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Linear forms and axioms of choice

Marianne Morillon

Abstract. We work in set-theory without choice ZF. Given a commutative field K,
we consider the statement D(K): “On every non null K-vector space there exists
a non-null linear form.” We investigate various statements which are equivalent
to D(K) in ZF. Denoting by Z2 the two-element field, we deduce that D(Z2)
implies the axiom of choice for pairs. We also deduce that D(Q) implies the
axiom of choice for linearly ordered sets isomorphic with Z.

Keywords: Axiom of Choice, axiom of finite choice, bases in a vector space, linear
forms

Classification: Primary 03E25; Secondary 15A03

1. Introduction

1.1 Existence of bases in vector spaces. We work in set-theory without the
Axiom of Choice ZF. According to a theorem due to Höft and Howard (see [5]),
the Axiom of Choice (AC) is equivalent (in ZF) to the statement ST: “Every

connected graph contains a spanning tree” (for other statements equivalent to AC

formulated in terms of “spanning graphs”, see [2]). In a recent paper (see [6]),
Howard showed that given a commutative field K, the following statement BE(K)
— which Howard denotes by AL19(K) — implies ST (and thus AC):

BE(K) (Basis Extraction): “Given a vector space E over K, every

generating subset of E contains a basis of E.”

This enhances a result due to Halpern (see [3]) who showed that the statement
“∀K BE(K)” (i.e. the existence of a basis in a generating subset of any vector
space over any commutative field) implies AC. This also extends a result due
to Keremedis (see [10]) who showed that BE(Z2) implies AC: here, where for
each integer n ≥ 2, we denote by Zn the ring Z/nZ. Now, consider the following
consequence of BE(K):

B(K): “Every vector space over K has a basis.”

Blass ([1], 1984) showed in ZF that the statement “∀K B(K)” (i.e. the existence
of a basis in every vector space over any commutative field) implies AC, or rather
the following equivalent of AC (see [8]):

MC (“Multiple Choice”): “For every family (Ai)i∈I of non-empty

sets, there exists a family (Fi)i∈I of non-empty finite sets such

that for every i ∈ I, Fi ⊆ Ai”.
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The following question is open (see [6]):

1 Question. Does there exist a (commutative) field K such that B(K) implies
AC? For example, does B(Q) imply AC? Does B(Z2) imply AC? Does the
statement “For every prime number p, B(Zp)” imply AC?

1.2 Existence of non-null linear forms. Given a commutative field K, and
a K-vector space E, a linear form on E is a linear mapping f : E → K. The set
E∗ of linear forms on E is a vector subspace of KE , which is called the algebraic

dual of E. Consider the following consequences of B(K).

(i) LE(K) (Linear extender): For every K-vector space E, and every vector

subspace F of E, there exists a linear mapping T : F ∗ → E∗ such that for

each f ∈ F ∗, T (f) extends f .

(ii) DE(K) (dual extension): “For any non null K-vector space E, every vector

subspace F of E, and every linear form f : F → K, there exists a linear

form f̃ : E → K which extends f .”

(iii) DS(K) (dual separating): “For any non null K-vector space E and every

a ∈ E\{0}, there exists a linear form f : E → K such that f(a) = 1.”

(iv) D(K) (dual): “For any non null K-vector space E, there exists a linear form

f : E → K which is not null.”

In Sections 2 and 3, we shall show that the above three statements (ii), (iii) and
(iv) are equivalent (in ZF). Moreover, we shall also show that B(K)⇒ LE(K)⇒
D(K).

2 Question. Given a commutative field K, does D(K) imply B(K)? Does D(K)
imply LE(K)? Does LE(K) imply B(K)?

1.3 Various axioms of choice. In [6], Howard proved that B(Z2) implies that
“Every well ordered family of pairs has a non-empty product”. In this paper,
we shall enhance this result and we shall prove that D(Z2) implies that “Every
family of pairs has a non-empty product”.

1 Notation. For every finite set F , we denote by |F | its cardinal.

We now review various axioms of “Finite Choice”:

ACfin: “Every family of non-empty finite sets has a non-empty product.”

The statement ACfin does not imply AC and ZF does not imply ACfin (see [8]
or [7]). Given an integer n ≥ 2, and some prime natural number p, consider the
following consequences of ACfin.

