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INTERPRETATION OF PATTERN CLASSIFICATION 
RESULTS, OBTAINED FROM A TEST SET 

EDGARD NYSSEN 

The present paper presents and discusses a methodology for interpreting the results, 
obtained from the application of a pattern classifier to an independent test set. It addresses 
the problem of testing the random classification null hypothesis in the muiticlass case, by 
introducing an exact probability technique. The discussion of this technique includes the 
presentation of an interval estimation technique for the probability of correct classification, 
which is slightly more accurate than the ones described in some statistics textbooks. 

1. INTRODUCTION 

Consider an experiment where a ib-class classifier under study is applied to a test set 
of patterns which is independent of the learning set. The result of this experiment — 
referred to by superscript T — is a frequency distribution _VT = (n\l,nj2, • • •, > nJk) 
of the patterns, where nfz represents the number of elements, belonging to class fl,-, 
which have been assigned by the classifier to class f2j ( i , j E { 1 , . . . , Jb}). 

A simplified representation of the mathematical expressions will be obtained by 
introducing the following notations: 

8 t S t 

nWi = j L n « ' n,'M = 1^ n^ ' nMM = 2 ^ i L n«-
»=i j=\ * = i j = i 

The classification efficiency e is defined as the correctly classified fraction of the 
observations. 

e = e(1V) = ^ * = 1 Uii (xl00%). 
n[k}[k] 

In the case of the test set members, we have eT = e(1VT), which can be considered as 
an unbiased point estimation of the classification efficiency E{eT} = e at population 
level. 

An important problem —especially when only a small test set is studied— is 
the demonstration that this efficiency is statistically significant. 

1 Supported by the Grant for Program No. G.0042.96 of the Belgian National Research Fund 
(NFWO). 
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2. TESTING THE SIGNIFICANCE OF THE EFFICIENCY 

In the case that only two classes are involved, Fisher's exact probability test is 
the appropriate method to test the significance of efficiency [4]. The methodology, 
discussed in this paper, involves an arbitrary number of classes. 

Let us consider the population Afn0 of frequency distributions IV, generated 
through random classification of the patterns in the test set and satisfying the same 
marginal totals as NT, i.e.: 

-V = (niiJ...,n fcjb) , V i , j e {1,.. . ,&} : ni[k] = nj[k] , n[k]j=nfk]j. (2.1) 

Demonstrating the significance of eT, can be approached as a statistical hypothesis 
testing problem, where Ho —the null hypothesis— expresses that IVT is taken 
from the population Afu0 (and hence, generated by a random classifier). Ho is tested 
against the alternative hypothesis Hi: E{eT} > CQ) here, eo is the expected efficiency 
under H0 [3]. 

To implement this approach, it is sufficient that we are able to calculate for any 
distribution IV the probability P(N |Ho,Eq. 2.1) of its occurrence under Ho and 
conditioned by the constraints given by Eq. 2.1. From this probability, one can 
derive the probability distribution pe — under Ho — of the test statistic e as well 
as the minimal significance level p> at which Ho can be rejected on the basis of NT: 

l 

P> =^Pe With Pe = J2 P(N I H ° ' E C 1 ' 2 '1) ' (2*2) 
e = e T N:e(N)=e 

Under Ho, all patterns have the same probability of being assigned by the classifier 
to a given class, independently of their real class membership. This means that all 
possible distinct assignments of the n[k][k] patterns to the k classes, satisfying Eq. 2.1, 
are equiprobable. This leads us to the following expression for P(IV | Ho, Eq. 2.1): 

p(*iHo,Eq.2.i) = f^™i_V7n - ^ 
. li?=1 »[*ii! J \ ,=i llj=i na . . I 

(A) (B) 
k k p n [* - i ]< r*n9t = nn ";":',-•'" <») 

s=21=2 ^n[s][t] 
s v ' 

(C) 

where expression (A) contains the number of the distinct assignments, mentioned 
before, and expression (B) contains the number of distinct assignments, satisfying 
distribution IV. In expression (C), one recognises the hypergeometric distribution 
probability. Note that a hypothesis test based on Eq. 2.2 and 2.3, reduces exactly 
to Fisher's exact probability test, when k = 2. 
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3. DISCUSSION 

The hypothesis testing technique, presented in this paper, is based on the calculation 
of an exact probability. Like Fisher's test, the technique can therefore be applied to 
classification results, obtained from arbitrarily small test sets. The technique doesn't 
evaluate the importance of the efficiency: even when a low efficiency eT is observed 
for the test set, this efficiency can still be significantly higher than the efficiency en, 
expected under Ho. To illustrate this, consider as example the case of a test set with 
the same subset size for each class, i.e.: Vi G { 1 , . . .,fe} : njrk^ = n L n / i In that 
case, eo equals 1/fe. If we consider specifically an experiment on a test set, involving 
k — 4 classes, where for all i and j values (i -̂  j ) , nn = 3 and nij = 1, we have 
c0 ~ 0.25 and e = 0.5; athough e is low, we have p> = 0.0085, which means that the 
observed efficiency e is significantly higher than eo at a significance level of e.g. 1 %. 

An interval estimation of e, the efficiency expected for a set of patterns, satis­
fying Vi G { 1 , . . . , fe} : n([k] = njik], can be calculated on the basis of any existing 
appropriate technique for the interval estimation of proportions. When n[k][k] is 
large, e is approximately normally distributed. In classical handbooks on statistics, 
on can find the necessary fomulae, yielding for our problem a 7(xl00%) confidence 
interval of e ± c^e(\ — e)/rarj.p], where c is half the interval width holding for a 
standard normally distributed statistic z which satisfies: P(—c < z < c) = 7 (e.g. 
[1, 2]). This estimation is an approximation, not only because of the approximat­
ing normality assumption for e, but because it is derived from the interval estimate 
e ± Cy/e(l — e)/n[k][k], where e, which is evidently unknown, is replaced by its point 
estimate, e. One undesirable consequence is that an interval limit may become nega­
tive or exceed 1, which occurs when e or (1 — e) has a value less than c2/(c2 + n[k][k]). 

A slightly more accurate result is obtained through the following reasoning. As­
sume that n[k][k] is sufficiently large for e to be normally distributed in good approx­
imation. In that case, e and e satisfy: 

P ,_,/ .<i-Jl<,<« + J&z4)~r 
V V " M M V " M M J 

Note that if this equation holds approximatively, this is only due to the deviation 
from normality of the distribution of e. The left hand side can be rewritten as: 

(e^e)2_c2£(Ll£)<oV 
n[k][k] ) 

After putting d = c2/nrj.p], the values of e, which satisfy this inequallity, are situated 
between the roots of the quadratic equation (e — e)2 — d(e(l — e)) = 0 and therefore, 
the interval estimate for e —at (approximately) a confidence level 7 (x l00%)— is 
given by: 

_ 2e + d± y/(2e + d)2 - 4(1 + d ) ? 
emax/m i n - 2(1 + d) 

This interval [ernin,emax] has the following properties: 
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- e G [cminj^max] C [0,1]; e — t h e unbiased point est imate of e— is however 
not the centre of [emim emax] (except when e = 0.5); 

- P(e < emin) = P(e > em ax) ~ (1 — 7 ) / 2 , which is consistent with the previous 
property in case e is close to 0 or 1. 

Let us consider as example, a test set of size 100, where 99 pat terns were classified 
correctly. The estimation method described here, yields for e a 9 5 % confidence 
interval [0.946,0.998]; the classical method yields [0.970,1.01], which has an upper 
limit exceeding 1. 

(Received December 18, 1997.) 
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