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K Y B E R N E T I K A — V O L U M E 34 ( 1 9 9 8 ) , N U M B E R 1, P A G E S 2 7 - 4 0 

CONDITIONAL PROBLEM 
FOR OBJECTIVE PROBABILITY 

OTAKAR KŘÍŽ 

Marginal problem (see [5]) consists in finding a joint distribution whose marginals are 
equal to the given less-dimensional distributions. Let's generalize the problem so that there 
are given not only less-dimensional distributions but also conditional probabilities. 

It is necessary to distinguish between objective (Kolmogorov) probability and subjective 
(de Finetti) approach ([4, 10]). In the latter, the coherence problem incorporates both prob­
abilities and conditional probabilities in a unified framework. Different algorithms available 
for its solution are described e.g. in ([3, 4, 11]). In the context of the former approach, 
it will be shown that it is possible to split the task into solving the marginal problem 
independently and to subsequent solving pure "conditional" problem as certain type of op­
timization. First, an algorithm (Conditional problem) that generates a distribution whose 
conditional probabilities are equal to the given ones is presented. Due to the multimodal-
ity of the criterion function, the algorithm is only heuristical. Due to the computational 
complexity, it is efficient for small size problems e. g. 5 dichotomical variables. 

Second, a method is mentioned how to unite marginal and conditional problem to a more 
general consistency problem for objective probability. Due to computational complexity, 
both algorithms are effective only for limited number of variables and conditionals. The 
described approach makes possible to integrate in the solution of the consistency problem 
additional knowledge contained e. g. in an empirical distribution. 

1. INTRODUCTION 

In expert systems with probabilistic background, there is a standard procedure to 
reconstruct a joint distribution from different pieces of knowledge. This joint dis­
tribution is then used as a tool to generate aposteriori probabilities of predicted 
variables given some fixed values other variables take. Then the alternative with the 
greatest value of aposteriori probability is a natural solution to the decision making 
problem. However, the first part of the process (i.e. to find such a joint distribution 
or at least to discover its potential existence) is referred to as marginal problem (see 
[5]). The ground for it is that the standard way of supplying pieces of knowledge is 
to use less-dimensional distributions that may be looked upon as the marginals of 
the theoretical joint one. The problem has been given certain attention especially for 
distributions on small finite sets recently. In general, there is a difference in algorith-
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mical treatement of the problem for objective and subjective (de Finetti) Bayesian 
approach. The essence of the latter can be seen e.g. in [3, 4, 10, 11]. As far as the 
former approach is concerned: Sometimes, the IPFP algorithm (see [2]) is used to 
solve the marginal problem. In [1], it is suggested to use Lagrange multipliers to 
respect constraints. In [8], there is an algorithm presented (Tetris) checking if a set 
of marginals is consistent (and in positive case supplying one of feasible solutions). 
In [9], a modification of this algorithm (Pentis) is given that looks for the "best" 
approximation in l\ norm even if the marginals are not consistent. 

The main topic of this paper is to integrate a fixed set of marginals (original 
marginal problem) and a set of fixed conditional probabilities for objective Bayesian 
approach. Searching for different objects can be done in a "hard" or in a "soft" 
way. "Hard" stands for constraints when we try to solve sets of linear equations for 
equality constraints. "Soft" way means we try to enforce the results by minimization 
of a functional. If the constraints are contradictory, there exists no solution. One 
possible way to solve conditional problem is to convert it to a marginal problem by 
turning explicitely given conditional probabilities into additional linear constraints 
and to solve it then in a a standard way e.g. by using some package for linear 
programming. Let us remark that this incorporating equations with conditionals 
changes the character of the matrix, therefore more specific methods like [8] cannot 
be used and we have to apply integer programming or general linear programming 
methods. In this paper, we shall use another way namely minimizing a criterion 
function. Justification for this computationally more difficult approach is that thus 
we create a basis for solving more complex tasks. Namely, besides incorporating 
just marginals and conditionals, we may integrate the knowledge coming from an 
empirical distribution as the algorithm is using a "starting" distribution X°. In this 
sense we construct a non-orthogonal projection of an empirical distribution on a set 
of all distributions complying with the marginals and at the same time we try to 
enforce fixed conditionals. And even more, we may give some weights to conditionals 
and reflect thus their relative precision or significance. Finally, using this approach, 
it is possible to include in the criterion function a term that would not only project 
Xo but would force out a solution with e. g. higher entropy. 

