-

fected when the strong convergence of the defining matrices is disturbed by adding
dependence on the variable x in a similar way as above.

3. G-convergence and two-scale compatible operators

This chapter is devoted to the concept of G-convergence, a type of convergence
for differential operators. We will characterize some G-limits for sequences {Ah} of
differential operators obtained from sequences of symmetric matrices {Ah} created by
operators similar to those discussed in Example 15. We will in particular investigate

whether and in what way the G-limits differ from the corresponding weak limits
of {Ah}.
For the special case of linear elliptic operators we have the following definition.

Definition 17 (G-convergence). Let {Ah} be a sequence of symmetric matrices
in L∞(Ω)N×N satisfying the structural conditions (3) and (4). Furthermore, let B be
a symmetric matrix in the same space as {Ah}, satisfying the same conditions. If,
for every f ∈ W−1,2(Ω), the sequence {uh} of solutions to

−∇ · (Ah(x)∇uh(x)) = f(x) in Ω,(23)

uh(x) = 0 on ∂Ω

converges in the sense that

uh ⇀ u in W 1,2
0 (Ω)

as h →∞, where u is the unique solution to

−∇ · (B(x)∇u(x)) = f(x) in Ω,(24)

u(x) = 0 on ∂Ω,

we say that the sequence {Ah} of elliptic operators defined by {Ah} G-converges to
the elliptic operator B defined by B.

The following theorem states the sequential compactness of operators {Ah} intro-
duced in Definition 17 with respect to G-convergence.
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Theorem 18. Given {Ah}, a sequence of symmetric matrices in L∞(Ω)N×N

satisfying (3) and (4), then there exists a subsequence such that the corresponding
sequence {Ah} of operators G-converges.
���	�����

. See [22]. �

In periodic homogenization (see [5] and [8]) we study (23) for

(25) Ah(x) = A
( x

εh

)
,

where A is periodic with respect to the unit cube Y and εh → 0 when h →∞. Then
we have

(26) Ah(x) = A
( x

εh

)
⇀

∫

Y

A(y) dy in L2(Ω)N×N ,

but the matrix representing the effective properties does not coincide with the limit
in (26). We have weak convergence in L2(Ω), and this is not strong enough. Here,
the effective matrix B can be computed as

(27) Bij =
∫

Y

Aij(y) + A(y)∇yzi · ej dy,

where zi is Y -periodic and solves

(28) −∇y · (A(y)(ei +∇yzi(y))) = 0 in Y.

We know what the matrix B looks like when {Ah} is periodic in the sense of (25),
but what if it is not? In the next section we will first introduce sequences {Ah} of
matrices created by means of a certain kind of compact operators, and investigate

what happens when the operators are modified in a way that relaxes compactness.
����� ���	!

19. G-convergence was first introduced by Spagnolo ([22], [23] and

[24]). Later, Murat and Tartar generalized the concept under the name of H-
convergence, see [15], [16], [17], [25], [26]. Chiadò Piat and Defranceschi made gener-

alizations to non-linear monotone cases in [9], which was also done in [10] by Chiadò
Piat et al. Tartar studied the properties of H-convergence for a type of non-linear

monotone problems in [25]. See also the monograph [11] on weak convergence by
Evans.

3.1. Hilbert-Schmidt operators
Hilbert-Schmidt operators are compact and thus have the ability to transform

weakly convergent sequences in reflexive Banach spaces into strongly convergent
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ones (see [4], 8.9). In

(29) νh(x) =
∫

Y

wh(y)v(x, y) dy,

such an operator is acting on the sequence {wh}. The compactness of this operator
means that it transforms weakly convergent (in an appropriate space) sequences {wh}
to strongly convergent ones (under some additional assumptions).
The matrix version of (29) should not cause any problem. If {Ah} is obtained as

(30) (Ah)ij(x) =
∫

Y

[(wh)ij(y)Aij(x, y)]i,j dy,

where A is regular enough and

(31) wh ⇀ 1 in L2(Y )N×N ,

then

(32) Ah → A in L2(Ω)N×N .

This means that the G-limit is represented by the strong L2(Ω)-limit of {Ah} (see [3,
Lemma 1.2.22]), and the solutions to (23) for {Ah} as in (30) will then converge to
the solution to (24) with

(33) B(x) =
∫

Y

A(x, y) dy.

Here the matrix B coincides with the weak limit of {Ah} thanks to the strong
convergence (32). This is, however, in general not the case if we let wh depend on

an additional variable. We will investigate this case in the next section.

3.2. Characterization of some G-limits
The purpose of this section is to compute the limit matrix B using information

available about the sequence {Ah}. In periodic homogenization this B deviates from

the weak limit of {Ah}, and the correction of the limit in (26) is contained in the
term ∫

Y

A(y)∇yzi · ej dy

in (27). In [27] it is proved that this correction vanishes when

(34) ∂yiAij(y) = 0.
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Could we expect something similar to (34), when dealing with non periodic struc-

tures? To find out, we study (23) for

(35) (Ah)ij(x) =
∫

Y

[(wh)ij(x, y)Aij(x, y)]i,j dy.