(i) ACn: “Every family (Ai)i∈I of finite non-empty sets having at most n
elements has a non-empty product.”

(ii) ACn
wo: “For every ordinal α, every family (Ai)i∈α of non-empty finite sets

with at most n elements has a non-empty product.”

(iii) C(p): “For every family (Ai)i∈I of finite non-empty sets, there exists a

family (Fi)i∈I of finite sets such that for all i ∈ I, Fi ⊆ Ai, and p does not

divide the cardinal |Fi| of Fi.”
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For every integer n ≥ 2, denote by AC=n the statement “Every family of n-

element sets has a non-empty product.” Then C(2)⇒ AC2 and C(3)⇒ AC=3.

3 Question. Does C(5) imply AC=5?

In this paper, we shall prove that:

(i) if p is a prime natural number, then D(Zp)⇒ C(p) (see Section 4);
(ii) D(Q) implies that every family of linearly ordered sets isomorphic with Z

has a non-empty product (see Section 5).

Notice that the statement “For every prime number p, C(p)” implies the state-
ment “For every integer n ≥ 2, ACn” (see Remark 4 in Section 4). However, the
statement “For every integer n ≥ 2 ACn” does not imply ACfin (see [8] or [7]).

1 Remark. Keremedis ([11]) proved in ZFA (set-theory with atoms described in
[8]), that for every integer n ≥ 2, B(Q) implies the following statement: “For
every sequence (Fk)k∈N of non-empty finite sets each having at most n elements,
there exists an infinite subset A of N such that

∏
n∈A Fn is non-empty”.

4 Question. Does B(Q) imply ∀n ≥ 2 ACn?

1 Proposition. Let K be a commutative field with null characteristic (for every

integer n ≥ 1, n · 1K 6= 0K). In ZFA, MC implies DS(K) (and thus MC implies

DS(Q)).

Proof: Let E be a K-vector space. Using MC, there is a mapping Φ such
that for every vector subspaces V, W of E satisfying V ⊆ W and W/V is finite-
dimensional, for every linear mapping f : V → K, Φ(V, W, f) : W → K is a
linear mapping extending f . Indeed, let Z be the set of such (V, W, f). For each
(V, W, f) ∈ Z, the vector-space W/V is finite-dimensional, thus the set AV,W,f of
linear mappings u : W → K extending f is non-empty (in ZFA). Using MC,
consider some family (Bi)i∈Z of non-empty finite sets such that for every i ∈ Z,
Bi ⊆ Ai. Then, for every i ∈ Z, define Φ(i) := 1

|Bi|

∑
u∈Bi

u (here we use the

fact that the characteristic of K is null). Now, assume that a ∈ E\{0}. Using
MC, there exists an ordinal α and some partition (Fi)i∈α in finite sets of E. This
implies that there is a family (Vi)i∈α of vector subspaces of E such that for every
i < j < α, Vi ⊆ Vj and Vj/Vi is finite-dimensional. Without loss of generality, we
may assume that a ∈ V0. Using the choice function Φ, we define by transfinite
recursion a family (fi)i∈α such that for each i ∈ α, fi : Vi → K is linear, f0(a) = 1,
and for every i < j ∈ α, fj extends fi. Define f :=

⋃
i∈α fi. Then f : E → K is

linear and f(a) = 1. �

Consider the following statement (form [18A] in [7, p. 28]): “Every denumerable
set of two-element sets has an infinite subset with a choice function”.

1 Corollary. In ZFA, DS(Q) does not imply “form [18A]”. Thus in ZFA,

DS(Q) does not imply B(Q).
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Proof: In the second Fraenkel model of ZFA (the model N2 described in [7,
p. 178]), MC holds thus DS(Q) also holds (use Proposition 1), however, “form
[18A]” does not hold (see [7, p. 178]). Using Keremedis’s result quoted in Re-
mark 1, it follows that B(Q) does not hold in this model. �

2. D(K)⇒ DS(K)

2.1 Preliminaries about reduced products of L-structures. We now re-
view techniques described and used by W.A.J. Luxemburg in [12].