The basic idea is to look for a solution of the "marginal" part of the problem. It 
can be done with the help of linear programming or via e.g. Tetris algorithm [8]). 
Then using the parametrization "invariant moves" ([6]), preserving the marginals, 
we shall try to satisfy the conditions for conditional probabilities in the optimization 
procedure similar to one suggested in [7]. The outline of the paper is the following 
one (with underlined words serving as subsections titles): 
The consistency problem CP(/C, W) (i.e. search for a joint distribution P with given 
marginals /C and given conditionals W) can be defined as an optimization on the 
space of distributions. 
The constraints are given by a set /C of marginals and the criterion function $ can 
be chosen as a distance $(P, W) between a distribution P and a (set of distributions 
having the same) fixed set W of conditionals. The extrem we look for is the min­
imum. Then, the consistency problem CP(/C, W) is solved if P is found for which 
the equality $ ( P , W) = 0 holds. 
The constraints /C are automatically respected if 
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1. we found at least one distribution Pn that has the marginals equal to the given 
ones and 

2. changes of PQ are done not in an arbitrary way but only in certain directions 
- the so-called invariant moves. 

In other words, the joint distribution Pn and invariant moves V(K) (depending on 
K) represent an efficient parametrization of the set V(K) of all joint distributions 
consistent with constraints K. 
Next, the change in distance function $(P, W) will be expressed as a function of the 
set V of invariant moves. 
Then, the algorithm Conditional problem will be presented as a modification of an 
optimization program from [7] with the above mentioned specific distance function 
$(P,VV). 
If invariant moves V(K) correspond to K = 0, Pn can be any distribution e.g. the 
uniform one and we solve the pure conditional problem. 
If K ^ 0, the starting distribution Po must comply with constraints /C, the corre­
sponding invariant moves V(K) preserve the value of the marginals and we solve 
general consistency problem. Formally, there is no difference in the form of the 
algorithm for both cases. 

2. OPTIMIZATION ON DISTRIBUTIONS 

Given a set K of less dimensional distributions 

IC = {PSl,Ps2...Pst} 

(Sk denotes a set of variables whose behaviour Psk describes) and an arbitrary 
functional $ on the space V of all joint distributions, find such a representative 
^EiCa-..(n fr°m the class V(K) of all joint distributions P^^2...^n consistent with a set 
K = {PsnPs2 • -Pst) for which the valued (P^fa. ..fn) of the functional $ achieves 
the extremal value: 

^ie. . .e» = argext $ (P) 
PZV(K) 

where 
V(K)={PeV\PSi = PSi i = l , 2 , . . . c a r d ( / C ) } . 

An upper index Si applied to symbol P means marginalization. 

3. CONSTRAINTS 

Constraints in the formulation of the problem can be expressed formally by the 
matrix equation Ax = 6 where x is vector of ordered values of the joint distribution 
P on k atoms of the algebra of subsets of a basic finite set U. The vector b contains 
the values of all small-dimensional distributions that are considered as fixed and 
the matrix A, referred to as incidence matrix^ consists of zeroes and ones only. 
The interpretation (in terms of original problem) is the following one: If a,j = 1 
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then the probability value Xj of the j- th atom (of sample space on which the joint 
distribution is defined) contributes to the probability value 6t- on respective atom i 
(of some of the marginals from which vector b is composed). The equation Ax = 6 
describes exactly the "marginalization" conditions for some selected marginal (less-
dimensional) distributions (that are postulated as the knowledge base /C). 
In ([6]), a special type of parametrization of x (preserving the constraints Ax = 6) 
was introduced under the name of invariant moves. (It is such a transformation of 
x that when we "move" the values of x, the values of b remain "invariant".) 
Invariant moves are given by partitions {P, IV, U — ( P U IV)} of the set U of k points 
(on which a joint distribution is defined). The groups P and IV are determined with 
the help of the matrix A(my k) by m following conditions: 

YL aii " X I fl|'i for ** = 1,2,... TTi. 
jep jeN 

If we increase values of distribution in all points in the P-group by a real number 
/? and simultaneously decrease by the number /? the values in points of the N-
group, all marginals (described by A) remain unchanged. The incidence matrix 
A can degenerate into a "row" vector consisting of all "ones". This corresponds 
to the equation Ax = 6 where vector b has degenerated to the scalar 1. Then, 
K = 0, V (/C) = Vk ( i e . all distributions on k elements) and invariant moves for 
this simplex Vk include all ( 2) pairs with P and N groups containing always one 
atom only. 

