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DETECTION AND ACCOMMODATION OF SECOND 
ORDER DISTRIBUTED PARAMETER SYSTEMS 
WITH ABRUPT CHANGES IN INPUT TERM: 
STABILITY AND ADAPTATION 

MICHAEL A. DEMETRIOU AND MARIOS M. POLYCARPOU 

In this note, we employ nonlinear on-line parameter estimation methods based on adap­
tive neural network approximators for detecting changes due to actuator faults in a class 
of second order distributed parameter systems. The motivating example is a cantilevered 
beam actuated via a pair of piezoceramic patches. We examine changes in the control input 
term, which provide a simple and practical model of actuator failures. Using Lyapunov 
redesign methods, a stable learning scheme for fault diagnosis is proposed. The resulting 
fault diagnosis scheme is utilized for control reconfiguration in order to accommodate the 
system's actuator failure. A numerical algorithm is provided for the implementation of 
the detection and accommodation scheme and simulation studies are used to illustrate the 
applicability of the theoretical results. 

1. INTRODUCTION 

Demanding operating conditions for many modern engineering systems result in 
higher possibility of system failures. In general, feedback control algorithms, which 
are designed to handle small system perturbations that may arise under "normal" 
operating conditions (typically, in the linear regime), cannot accommodate abnormal 
behavior due to faults. Such system failures can potentially result not only in the 
loss of productivity but also in the loss of expensive equipment and, ultimately, 
of human lives. Moreover, difficult and often dangerous environments limit the 
ability of humans to perform any supervisory and/or corrective tasks. For example, 
automated maintenance for early detection of worn equipment is becoming a crucial 
problem in many practical applications. In general, the development of automated 
health monitoring architectures is becoming a more crucial component in the design 
of truly intelligent systems. 

The design and analysis of fault diagnosis architectures for finite dimensional sys­
tems using the model-based analytical redundancy approach has received consider­
able attention during the last two decades. According to this approach, quantitative 
nominal models (for example, state space models) of the physical system, together 
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with sensory measurements, are used to provide estimates of measured and/or un­
measured variables. The deviations between the estimated and measured signals 
provide a residual vector which is utilized to detect and isolate system failures. Sur­
vey papers by Frank [8], Gertler [9], Isermann [11] and Willsky [18], among others, 
present excellent overviews of various model-based fault diagnosis algorithms. 

Most fault diagnosis studies so far have been based on a linear system formu­
lation. The learning based approach to fault diagnosis is a new methodology for 
nonlinear systems subject to faults that are nonlinear functions of the input and 
state variables. The main idea behind this approach is to monitor the plant for 
any off-nominal behavior due to faults utilizing a neural network or other types of 
on-line approximators. In the presence of a failure, the neural network can be used 
as an estimate of the nonlinear fault function for fault identification and accommo­
dation purposes. Furthermore, during the initial stage of monitoring, the learning 
capabilities of the neural network can be used to learn the modeling errors, thereby 
enhancing the robustness properties of the fault diagnosis scheme. 

The learning based approach to fault diagnosis was developed for the finite dimen­
sional case over a number of studies. The initial formulation was proposed in [14], 
where the stability properties of the learning scheme for the restricted case of abrupt 
faults and no modeling uncertainties, were established. In [16] the assumption of no 
modeling uncertainties was relaxed and in addition to stability, some robustness and 
sensitivity properties of the fault diagnosis scheme were obtained. The input-output 
formulation for the learning based fault diagnosis algorithm was developed in [17]. 
In [6] the assumption of abrupt faults was relaxed by allowing the time profile of 
the fault to be a drift-type, decaying exponential function (representing incipient 
faults), and in [15] the class of detectable faults was characterized and an upper 
bound on the detection time was derived analytically. The case of parametric faults, 
which describe faults of known structure but with unknown parameter vectors, were 
considered in [13]. 