2.1.1 Reduced products of sets. Given a filter F on a (non-empty) set I, and
a family (Ei)i∈I of sets, let E :=

∏
i∈I Ei, and let ∼F be the binary relation on E

defined as follows: if x = (xi)i∈I , y = (yi)i∈I ∈ E, then x ∼F y if and only if the
set {i ∈ I : xi = yi} belongs to F . Then, the binary relation ∼F is an equivalence
relation on E.

2.1.2 Reduced products of L-structures. Let L be a (egalitary) first order
language. Let F be a filter on a (non-empty) set I. Let (Mi)i∈I be a family
of (egalitary) L-structures with (non-empty) underlying sets Mi. Assume that
the set M :=

∏
i∈I Mi is non-empty (this is the case in ZF if, for example,

the language L contains a constant symbol). Endow M with the direct product

(egalitary) L-structure M (see [4, p. 413]).
We define an egalitary L-structure MF on the quotient set M/∼F as follows

(see [4, pp. 442–443]). For each constant symbol σ ∈ L, we consider the equiv-
alence class σMF of the interpretation σM of σ in M; for each n-ary function
symbol σ ∈ L, its interpretation σM : Mn → M in M has a unique quotient
σMF : Mn

F → MF ; for each n-ary relation symbol σ ∈ L, we consider the n-ary
relation σMF on MF satisfying for every x1 = (x1

i )i∈I , . . . , xn = (xn
i )i∈I ∈ M :

σMF (can((x1
i )i∈I), . . . , can((xn

i )i∈I)) iff {i ∈ I : σMi(x1
i , . . . , x

n
i )} ∈ F .

2.1.3 Preservation of basic Horn formulae. An L-formula φ is a basic Horn

formula if φ is of the form ((∧p∈F p) → q) where F is a finite set of atomic
L-formulae and q is an atomic L-formula.

2 Proposition. Let F be a filter on a set I, and let (Mi)i∈I be a family of

L-structures with (non-empty) underlying sets Mi. Assume that the product set

M =
∏

i∈I Mi is non-empty. Endow the quotient set M/∼F with the L-structure

MF . If φ is a Horn L-formula which is satisfied by every L-structure Mi, then

MF |= φ.

Proof: The proof is straightforward. See for example Hodges [4]. �

2.1.4 Reduced powers of an L-structure. If M is a set and F is a filter on a
set I, then we denote by MF the set M I/∼F . We also denote by ∆I : M →֒M I

the “diagonal mapping” associating to each x ∈M the constant mapping I →M
with value x; we denote by canM

F : M →֒MF the one-to-one mapping associating
to each x ∈M the equivalence class of ∆I(x) modulo ∼F .
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If M is an L-structure with underlying set M and F is a filter on a set I, then
we denote by MF the set MF endowed with the reduced product L-structure
described previously. Then canM

F : M →֒MF is an L-embedding.

1 Example (Reduced powers of a commutative unitary ring). Given a com-
mutative unitary ring A and a filter F on a set I, the reduced power AF is a
commutative unitary ring. Moreover, if K is a commutative field and if A is
a K-algebra, then AF is also a K-algebra.

2 Notation. Let A, B be sets. Let u ∈ (BA)F : then u is the equivalence class of
some family (ui)i∈I of BA. We denote by û : AF → BF the mapping such that
for each (xi)i∈I , denoting by ẋ the equivalence class of (xi)i∈I in AF , û(ẋ) is the
equivalence class of (ui(xi))i∈I in BF .

2.1.5 Concurrent relations. Let E, F be two sets and let R ⊆ E × F be a
binary relation. The relation R is said to be concurrent if for every non-empty
finite subset G of E, the set ∩x∈GR(x) is nonempty. The relation R is concurrent
if and only if the subsets R(x) of F satisfy the finite intersection property: in this
case, we denote by FR the filter on F generated by the sets R(x), x ∈ E.

3 Proposition (Luxemburg, [12]). Let E, I be two sets and let R ⊆ E × I be

a concurrent binary relation. Let F be the filter on I generated by the sets R(x),

x ∈ E. Then, there exists an equivalence class ι = ˙(ιi)i∈I in IF such that for

every x ∈ E, {i ∈ I : R(x, ιi)} ∈ F .

