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Abstract. Simple rank statistics are used to test that two samples come from the same
distribution. Šidák’s E-test (Apl. Mat. 22 (1977), 166–175) is based on the number of
observations from one sample that exceed all observations from the other sample. A similar
test statistic is defined in Ann. Inst. Stat. Math. 52 (1970), 255–266. We study asymptotic
behavior of the moments of both statistics.
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1. Introduction

Let X1, . . . , Xm and Y1, . . . , Yn be random samples from distributions F and G,

respectively. We wish to test the hypothesis H0 that F and G are identical against
the alternative that F (x) > G(x), with strict inequality for some x.

Rank statistics based on the number of observations from one sample which exceed
all observations from the other sample give rise to quick and easy tests which are

suitable for testing that two samples come from the same distribution. The most
popular of tests of this type are Haga’s test [1] and Šidák’s E-test [4]. Some other

tests based on exceeding observations are discussed in [2], [3], [5]. Recently a new
test statistic, M -statistic, is proposed in [6] for the two sample problem. In this

paper we study the asymptotic behavior of the moments of M -statistic and use the
results for deriving analogous properties of E-statistic.

The tests based on exceeding observations can be described with reference to the
same basic situation. The notation is adapted from Hájek and Šidák (1967). We
define A and B′ to be the number of observations among X1, . . . , Xm larger than

max
16j6n

Yj , or smaller than min
16j6n

Yj , respectively, and A′ and B to be the number
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of observations among Y1, . . . , Yn larger than max
16i6m

Xi, or smaller than min
16i6m

Xi,

respectively. Clearly, only one of the numbers A and A′ (or B and B′) is positive,
while the other must be zero.

With this notation, the E-statistic for testing H0 is defined by

E = min(A, B)−min(A′, B′),

and the M -statistic is defined by

M = max{m−A, n−B}.

These statistics are non-linear rank statistics and are not asymptotically normally
distributed. In Section 2 we prove the asymptotic distribution of M statistic for

largest values. Some intermediate results are given there. In Section 3 we derive the
asymptotic distribution of the mean and the variance ofM under the null hypothesis.

2. Definitions and presentations

Suppose that the notation is chosen so that m < n. The exact distributions of E
and M statistics under H0 are presented in the corresponding papers as follows:

P (E > k) = P (E 6 −k) =
(

m + n

m

)−1(
m + n− 2k

m− k

)
, k = 1, . . . , m,

P (M = k) =





(
m + n

m

)−1(2k − 2
k − 1

)
3k − 2

k
, for 1 6 k 6 m;

(
m + n

m

)−1(
m + k − 1

m− 1

)
, for m < k 6 n.

(1)

For small sample sizes the above distributions are easily enumerated. For large

sample sizes the vast majority of the mass is above min(m, n). The limit distribution
of the upper tail of E-statistic is obtained in [4]. The next theorem gives the limit

distribution of the largest values of M -statistic.

2.1. Limit distribution of the M-statistic

Theorem 1. Let m, n → ∞ and m/n → λ (0 < λ < 1). Then for 0 6 k 6
n−m− 1

P (M = n− k) −→ λ

1 + λ

( 1
1 + λ

)k

.
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���������
. The probability P (M = n− k) in (1) can be expressed

P (M = n− k) =
m!n!(m− k − 1)!

(m + n)!(m− 1)!k!
=

mn(n− 1) . . . (n− k + 1)
(m + n)(m + n− 1) . . . (m + n− k)

=
mnk

(
1− k−1

n

)
. . .

(
1− 1

n

)

(m + n)k+1
(
1− k

m+n

)
. . .

(
1− 1

m+n

)

which obviously tends to λ(1 + λ)−1(1 + λ)−k as m, n→∞ and m/n→ λ. �

Corollary 1. The probability mass concentrated in the maximum value of M is

asymptotically equivalent to λ(1 + λ)−1.

The approximate number of points in the lower tail P{M 6 k} 6 α can be
calculated using Theorem 1. The approximation depends on the ratios of m and n

and on the size of the second sample n as well.
The first columns in Tabs. 1 and 2 contain different ratios of m and n (0 < λ < 1),

and the first rows contain some large values for n. Similar tables are calculated
in [6] using the exact distribution for n = 1, . . . , 25; m = 1, . . . , n; α = 0.01, 0.05. A
comparison between the exact distribution and the approximate values can be seen
for n = 25.