In this paper we discuss a theoretical investigation and present a numerical scheme 
for a model-based fault diagnosis and accommodation algorithm applied to a class 
of distributed parameter systems with failures occurring in the input term. An 
estimated model (adaptive diagnostic observer) of the plant is used to monitor the 
plant for any changes due to these faults. The estimated model incorporates an 
on-line approximator [14], which estimates and monitors the parameters on-line via 
a learning algorithm. The output of the on-line approximator is used as an indicator 
of the occurrence of a fault and also as a method for identifying the location (fault 
isolation) and shape (fault identification) of system failures. A reconfiguration of 
the standard control is presented in order to accommodate the system failure. 

The structure considered in the ensuing numerical example is taken to be a can-
tilevered beam with two piezoceramic patches attached on the opposite sides of the 
beam. As was already mentioned in many works, see for example [2] and the ref­
erences therein, a general structural (and even structural-acoustic) control problem 
has dynamics described by the second order evolution equation 

Mx(t) + Dx(t) + Kx(t) = Bu(t) (1.1) 
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with (collocated velocity) output 

y(t) = Cx(t) (1.2) 

where the state x(t) belongs to a Hilbert space X and M, D, K and B, C are 
operators in the appropriate spaces. 

The paper is organized as follows. In Section 2 we set up the abstract equations 
that govern the dynamics of the plant (which is assumed to be infinite dimensional) 
and in Section 3 we propose a model for the fault, which in this case is simply taken to 
be a change in actuator gain that is a function of the measurable output signal. The 
state observer along with the failure on-line approximator used for failure monitoring 
and detection is presented in Section 4. A standard controller for the nominal plant 
is proposed in Section 5 and a modification to the standard control is presented 
to account for the actuator changes due to failures; thus failure accommodation. 
Simulations studies with discussion follow in Section 6 and conclusions with future 
directions are summarized in Section 7. 

2. PLANT DYNAMICS 

Let X be a real Hilbert space with inner product (•, •) and corresponding induced 
norm | • |, and let V and W be real reflexive Banach spaces with norms denoted 
by || • ||v and || • ||w, respectively. We assume that V is embedded densely and 
continuously in W and that W is embedded densely and continuously in X. It then 
follows that (see, for example, [2]) 

Y^W^X^X* <-+W* <->V*y (2.1) 

where X*, W*, and V* denote the conjugate duals of X, W, and V, respectively. We 
denote the usual operator norms on W* and V* by || • \\w* and || • ||v*, respectively. 
The duality pairing, denoted by (•, -)v*,v, is the extension by continuity of the inner 
product (•, •) from H x V to V* x V; hence, elements (p* G V* have the representation 
(p*((p) = (<p*,<p)v*,v, see [2]. As it was pointed out in [2, 7], W can either be V, X 
or some intermediate space, depending on the damping form chosen. 

Assume that we have the following second order system 

Mx(t) + Dx(t) + Kx(t) = Bu(t) in V*, 

y(t) = Cx(t)y (2.2) 

x(0)ev} i(o)ex, 

where K : V —* V* is the stiffness operator which is assumed to be a symmetric, 
V - V*-bounded (i.e. there exists a oc\ > 0 such that \(K<f>yxp)\ < c*i||0||v||Vi|v, 
for <f>,i{> £V) and V-coercive operator (i.e. there exists k > 0 such that (if<£,<£) > 
fc||0||v for <f> G V)y D : W -+ W* is the damping operator which is a symmetric , 
W - W*-bounded (i.e. there exists a a2 > 0 such that |(D<£, V>)| < a2||<£||w||V,||iy, 
for 0 ,^ e W) and VP-coercive operator, (i.e. there exists d > 0 such that (D<f>y<f>) > 
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cf||^||^ for <j> G W), M : X —• X is the mass operator which is a symmetric, X-
bounded and X-coercive operator, B : M —• V* is the input operator, C : W —*• M 
is the output operator, u(-) G R is the input signal to the system, and t/(-) G M is 
the measured output signal. 