Proof: Let IdI : I → I be the “identity mapping” and let ι be the equivalence
class of IdI in IF . Then, for every x ∈ E, {i ∈ I : R(x, i)} = R(x) ∈ F . �

2.2 D(K)⇒ DS(K).

1 Lemma. Let K be a commutative field, let E be a non-null K-vector space

and a ∈ E\{0}. Let I := KE . There exists a filter F on I and a linear mapping

u : E → KF such that u(a) = 1KF
.

Proof: Let R ⊆ (Pfin(E) × I) be the following binary relation: given a finite
subset F of E and some mapping u : E → K, then R(F, u) iff u(a) = 1 and u↾F

is linear. Here, “ u↾F is linear” means that for every x, y ∈ F and λ ∈ K, x + y ∈
F ⇒ u(x + y) = u(x) + u(y) and λx ∈ F ⇒ u(λx) = λu(x). Using Proposition 3,

let F be a filter on I and ι = ˙(ιi)i∈I ∈ IF such that for every finite subset F of

E, the set {i ∈ I : R(F, ιi)} belongs to F . Using Notation 2, ι̂ ∈ KF
EF , thus ι̂

induces a mapping ιE : E → KF . Moreover, ιE(a) = 1KF
. For every x, y ∈ E

and λ ∈ K, ιE(x + λy) = ιE(x) + λι(y): indeed, let F := {x, y, λy, x + λy}; by
definition of ι, the set J := {i ∈ I : R(F, ιi)} belongs to F , and J is a subset of
the set {i ∈ I : ιi(x + λy) = ιi(x) + λιi(y)}. �

1 Theorem. D(K)⇒ DS(K).
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Proof: Let E be a K-vector space and a ∈ E\{0}. Using the previous lemma,
let F be a filter on a set I and a linear mapping u : E → KF such that u(a) = 1.
Using D(K), let f : KF → K be a non-null linear mapping. Let z ∈ KF such that
f(z) = 1. Denoting by mz : KF → KF the linear mapping associating to each
x ∈ KF the element zx, it follows that v := f ◦mz ◦ u : E → K is linear and that
v(a) = f ◦mz(1) = f(z) = 1. �

3. Other equivalents of D(K)

3.1 Equivalents of DS(K).

2 Theorem. Given a commutative field K, the following statements are equiv-

alent.

(i) DE(K) (dual extension): “For any non null K-vector space E, every vector

subspace F of E, and every linear form f : F → K, there exists a linear

form f̃ : E → K which extends f .”

(ii) (multiple DE(K)) “Given a family (Ei)i∈I of K-vector spaces, a family

(Fi)i∈I such that each Fi is a vector subspace of Ei, and a family (fi)i∈I

such that each fi : Fi → K is linear, there exists a family (f̃i)i∈I such that

each f̃i : Ei → K is a linear form extending fi.”

(iii) (multiple DS(K)) “Given a family (Ei)i∈I of K-vector spaces, a family

(Fi)i∈I such that each ai is a non null element of Ei, there exists a family

(fi)i∈I such that each fi : Ei → K is a linear form and fi(ai) = 1.”

(iv) DS(K).

Proof: (i)⇒ (ii). Let (Ei, Fi, fi)i∈I be a family such that each Ei is a K-vector
space, Fi a vector subspace of Ei and fi : Fi → R is a linear form. Then F =
⊕i∈IFi is a vector subspace of E = ⊕i∈IEi, and the mapping f = ⊕i∈Ifi : F → K

is linear. Using DE(K), extend f by a linear mapping f̃ : E → K. For each i ∈ I,

let f̃i := f̃ ◦ cani where cani : Ei →֒ E is the canonical mapping. Then each
mapping f̃i : Ei → K is linear and extends fi.

(ii)⇒ (iii)⇒ (iv) is easy.

(iv) ⇒ (i). Let E be a K-vector space, let F be a vector subspace of E, let
f : F → K be a linear mapping. Let N := Ker(f) and let a ∈ F such that f(a) =
1. Let can : E → E/N be the canonical mapping and let b := can(a) = a + N .
Using DS(K), let g : E/N → K be a linear mapping such that g(b) = 1. Let

f̃ := g ◦ can : E → K. Then f̃ is linear, f̃ is null on N and f̃(a) = 1, thus f̃
extends f . �

2 Remark. Given a real normed space E, denote by DSE (resp. DEE) the state-
ment DS(R) (resp. DE(R)) restricted to the case of the vector space E. Then,
for E := L2[0, 1], DSE holds in ZF, however, there are models of ZF where DEE

does not hold.