λ \ n 25 40 45 50 55 60 65 70 75 80 90 100 110 120 150 200
0.10 ∗ 10 15 20 25 30 35 40 45 50 60 70 80 90 120 170
0.14 3 18 23 28 33 38 43 48 53 58 68 78 88 98 128 178
0.18 8 23 28 33 38 43 48 53 58 63 73 83 93 103 133 183
0.22 11 26 31 36 41 46 51 56 61 66 76 86 96 106 136 186
0.26 13 28 33 38 43 48 53 58 63 68 78 88 98 108 138 188
0.30 15 30 35 40 45 50 55 60 65 70 80 90 100 110 140 190
0.34 16 31 36 41 46 51 56 61 66 71 81 91 101 111 141 191
0.38 17 32 37 42 47 52 57 62 67 72 82 92 102 112 142 192
0.42 17 32 37 42 47 52 57 62 67 72 82 92 102 112 142 192
0.46 18 33 38 43 48 53 58 63 68 73 83 93 103 113 143 193
0.50 19 34 39 44 49 54 59 64 69 74 84 94 104 114 144 194
0.54 19 34 39 44 49 54 59 64 69 74 84 94 104 114 144 194
0.58 19 34 39 44 49 54 59 64 69 74 84 94 104 114 144 194
0.62 20 35 40 45 50 55 60 65 70 75 85 95 105 115 145 195
0.66 20 35 40 45 50 55 60 65 70 75 85 95 105 115 145 195
0.70 20 35 40 45 50 55 60 65 70 75 85 95 105 115 145 195
0.74 21 36 41 46 51 56 61 66 71 76 86 96 106 116 146 196
0.78 21 36 41 46 51 56 61 66 71 76 86 96 106 116 146 196
0.82 21 36 41 46 51 56 61 66 71 76 86 96 106 116 146 196
0.86 21 36 41 46 51 56 61 66 71 76 86 96 106 116 146 196
0.90 21 36 41 46 51 56 61 66 71 76 86 96 106 116 146 196
0.94 21 36 41 46 51 56 61 66 71 76 86 96 106 116 146 196
0.98 22 37 42 47 52 57 62 67 72 77 87 97 107 117 147 197

Table 1. Approximate number of points in the lower tail P{M 6 k} 6 0.05 using Theo-
rem 1.
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λ \ n 25 40 45 50 55 60 65 70 75 80 90 100 110 120 150 200
0.10 ∗ ∗ 3 8 13 18 23 28 33 43 53 63 73 103 153
0.14 ∗ 6 11 16 21 26 31 36 41 46 56 66 76 86 116 166
0.18 ∗ 13 18 23 28 33 38 43 48 53 63 73 83 93 123 173
0.22 3 18 23 28 33 38 43 48 53 58 68 78 88 98 128 178
0.26 6 21 26 31 36 41 46 51 56 61 71 81 91 101 131 181
0.30 8 23 28 33 38 43 48 53 58 63 73 83 93 103 133 183
0.34 10 25 30 35 40 45 50 55 60 65 75 85 95 105 135 185
0.38 12 27 32 37 42 47 52 57 62 67 77 87 97 107 137 187
0.42 13 28 33 38 43 48 53 58 63 68 78 88 98 108 138 188
0.46 14 29 34 39 44 49 54 59 64 69 79 89 99 109 139 189
0.50 15 30 35 40 45 50 55 60 65 70 80 90 100 110 140 190
0.54 15 30 35 40 45 50 55 60 65 70 80 90 100 110 140 190
0.58 16 31 36 41 46 51 56 61 66 71 81 91 101 111 141 191
0.62 16 31 36 41 46 51 56 61 66 71 81 91 101 111 141 191
0.66 17 32 37 42 47 52 57 62 67 72 82 92 102 112 142 192
0.70 17 32 37 42 47 52 57 62 67 72 82 92 102 112 142 192
0.74 18 33 38 43 48 53 58 63 68 73 83 93 103 113 143 193
0.78 18 33 38 43 48 53 58 63 68 73 83 93 103 113 143 193
0.82 18 33 38 43 48 53 58 63 68 73 83 93 103 113 143 193
0.86 19 34 39 44 49 54 59 64 69 74 84 94 104 114 144 194
0.90 19 34 39 44 49 54 59 64 69 74 84 94 104 114 144 194
0.94 19 34 39 44 49 54 59 64 69 74 84 94 104 114 144 194
0.98 19 34 39 44 49 54 59 64 69 74 84 94 104 114 144 194