4. CRITERION FUNCTION 

Given a fixed set W of conditional probabilities, we look for a joint distribution 
X having its conditionals (on corresponding definition sets) equal to the ones in 
W. If there are more solutions, we wish to construct one of them. If there is no 
one, we accept a distribution X where the "distance" $(X, W) between W and the 
conditionals of X is the smallest one in a sense. In the sequel, $(X, W) will be 
selected as the sum of absolute values of differences of respective conditionals. 

1. Let U denote a finite set. It's elements will be denoted as u. Considered as 
one-elements sets {ti}, they are atoms of algebra of subsets of U. 

2. Let X be a probability distribution on U. X(u) denotes value of probability 
X for the respective atom {u}. 

3. Let w denote a conditional (CW1 DWi Pcw\Dw) E 2U x 2U x (0,1) where two 
sets CW) Dw are subsets of U (i.e. Cw S U, Dw 6 U) and the number PC^iD^ 
fulfills some requirements: 

(a) If Dw = 0, then PCw\Dw can be any number from (0,1). 
(b) If Cw = 0, then PCw\Dw must be 0. 
(c) If Cw H Dw = 0 & Dw ± 0, then Pc^Dw m u s t b e 0 

(d) If Cw D Dw, then Cw H Dw = Dw a n d PCiD must be 1. 
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4. Let ccW)ddw be the least integers expressing Pcw\Dw

 a s rational number i.e. 

ccw 

Set of all fixed conditionals w will be denoted as W. 

5. Let L denote the least integer number such that all LX(u) are integers and 
L is also divisible by denominators ddw for all w G W. Let cdw(X) denote L 
times the probability X(CWDW) of intersection CWDW, and dw(X) denote L 
times the probability X(DW). Conditional probability X(CW\DW) of Cw given 
Dw if X is the joint probability on U is then given by 

X(CW\DW) = 
X(CWDW) cdw(X) 

X(DW) dw(X) 

where integer numbers cdw(X)) dw(X) may have common divisor unlike to ccw 

and ddw. 

6. Let V(A) be a set of all invariant moves for incidence matrix A. Its elements 
are denoted as v and PVi Nv are positive and negative sets of the move v. 
Remark: The symbol P is used in two senses: probability and positive. Pv is 
a subset of U, P is a joint distribution, Pcw\Dw is a number in a conditional 
w and P(CW\DW) is a conditional probability of Cw given Dw if P is the joint 
probability on U. 

7. The "distance" $(X, W) of probability X from set W of conditionals (all 
defined on U) is given by 

Ф(X,W)= J2 ccw 

ddw 

cdw(X) 

dw(X) 

If $(-X", W) = 0, the probability X is consistent with the given set W of 
conditionals i.e. 

Vwew X(CW\DW) = PCW\DW-

8. Let us suppose that the distribution X changed to distribution Xkv using the 
move v and performing k steps in direction v. The transformed Xkv is given 
by formula 

Xkv(u) = X(u) + k 

= X(u)-k 

= X(ii) 

Then we get another "distance" 

Ф(Xkv,W)= £ 
" wЄW 

uePv 

ueNv 

ueu -PVUNV. 

ccw cdw(Xkv) 

[ddw dw(Xkv) 
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where the "integer"(due to multiplying by L) probabilities cdw(Xkv) and dw(Xkv) 
can be expressed as 

cdw(Xkv)= Y (LX(u}tk)+ Y (LX(u)-k)+ Y LX(u) 
ueCwDwPv ueCwDwNv ueCwDw(PvC\Nv) 

a n d 

dw(xkv)= Y (LX(u)+k)+^Yl (L^(u)-k)+ Y LX(u)-
ueDwPv ueDwNv ueDw(PvC\Nv) 

These expressions may be modified to 

cdw(Xkv) = cdw(X) + k E 1- £ ' 
lueCwDwPv ueCwDwNv 

dw(Xкv) = dw(X) + к E ' - E 'I 
lueDwpv ueDwNv 

If we introduce following abbreviations for cardinalities of respective sets 
cdwv — \C>wL)wrv\ — \L/WL)WNV 

and 
dwv = |D u ,P u | - |D u ; iV t , | 

the formula for <&(Xkv, W) can be transcribed into form 

9{Xkv,W)= J2 
wЄW 

ccw 

ddu 

cdw(X) + k • cdwv 

dw(X) + k • dwv 

Let us stress that the integers cdwv and dwv can be calculated for all combi­
nations from W x V once for all before the optimizing cycle. Some of them 
may be zero. The formula implies that it is possible to look for minimum of 
$(Xkv, W) changing only the value of step k. 