Proof: Recall that E := L2[0, 1] is the Cauchy-completion of the normed space
C([0, 1]) endowed with the N2 norm. Thus E is a (separable) Hilbert space so DSE
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is satisfied (for example, given a ∈ E\{0}, consider the “scalar product” form
x 7→ 〈x, a〉). Now, consider the “evaluating form” δ0 : C([0, 1]) → R associating
to each f ∈ C([0, 1]) the real number f(0): δ0 is linear. However, there are models
of ZF in which δ0 has no linear extension to the whole space E (thus DEE is
not satisfied). Indeed, consider a model M of ZF in which every linear form on
a separable Banach space is continuous (for example, consider models of ZF in
which every subset of a polish space is a Baire set — see [17], [16], [15]). In such
a model M, if φ : E → R is a linear mapping extending δ0, then φ is non null
and Ker(φ) is dense in E (because Ker(δ0) is already dense in L2[0, 1]), thus the
linear form φ : E → R is not continuous: this is contradictory in M! �

3.2 Linear extenders. Given a commutative field K, and a vector space E, we
denote by E∗ the algebraic dual of E i.e. the vector space of K-linear forms on E.
Consider the following statement:

LE(K) (Linear extender): For every K-vector space E, and every

vector subspace F of E, there exists a linear mapping T : F ∗ →
E∗ such that for each f ∈ F ∗, T (f) extends f .

Denoting by can : E∗ → F ∗ the linear mapping associating to each f ∈ E∗ its
restriction f↾F to F , the axiom LE(K) says that can : E∗ → F ∗ is onto and has
a linear section T : F ∗ →֒ E∗.

4 Proposition. B(K)⇒ LE(K)⇒ DS(K).

Proof: We prove B(K)⇒ LE(K). Given a vector space E and a vector subspace
F of E, the axiom B(K) implies the existence of a basis B of the dual space F ∗.
Using the multiple form of DS(K), consider for each e ∈ B, a linear form ẽ : E →
K extending e. Let T : F ∗ → E∗ be the linear mapping such that for each e ∈ B,
T (e) = ẽ. Then T is a linear section of can : E∗ → F ∗. �

3.3 D(Z2) restricted to boolean algebras.

3.3.1 Boolean algebras. A boolean algebra is a (commutative) ring with a unit
(B,⊕, ., 0, 1), such that for every x ∈ B, x ⊕ x = 0. The proof of the following
result is classical in ZFC, set-theory with the Axiom of Choice. However, this
result is also provable in ZF (see [9] or [14]).

Theorem (Coproduct of boolean algebras in ZF). Given a family (Bi)i∈I of

boolean algebras, there exists a boolean algebra B and a family (ji : Bi → B)i∈I

of morphisms of boolean algebras (thus for every i ∈ I, ji(1Bi
) = 1B) such that

for every boolean algebra C, and every family (gi : Bi → C)i∈I of morphisms,

there exists a unique morphism g : B → C satisfying g ◦ ji = gi.

Proof: We sketch the proof which is in [14]. The case where every boolean
algebra Bi is equal to P(N) is easy. The general case follows from the fact that
every boolean algebra is a sub-algebra of a reduced power of P(N) (using methods
described by Luxemburg [12]). �
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3.3.2 A boolean consequence of D(Z2). Every boolean algebra B is a vector
space over Z2. Notice that a Z2-linear form on B is just a mapping f : B → Z2

which is additive: for every x, y ∈ B, f(x ⊕ y) = f(x) + f(y). The following
statement is a consequence of D(Z2):

Dbool(Z2): “Given a non-trivial boolean algebra B, there exists a

non null linear mapping f : B → Z2.”

3 Theorem. The following statements are equivalent to Dbool(Z2).

(i) “For every boolean algebra B and every a ∈ B such that a 6= 0, there exists

a linear mapping f : B → Z2 such that f(a) = 1.”

(ii) The “multiple form”: “If (Bi)i∈I is a family of non-null boolean algebras,

there exists a family (fi)i∈I such that for every i ∈ I, fi : Bi → Z2 is linear

and fi(1Bi
) = 1”.