Since wh does now depend on the variable x as well, we cannot be sure that {Ah} con-
verges strongly and clearly it is not sure that (33) holds. It turns out that the switch

between when (33) holds, and when a correction term appears, is exactly when

(36) (rh)j(x) =
∫

Y

[(∂xi(wh)ij(x, y))Aij (x, y)]j dy ⇀ 0 in L2(Ω).

The following proposition deals with this situation.

Proposition 20 (Two-scaleG-convergence). Let {uh} be a sequence of solutions
to

−∇ · (Ah(x)∇uh(x)) = f(x) in Ω,(37)

uh(x) = 0 on ∂Ω.

The matrices Ah are defined by

(38) Ah
ij(x) =

∫

Y

[(wh)ij(x, y)Aij (x, y)]i,j dy

for A, wh ∈ C1(Ω̄ × Ā)N×N , where A and {wh} are chosen such that {Ah} satisfy
structural conditions of the kind introduced in (3) and (4). Assume further that

(39) wh ⇀ 1 in L2(Ω× Y )N×N

and

(40)
∫

Y

[∂xi(wh)ij(x, y)Aij(x, y)]j dy ⇀ 0 in L2(Ω).

Then the G-limit is represented by

B(x) =
∫

Y

A(x, y) dy

in the sense that

uh ⇀ u in W 1,2
0 (Ω),
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where u solves the homogenized problem

−∇ · (B(x)∇u(x)) = f(x) in Ω,

u(x) = 0 on ∂Ω.

���	�����
. The weak form of the left-hand side of (37) for v ∈ C∞0 (Ω) can be

written as ∫

Ω

∂xiuh(x)((Ah)ij(x)∂xj v(x)) dx

and will after partial integration appear as

(41) −
∫

Ω

uh(x)(∂xi (Ah)ij(x)∂xj v(x) + (Ah)ij(x)∂2
xixj

v(x)) dx.

Using (38), we arrive at

−
∫

Ω

uh(x)
(

∂xi

(∫

Y

[(wh)ij(x, y)Aij(x, y)]i,j dy

)
∂xj v(x)

+
∫

Y

[(wh)ij(x, y)Aij (x, y)]i,j dy ∂2
xixj

v(x)
)

dx,

and further expansion gives

−
∫

Ω

uh(x)
(∫

Y

[∂xi(wh)ij(x, y)Aij(x, y)]j∂xj v(x) dy

+
∫

Y

[(wh)ij(x, y)∂xiAij(x, y)]j∂xjv(x) dy

+
∫

Y

[(wh)ij(x, y)Aij(x, y)]i,j∂2
xixj

v(x) dy

)
dx.

Letting h →∞ and using (39), (40) and the fact that uh → u strongly in L2(Ω), we
obtain

−
∫

Ω

u(x)
[(∫

Y

∂xiAij(x, y) dy

)
∂xj v(x) +

(∫

Y

Aij(x, y) dy

)
∂2

xixj
v(x)

]
dx

= −
∫

Ω

u(x)∂xi

(∫

Y

Aij(x, y)∂xj v(x) dy

)
dx.

Integration by parts results in

∫

Ω

∂xiu(x)
(∫

Y

Aij(x, y)∂xj v(x) dy

)
dx,
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which we recognize as

∫

Ω

(∫

Y

Aij(x, y) dy

)
∂xiu(x)∂xj v(x) dx.

We have now obtained the homogenized matrix B given by

B(x) =
∫

Y

A(x, y) dy

directly without using any local problem. We have shown that the weak limit u

solves the homogenized equation

−∇ · (B(x)∇u(x)) = f(x) in Ω,

u(x) = 0 on ∂Ω

and hence that G-convergence is proved. �
����� ���	!

21. It is the behavior of [∂xi(wh)ij ]i,j as h →∞ that decides whether
the matrix representing the G-limit coincides with the mean value over y in the

matrix A or not. If (40) holds, we obtain

B(x) =
∫

Y

A(x, y) dy.

Otherwise, we get a deflection. The easiest way of obtaining (40) is to assume

[∂xi(wh)ij(x, y)]i,j = 0.

This means that wh is independent of x, and hence we have returned to the situation

in (30). If we assume that
A(x, y) = A(y),

then the conditions (40) turn into

(42) ∂xi

∫

Y

[(wh)ij(x, y)Aij (y)]i,j dy = ∂xi(Ah)ij ⇀ 0 in L2(Ω).

In ordinary periodic homogenization, we have

(Ah)ij(x) = Aij

( x

εh

)
,

where Aij is Y -periodic. The condition (42) is then satisfied if

∂xi(Ah)ij(x) = ∂xiAij

( x

εh

)
=

1
εh

∂yiAij

( x

εh

)
= 0,
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which holds true if

∂yiAij(y) = 0.

This coincides with the classical condition (see [27, p. 39]) to obtain

B =
∫

Y

A(y) dy

in periodic homogenization.
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