9. Let fcmax(t>, X1) denote the value of k recommended for the final transformation 
of distribution X1 into the distribution Xl

kv. Then, ^ m a x ( t ; ,X / ) either yields 
the best improvement of distance criterion in the direction v or it is limited by 
a free parameter k0 i.e 

*max(v,X/) = min < argmin $(Xl

kv,W), k0 

[fc€-VU(-/V) 

10. Starting from a given (possibly arbitrary) joint probability X°, let us construct 
a sequence .K0,.^1,^2,.. .such that X1 is generated from X1"1 applying the 
move v where v = mod(/, ll^l) + 1. 
The stopping rule may be of the form $(Xl, W) = 0 or / > /n for a fixed /n. 
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In subsequent steps, only k is changing in evaluating kmsLX(v,Xl) and then, 
after the km2LX(v,Xl) was fixed, we perform a transformation 

yl > yl _ yl+1 

where changes of X1 are performed only in points u E PVUNV inciding with the 
move v and not everywhere in U and the numbers cdw(Xl+l) and dw(X1^1) 
must be updated accordingly. 

5. ALGORITHM: CONDITIONAL PROBLEM 

The type of extremalization is selected as minimum. Concrete type of function $ is 
$(K,KV). 

There are four cycles in the algorithm: 

1. set.ofjjioves cycle determines that optimization over all \V\ invariant moves is 
to be performed y times (y is a free parameter). 

2. single-move cycle: optimization is performed for each invariant move v from 
V(A). On request (by parameter o), the order of running through the moves 
set can be reversed. 

3. positive or negative directions: prolongation of tentative calculation of the 
functional as long as there exists a decrease in functional value from the pre­
vious step. Positive direction means that values from P are incremented by 
positive value of the module k in each step. The prolongation (of this linear 
search) can be constrained from above by a (free) parameter ko. 

The following description of the algorithm is a very rough one, featuring some im­
portant points and hints only. 

1. enter the starting distribution X° 

2. select L to have sufficiently small step 

L = l.c.p ({ddw}wew | J g i C i d i p 0 ( | i ) W ) ) 

where l.c.p stands for the ieast common product and g.c.d stands for the great-
est common divisor. 

3. enter the set V(A) of all invariant moves 

4. enter the set W of all conditionals (CW) DW) jg3*-) 

5. calculate the matrices cdwv and dwv for w E VV, v G V. 

6. set-of-moves cycle: duration according to free parameter y. It makes further 
possible "reoptimization" of the final X 

7. calculate value of $(X, W) in the given "point" (distribution) X 

8. single-invariant move cycle: order given by parameter o 

9. new-move: select invariant move v 
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10. proceed in positive direction as long as the functional decreases or unless the 
prolongation is inhibited by the parameter ko or unless $ achieves the bound­
ary 0.0 or unless LX(u) — k achieves the zero for an atom u G Nv. 

11. proceed in negative direction as long as the functional decreases or unless the 
prolongation is inhibited by the parameter ko or unless the boundary 0.0 is 
achieved or unless LX(u) — k achieves the zero for an atom u £ Pv. 

12. select the direction with better decrease in criterial functional. If there is no 
such direction increase the single_ihvariant_moves cycle index and proceed to 
new-move:. 
If there existed possible improvement, adapt the vector X by the changes in all 
iit- from the Pv and Nv group of the actual invariant move (PV) Nv)y recalculate 
cdw(X),dw(x) for u£ PVUNV. 

13. If $(X, W) = 0 go to end:, otherwise increase the singleJnvariant_moves cycle 
index and proceed to new-move:. 

14. end of single-invariant moves cycle: 

15. end of set-of-moves cycle: 

16. end: printing and storing of results. 