Table 2. Approximate number of points in the lower tail P{M 6 k} 6 0.01 using Theo-
rem 1.

Since for large sample sizes the vast majority of the mass is above min(m, n),
Theorem 1 can not be used for equal sample sizes. Analogous approximation for

m = n gives

P (M = m− k) −→ 3
4

(1
4

)k

as m→∞ and k = 0, . . . , m− 1.
Here and further we suppose that m = n. Then the expectations of Mn and M2

n,

respectively, under H0 are represented as follows:

�
(Mn) = n−

(
2n

n

)−1 n−1∑

k=0

(
2k

k

)
,(2)

�
(M2

n ) = n(n− 1)−
(

2n

n

)−1 n−1∑

k=0

(
2k

k

)
(k + 1).(3)

The proof of (2) is via direct comparison with EMn computed from the distribu-

tion (1) and defined by

�
(Mn ) =

n∑

k=1

(
2n

n

)−1(2k − 2
k − 1

)
3k − 2

k
k.
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Straightforward induction on n gives the result. The proof of (3) is via direct com-

parison with
�
(M2

n ) and induction on n.

2.2. Some intermediate results

Proposition 1. Define the sequences

qn =
�
(Mn)
n

,

q′n =
�
(Mn)− n,

and

q′′n = n
[ �

(Mn)− n +
1
3

]
, n > 1.

1) Then qn, q′n and q′′n satisfy the recurrence relations

qn+1 =
n

4n + 2
qn +

3n + 1
4n + 2

,(4)

q′n+1 =
n + 1
4n + 2

q′n −
n + 1
4n + 2

,(5)

and

q′′n+1 =
(n + 1)2

n(4n + 2)
q′′n −

n + 1
3(2n + 1)

.(6)

2) We claim that qn, q′n and q′′n converge to finite limits as n→∞, and

(7) lim
n→∞

qn = 1, lim
n→∞

q′n = −1
3
, and lim

n→∞
q′′n = −2

9
.

���������
. 1) The recurrence relations (4)–(6) follow immediately from (2) and

simple algebra.

2) The proof of convergence of qn, q′n and q′′n, which we omit, is analogous to the
proof for the sequence tn in Theorem 2. The limits then follow from the recurrence

relations. �

Proposition 2. Define the sequences

yn =
�
(M2

n )
n

,

y′n =
1
n

[
�
(M2

n )− n2],

and

y′′n =
[ �

(M2
n )− n2 +

2
3
n
]
, n > 1.
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1) Then yn, y′n and y′′n satisfy the recurrence relations

yn+1 =
n

4n + 2
yn +

(3n + 1)(n + 1)
4n + 2

,(8)

y′n+1 =
n

4n + 2
y′n −

n + 1
4n + 2

,(9)

and

y′′n+1 =
n + 1
2n + 1

y′′n −
n + 1

3(2n + 1)
.(10)

2) We claim that yn, y′n and y′′n converge to finite limits as n→∞, and

(11) lim
n→∞

yn = 1, lim
n→∞

y′n = −2
3
, and lim

n→∞
y′′n = −2

9
.

���������
. 1) The recurrence relations (8)–(10) follow from (3) and simple algebra.

2) The proof of convergence of yn, y′n and y′′n is analogous to the proof for tn in

Theorem 2. The limits (11) follow from the recurrence relations. �

3. Asymptotic behavior of the moments

3.1. Expectation of the M-statistic
As a consequence of (7) we obtain the asymptotic behavior of the expectation of

the M -statistic.

Theorem 2. As n→∞

(12)
�
(Mn ) = n− 1

3
− 2

9n
− 2

9n2
(1 + o(1)).