(iii) “If (Bi, ai)i∈I is a family of boolean algebras, and if each ai ∈ Bi\{0}, then

there exists a family (fi)i∈I such that for every i ∈ I, fi : Bi → Z2 is linear

and fi(ai) = 1.”

(iv) D(Z2).

Proof: Dbool(Z2) ⇒ (i). For every element u ∈ B, let Bu := {x ∈ B : x ≤ u}:
Bu is a boolean algebra. Using Dbool(Z2), let g : Ba → Z2 be a non-null linear
mapping. Let b ∈ Ba such that g(b) = 1. Let r : B → Bb be the mapping
x 7→ (x ∧ b): then r is linear and r(a) = b. Let f := g ◦ r. Then f : B → Z2 is
linear and f(a) = 1.

(i) ⇒ (ii). Let (Bi)i∈I be a family of boolean algebras. Let (B, (ji)i∈I) be the
boolean coproduct of the family (Bi)i∈I . Using (i), let f : B → Z2 be a linear
mapping such that f(1B) = 1. For each i ∈ I, let fi := f ◦ ji. Then each
fi : Bi → Z2 is linear and fi(1) = 1.

(ii)⇒ (iii). For each i ∈ I, consider the boolean algebra B′
i := {x ∈ Bi : x ≤ ai}.

Apply (ii) to the family of boolean algebras (B′
i)i∈I .

(iii) ⇒ Dbool(Z2): easy.

(i) ⇒ D(Z2). Let E be a Z2-vector space. Using results of Section 2.1, there
exist a set I, a filter F on I and a one-to-one mapping j : E → (Z2)F which is
Z2-linear. Now (Z2)F is a boolean algebra (because, on the language Lring :=
{+, ×,0,1} of rings, the axioms defining boolean algebras are atomic formulae).
Using (i), let f : (Z2)F → Z2 be a linear mapping which is not null on j[E]. Then
f ◦ j : E → K is linear and non null.

D(Z2)⇒ Dbool(Z2): easy. �

2 Corollary. Dbool(Z2)⇒ C(2).

Proof: Let (Ai)i∈I be a family of non-empty finite sets. The multiple form of
Dbool(Z2) gives a family (fi)i∈I such that for each i ∈ I, fi : P(Ai) → Z2 is
Z2-linear and fi(Ai) = 1. Now, for each i ∈ I, let Bi := {t ∈ Ai : fi({t}) = 1}.
Then the cardinal |Bi| of Bi is odd because fi(Ai) = |Bi| mod 2. �
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4. D(Zp)⇒ C(p)

3 Corollary. For every prime number p, D(Zp)⇒ C(p).

Proof: Given a prime number p, denote by K the field Zp. Let (Ai)i∈I be a
family of non-empty finite sets. For every i ∈ I, let Ei be the K-vector space
KAi and let 1Ai

: Ai → K be the constant mapping with value 1. Using the
multiple form of DS(Zp) (which is equivalent to D(Zp)), consider some family
(fi)i∈I such that for every i ∈ I, fi : Ei → K is linear and fi(1Ai

) = 1. Then
fi(1Ai

) =
∑

t∈{0..p−1} t|Fi(t)|, where for every i ∈ I, and every t ∈ {0..p − 1},

Fi(t) := {x ∈ Ai : fi(x) = t}. If i ∈ I, then p does not divide 1 = fi(1Ai
); thus

there exists t ∈ {0..p− 1} such that |Fi(t)| is not multiple of p; let ti be the first
such element of {0..p − 1}; then Fi := Fi(ti) is a subset of Ai and p does not
divide |Fi|. �

3 Remark. Let N be an integer ≥ 2. Let PN be the set of prime numbers p
such that 2 ≤ p ≤ N . Then the statement ∧p∈PN

C(p) implies that for every set
A of non-empty finite sets, there exists a mapping Φ with domain A such that
for every F ∈ A, ∅ 6= Φ(F ) ⊆ F and, for every p ∈ FN , p does not divide the
cardinal of F .