6. EXAMPLE 

Let us consider three dichotomic variables fi , £2. £3- They take values from {0,1}. It 
means that there are 23 atoms, i.e. U = {1,2,3,4,5,6,7,8}. We suppose that /C = 0 
i.e. we have not fixed any marginal and the only requirement is that the output of 
the algorithm is a distribution, if input was a distribution. Then, the corresponding 
matrix A is given by 

A = ( 1 1 1 1 1 1 1 1 ) . 

For this specific matrix A, the set V(A) of all invariant moves can be derived directly 
and consists of all 28 pairs of 8 elements of U. Then, V(A) is 

n A ) = {( l ,2) , ( l ,3) , . . . (6,8) , (7,8)} . 

Let us suppose our requirement is that two conditional probabilities are to be fixed, 
namely -P^i^^lO) = 1/8 and - ^ ^ ^ ( O l l j O ) = 4/13. In our previous terminology, 
the set W of conditionals has two elements and it is defined by 

W = {((10101010), (11001100), 1/8), ((11001100), (01010000), 4/13)}. 

The sets are given by their characteristic functions, e.g. DWl = (11001100) means 
that the set DWl contains atoms 1,2,5,6. The requirements (definition of W) are 
written in certain pseudo-language. We shall keep as comments (line starting with 
c) original values of conditional probabilities for the starting distribution X° to ease 
up comparing the results. 
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c (1)/(2):1=<4 l>/5 
1/8 <10101010| < « « « 

11001100> 
c4/5 <10101010| 
c 11001100> 
cl/5 <01010101| 
c 11001100> 
c (2)/(l,3):2=<l 10>/11 
4/13 <11001100| < « « « « 

01010000> 
cl /11 <11001100| 
c 01010000> 
clO/11 <00110011| 
c 01010000> 

In the sequel, we shall present behaviour of the algorithm Conditional problem 
when it is applied to two different distributions. 

First, starting distribution X° was selected as 

( l ,2,3)=<4/20 1/20 5/20 10/20 0/20 0/20 0/20 0/20> 

The interpretation of the previous line is e.g. ^ ^ ^ ( O , 1,0) = 5/20. The marginal 
distributions of X° are 

(l)=<9/20 ll/20> 
(2)=<5/20 15/20> 
(3)=<20/20 0/20> 
(l,2)=<4/20 1/20 5/20 10/20> 
(l,3)=<9/20 11/20 0/20 0/20> 
(2,3)=<5/20 15/20 0/20 0/20> 

its conditional probabilities are 

(1)/(2):1=<4 l>/5 < « « « « « « « change to 1/8 
(1)/(2):2=<1 2>/3 
(1)/(3):1=<9 ll>/20 

(2)/(l,3):2=<l 10>/11 « « « « « « « « change to 4/13 
(2)/(l,3):3=<0 0>/0 
(2)/(l,3):4=<0 0>/0 

(2,3)/(l):2=<l 10 0 0>/ll 

and in detail (with explicitely given sets CW)DW) for conditionals that we have to 
change 

c (1)/(2):1=<4 l> /5 
4/5 <10101010| « « « « « « « « « « « « change to 1/8 

11001100> 



36 O. KŘÍŽ 

1/5 <01010101| 
11001100> 

c (2)/(l,3):2=<l 10>/11 
1/11 <11001100| < « « « « « « « « « « change to 4/13 

01010000> 
10/11 <00110011| 

01010000> 

The resulting joint distribution X 3 5 

(l,2,3)=<23/520 20/520 1/520 45/520 0/520 141/520 0/520 290/520> 

with marginals 

(l)=<24/520 496/520> 

(2)=<184/520 336/520> 
(3)=<89/520 431/520> 
(l,2)=<23/520 161/520 1/520 335/520> 
(l,3)=<24/520 65/520 0/520 431/520> 
(2,3)=<43/520 46/520 141/520 290/520> 

and conditional probabilities for sets where we required the change 

« « « « « 
c -UJ/U;:1=<1 7>/8 
1/8 <10101010| 

11001100> 
7/8 <01010101| 

11001100> 

c -(2)/(l,3):2=<4 9>/13 
4/13 <11001100| 

01010000> 
9/13 <00110011| 

01010000> 

« « « « « 

The importance of different parameters (e. g. o or ko) influencing application of 
different invariant moves can be seen from the following tables. In the first table, 8 
joint distributions P J are given that were offered by the algorithm as a solution of 
the conditional problem for different "mixing" parameters o and A?n. Integer numbers 
corresponding to different atoms x\ must be divided by the number from column "/" 
(i.e. 520) to obtain probabilities P* ({#/}) 
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P* 1 Atoms Дľl X2 xз Л?4 x$ XQ X7 x& / O.K. 