���������
. Define tn =

�
(Mn) − n + 1

3 + 2
9n−1. Utilizing (2) it is easy to check

that tn satisfies the recurrence relation

(13) tn =
n

4n− 2
tn−1 −

3n− 2
9(n− 1)n(2n− 1)

.

Now, substitute tn−1 by its recurrence relation (13), and repeat substitution until
t1 is reached. Straightforward manipulation of the sums gives

(14) tn =
(

2n

n

)−1

2t1 −
(

2n

n

)−1 n−1∑

k=1

(
2k + 2
k + 1

)
3k + 1

9k(k + 1)(2k + 1)
.

It is easily seen from (2) that t1 = 1
18 .
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The presentation (14) of tn implies that 1
9 is an upper bound for the sequence tn.

To prove the convergence of tn it is sufficient to show that it is increasing with n.
That is,

tn+1 > tn ⇐⇒
(

2n + 2
n + 1

)−1 1
9
−

(
2n + 2
n + 1

)−1 n∑

k=1

(
2k + 2
k + 1

)
3k + 1

9k(k + 1)(2k + 1)

>
(

2n

n

)−1 1
9
−

(
2n

n

)−1 n−1∑

k=1

(
2k + 2
k + 1

)
3k + 1

9k(k + 1)(2k + 1)

⇐⇒
n−1∑

k=1

(
2k + 2
k + 1

)
3k + 1

9k(k + 1)(2k + 1)
>

(
2n + 2
n + 1

)
1

9n(2n + 1)
.

The last inequality follows by a simple induction on n. Thus tn is increasing and

hence convergent sequence.
Now, from the recurrence relation (13) we have

lim
n→∞

tn = lim
n→∞

n

4n− 2
lim

n→∞
tn−1 − lim

n→∞
3n− 2

9(n− 1)n(2n− 1)
.

Therefore, lim
n→∞

tn = − 2
9 lim

n→∞
1/n2 = 0. �

3.2. Variance of the M-statistic
As a consequence of the results (11) we obtain the asymptotic behavior of the

variance of the M -statistic.

Theorem 3. As n→∞

(15) var(Mn) =
1
9

+
1
9n

(1 + o(1)).

���������
. Using the definition of the sequence y′′n and the limits (11) we have

�
(M2

n ) = n2 − 2
3
n− 2

9
(1 + o(1)).

Then from Proposition 1 and Proposition 2 we have

var(Mn) =
�
(M2

n )− (
�
(Mn ))2

= n2 − 2
3
n− 2

9
−

(
n− 1

3
− 2

9n

)2

+ O
( 1

n2

)

=
1
9

+ O
( 1

n2

)
.

�
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3.3. Moments of the E-statistic
It is not hard to relate the moments of the distribution of the E-statistic to those

of M -statistic. Note that the distribution of the E-statistic is symmetric about 0 so
its expectation under H0 is 0.

For the second moment we have

�
(E2

n ) = 2
n−1∑

k=1

(
2n

n

)−1[(
2n− 2k

n− k

)
−

(
2n− 2k − 2
n− k − 1

)]
k2 + 2

(
2n

n

)−1

n2(16)

= 2
(

2n

n

)−1 n−1∑

k=0

(
2k

k

)
(2n− 2k − 1).

Further,

�
(E2

n+1 ) =
n + 1
4n + 2

[
2
(

2n

n

)−1 n−1∑

k=0

(
2k

k

)
(2n− 2k − 1) + 4

(
2n

n

)−1 n−1∑

k=0

(
2k

k

)
+ 2

]
.

Using (2) it follows that the presentation (16) of
�
(E2

n ) satisfies the recurrence rela-
tion

(17)
�
(E2

n+1 ) =
n + 1
4n + 2

[
�
(E2

n )− 4
�
(Mn ) + 4n + 2].

Now, if lim
n→∞

�
(E2

n ) = c exists it satisfies the following equation

c = lim
n→∞

n + 1
4n + 2

[c + 4 lim
n→∞

[
�
(Mn )− n] + 2].

Since lim
n→∞

[
�
(Mn )− n] = − 1

3 from (11) we find c = 10
9 and therefore

var(En) ∼ 10
9

.
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