Proof: Let X be an infinite set. Let A be the set of non-empty finite subsets
of X . Using the statement ∧p∈PN

C(p), consider for each p ∈ PN , a mapping
Φp : A → A associating to each F ∈ A a non-empty finite subset G of F such
that p does not divide the cardinal of G. Now, given F ∈ A with cardinal n,
we define a descending sequence (Fi)0≤i<n of non-empty subsets of F such that
F0 = F and, for every i ∈ 0..|F |, if some p ∈ PN divides |Fi|, then Fi+1 ( Fi, else
Fi+1 = Fi: then Fn−1 is a non-empty finite subset of F such that no element of
PN divides the cardinal of Fn. We define Φ as the mapping associating to each
F ∈ A with n elements the non-empty finite subset Fn−1 of F . �

4 Remark. Let N be an integer ≥ 2. Then the statement ∧2≤p≤N ; p primeC(p)

implies the statement ACN .

Proof: Use the previous remark. �

5. D(Q) implies ACZ

Given an infinite set X , we denote by P∞(X) the set of infinite subsets of X ;
we also denote by finX the set of finite subsets of X . In [13], chameleons and
cyclic chameleons were defined: given some integer n ≥ 2, a n-cyclic chameleon

is a mapping χ : P∞(X) → Zn such that for every infinite subset A of X and
every m ∈ X\A, χ(A ∪ {m}) = χ(A) + 1 mod n. We define a Z-chameleon on
X as a mapping χ : P∞(X) → Z such that for every infinite subset A of X and
every m ∈ X\A, χ(A ∪ {m}) = χ(A) + 1. Consider the following statements:

CZ: “On every infinite set there exists a Z-chameleon.”

and, for every integer n ≥ 2:
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CZn: “On every infinite set there exists a cyclic n-chameleon.”

Notice that for every integer n ≥ 2, CZ implies CZn.

4 Theorem. D(Q)⇒ CZ.

Proof: Let E be the Q-vector space QX . We identify the set P(X) of subsets
of X with the set {0, 1}X. Then we may think of P(X) as a subset of E. Using
D(Q) (or rather the equivalent statement DE(Q) in Theorem 2 of Section 3.1),
let f : E → Q be a Q-linear form such that for every x ∈ X , f({x}) = 1. For
every C ∈ P(X)/finX such that C 6= 0, the subset f [C] of Q is order isomorphic
with Z, and one can choose some µC ∈ f [C] (for example let µC be the first
element of f [C] ∩ Q∗

+ where Q∗
+ := {q ∈ Q : 0 < q}); let dC : f [C] → Z be the

order isomorphism such that dC(µC) = 0, and let fC := dC ◦ f↾C : C → Z. Let
χ :=

⋃
C∈P(X)/ fin,C 6=0 fC . Then χ is a Z-chameleon on X . �

5 Remark. For every prime number p, D(Zp)⇒ CZp.

Proof: The proof is similar but slightly simpler. �

5 Proposition. The axiom CZ is equivalent to the following statement ACZ:

“For every family (Xi,≤i)i∈I of ordered sets isomorphic with Z, the product set∏
i∈I Xi is non-empty.”

Proof: ⇒ Let (Xi,≤i)i∈I be a non-empty family of ordered sets isomorphic
with Z. We may assume that the sets Xi are pairwise disjoint. Let X :=

⋃
i∈I Xi.

Using CZ, let χ : P∞(X) → Z be a Z-chameleon. For each i ∈ I, there exists a
unique xi ∈ Xi such that χ(←, xi]) = 0 — here, we denote by ←, xi] the interval
{t ∈ Xi : t ≤ xi} of the ordered set Xi. Now x = (xi)i∈I ∈

∏
i∈I Xi.

⇐ Let X be an infinite set. In order to define a Z-chameleon on X , it is
sufficient (and also necessary) to define a Z-chameleon on every non null class
C ∈ P∞(X)/finX . Given such a class C, the poset PC of Z-chameleons on C

ordered by the product order of ZC is isomorphic with Z. Using ACZ, consider
some element (χC)06=C∈P∞(X)/finX

∈
∏

C∈P∞(X)/finX ,C 6=0 PC ; then χ :=
⋃

χC :

P∞(X)→ Z is a Z-chameleon on X . �

6 Proposition. ACZ does not imply AC.

Proof: There is a model of ZF+¬AC where every family of non-empty well-
orderable sets has a non-empty product (see [8], [7]). Such a model satisfies ACZ.

�
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