P1 
22 96 127 216 0 58 0 1 /520 * 

P2 
18 27 130 61 0 99 86 99 /520 

P3 
20 26 17 59 0 114 100 184 /520 

P4 
23 20 1 45 0 141 1 289 /520 * 

pъ 16 115 130 259 0 0 0 0 /520 

pв 19 98 133 221 1 42 6 0 /520 

P7 
21 98 131 221 0 49 0 0 /520 * 

P8 
23 20 1 45 0 141 0 290 /520 * 

Unfortunately, not every joint distribution is the exact solution of the conditional 
problem. Only joint distributions P-7 denoted by * in column O.K. of the first table 
fulfill exactly requirement for conditional probabilities. Some P1 are just "approxi-

7 
mate" solutions as can be deduced from the second table using columns = and Err\ 
and Err2- But even for not exact solutions, the errors are very small. 

PІ O ko ^1 | Í 2(0Ю) 
? 

CC\ 

ddx 

fľrri -F€,l«,«,t°l*-°> 
? 

CC-2 

dd2 
Err2 

P1 1 1 22 
176 = 1 

8 0 96 
312 = 4 

13 0 

pг 1 50 18 
144 = 1 

8 0 27 
88 Ф 4 

13 0.0008 

P3 
1 100 20 

160 = 1 
8 0 26 

85 Ф 4 
13 0.0018 

p4 1 200 23 
184 = 1 

8 0 20 
65 = 4 

13 0 

P 5 0 5000 16 
131 Ф 1 

8 0.002 115 
374 Ф 4 

13 0.0002 

P б 0 3 21 
168 = 1 

8 0 98 
319 Ф 4 

13 0.0041 

pb 1 25 23 
184 = 1 

8 0 20 
65 = 4 

13 0 

Second, let us suppose that the starting distribution X° is uniform 

( l , 2 , 3 ) = < l / 8 1/8 1/8 1/8 1/8 1/8 1/8 l/8> 

with conditional probabilities 
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« « « « < « « « 
c -(1)/(2):1=<1 l>/2 
1/2 <10101010| 

11001100> 
1/2 <01010101| 

11001100> 

c -(2)/(l,3):2=<l l>/2 
1/2 <11001100| 

01010000> 
1/2 <00110011| 

01010000> 

< « « « « « « 

Then after applying the algorithm Conditional problem to K°, there were succes­
sively 26 moves used, with limiting condition that 5 steps (as ko — 5 was set) can 
be made at most in each direction (move) in one big cycle. Then, the resulting 
probability X 2 6 is 

(1,2,3)=<0/104 8/104 18/104 18/104 5/104 27/104 15/104 13/104> 

with marginals 

(1)=<38/104 66/104> 

(2)=<40/104 64/104> 
(3)=<44/104 60/104> 
(1,2)=<5/104 35/104 33/104 31/104> 
(1,3)=<18/104 26/104 20/104 40/104> 
(2,3)=<8/104 36/104 32/104 28/104> 

and corresponding conditional probabilities 

< « « « « « « 
c -(1)/(2):1=<1 7>/8 
1/8 <10101010| 

11001100> 
7/8 <01010101| 

11001100> 

c -(2)/(l,3):2=<4 9>/13 
4/13 <11001100| 

01010000> 
9/13 <00110011| 

01010000> 

< « « « « « « 

As the starting distribution X° was uniform, the resulting distribution X26 should 
have the greatest entropy among all distributions with the given conditionals. 

7. CONCLUSIONS 

1. It is possible to solve consistency problem CP(/C,W) or a pure conditional 
problem CP(0, W) in form of optimization on space of distributions. 
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2. Due to mult imodal character of the criterion function 3>(X, W) and differ­
ent start ing distributions X°, the algorithm can finish in a distribution X1 

for which Q(XfW) > 0, even if the problem CP(/C, W) or CP(0, W) has a 
solution. 

3. In these situations, changing the steering parameters of the optimization al­
gorithm (e.g. order of applying invariant moves V, limiting length ko of 
search in each direction (move)) can find another distribution X1 for which 
<^(X,W) -=- 0. 

4. If we are interested in strict "yes" or "no" reply to consistency, it may be 
better to use linear programs. 

5. If we wish to integrate the knowledge from an empirical distribution, it should 
be used as a s tart ing distribution X° in the algorithm. This way we can get 
one of possible (non-orthogonal) projections of X° on set of distributions with 
the given marginals and conditionals. 

6. The algorithm is efficient only for small-size problems e.g. joint distributions 
for 5 dichatomical variables. 

7. Due to treating the problem in integers, rounding errors in evaluating criterion 
are avoided. 

8. There are no specific requirements (e.g. complying with a graphical model) 
on the s tructure of the joint distribution. 

(Received November 7, 1997.) 

REFERENCES 

[1] P. Cheeseman: A method of computing generalized Bayesian probability values of 
expert systems. In: Proceedings of the 6-th Joint Conference on Artificial Intelligence 
(IJCAI-83), Karlsruhe, pp. 198-202. 

[2] W. E. Deming and F. F. Stephan: On a least square adjustment of sampled frequency 
table when the expected marginal totals are known. Ann. Math. Statist. 11 (1940), 
427-444. 

[3] A. Gilio and S. Ingrassia: Geometrical aspects in checking coherence of probabili­
ty assessments. In: IPMU'96: Proceedings of the 6th International IPMU Conference 
(B. Bouchon-Meunier, M. Delgado, J. L. Verdegay, M. A. Vila, R. Yager, eds.), Grana­
da 1996, pp. 55-59. 

[4] G. Coletti and R. Scozzafava: Characterization of coherent conditional probabilities 
as a tool for their assessment and extension. Internat. J. Uncertainty, Fuzziness and 
Knowledge-Based Systems, 4 (1996), 2, 103-127. 

[5] H. G. Kellerer: Verteilungsfunktionen mit gegebenen Marginalverteilungen. Z. 
Wahrsch. verw. Gebiete 3 (1964), 247-270. 

[6] O. Kfiz: Invariant moves for constructing extensions of marginals. In: IPMU'94: Pro­
ceedings of the 5th International IPMU Conference (B. Bouchon-Meunier, R. Yager, 
eds.), Paris 1994, pp. 984-989. 

[7] O. Kfiz: Optimizations on finite-dimensional distributions with fixed marginals. In: 
WUPES 94: Proceedings of the 3-rd Workshop on Uncertainty Processing (R. Jirousek, 
ed.), Tfest 1994, pp. 143-156. 



40 O. KŘÍŽ 

[8] O. Kfiz: Marginal problem on finite sets. In: IPMU'96: Proceedings of the 6-th 
International IPMU Conference (B. Bouchon-Meunier, M. Delgado, J.L. Verdegay, 
M. A. Vila, R. Yager, eds.), Granada 1996, Vol. II, pp. 763-768. 

[9] O. Kfiz: Inconsistent marginal problem on finite sets. In: Distributions with Giv­
en Marginals and Moment Problems (J. Stepan, V. Benes, eds.), Kluwer Academic 
Publishers, Dordrecht - Boston - London 1997, pp. 235-242. 

[10] R. Scozzafava: A probabilistic background for the management of uncertainty in Ar­
tificial Intelligence. European J. Engineering Education 20 (1995), 3, 353-363. 

[11] P. Vicig: An algorithm for imprecise-conditional probability assesment in expert 
systems. In: IPMU'96: Proceedings of the 6-th International IPMU Conference 
(B. Bouchon-Meunier, M. Delgado, J. L. Verdegay, M. A. Vila, R. Yager, eds.), Grana­
da, 1996, Vol. I, pp. 61-66. 

Ing. Otakar Křiž, CSc, Institute of Information Theory and Automation - Academy of 
Sciences of the Czech Republic, Pod vodárenskou věží4, 18208 Praha 8. Czech Republic. 
e-mail: kriz@praha.ud.cez.cz 


		webmaster@dml.cz
	2015-03-27T23:18:56+0100
	CZ
	DML-CZ attests to the accuracy and integrity of this document