3. MODELING OF FAILURE 

The above system given by (2.2) is termed as the nominal or "healthy" plant. It 
is assumed that only the input u and output y signals can be used to monitor the 
above plant for possible failures. The unanticipated actuator failure (i.e. failure in 
the input term) takes the form of 

Mx(t) + Dx(t) + Kx(t) = Bu(t) + 0(t - T) Bf(y) u(t) (3.1) 

where f3(t — T) is the time profile [14] of the actuator failure and is given by 

м \ / ° if r < 0 
0 

with A > 0 an unknown constant whose upper bound is assumed to be known, 
/ : 2R —• M is a smooth vector field and T > 0 is the time at which failure occurs 
and is desired to be detected. If A < oo we have incipient failures and if A = oo (i.e. 
(3(T) = H(T), H is the Heaviside function) we have abrupt failures. 

We will now make the assumption that for the class of systems under study, we 
have admissible plants. 

A s s u m p t i o n 3.1. (Admissible plant) We assume that the (perturbed) system 

Mx(t) + Dx(t) + Kx(t) = Bu(t) + p Bf(y) u 

y = Cx(t) 

for t > T, is well posed in the sense that a weak solution x G L2(Q,oo;V) with 
x G L2(0,oo;.X), x G L2(0,oo\V*) exists that satisfies (3.1) (see [2, 19]) and that 
h a s y G£°°(0,oo;_R). 

The well posedness of the plant before and after the actuator failure is given in 
detail in the companion paper [1], where in addition to the justification of Assump­
tion 3.1, the well posedness of the adaptive estimator (presented in the next section) 
along with a detailed treatment of the finite dimensional approximation is presented. 

4. MODEL ESTIMATOR AND CONVERGENCE 

We first propose the following state estimator (adaptive detection/diagnostic ob­
server) 

M$(t) + DZ(t) + Kx(t) = Bu(t) + Bf(y\ 6(t)) u 

y(t) = CS(t) (4.1) 

x(0) = x(0), x(0) = x(0) 
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where x(t) is the estimated plant state, y(t) is the estimator output and f(y\0) : 
Rx]Rm—>]R, is the ^-parameterized estimate (on-line approximator) of the failure 
term/3(t-T)f(y). 

The objective is to define adaptation laws (i.e. differential equations) that gener-
ate on-line the unknown parameter estimates 0(t), while at the same time guarantee 
that all the signals are bounded. To this end we use Lyapunov redesign method 
[10, 12], which essentially forces the derivative of an energy-type functional to be 
nonpositive. 

As a starting point we make the assumption that the failure term f(y) can be 
expressed as 

m 

f(y) = ZT(y) 0*=J2 Z*V)0* = fa r ) (4-2) 
1 = 1 

where Zi(y) are known bounded functions of the output y and 0* are some unknown 
(optimal) parameters, i. e. we parameterize the unknown failure term in terms of 
the on-line approximator. 

When we denote by e(t) := x(t) — x(t) the state error and by e(t) := y(t) - y(t) 
the output error, we arrive at the following equations by combining (3.1),(4.1) and 
(4.2) 

Me(t) + De(t) + Ke(t) = B [/3(t - T) f(y) - f(y; 9)] u(t) 

= BZT(y)[^(t-T)9* -9(t)]u(t) 

= -BZT(y) [(1 - P(t - T))0* + (0(t) - 0*)] u(t) 

= -BZT(y)[<!>(t)e* + 0(t)]u(t) 

(4.3) 
where $(<) := 1 - /3(t - T) and 9(t) := 9(t) - 9*. Note that in this case we have 

$(<) = -A$(«), t>T, $(T) = 1. 

In order to study the stability properties of the learning scheme and derive an 
adaptation law for 9(t), we use the following Lyapunov-like functional that was also 
used in [5] 

V(t) = ±(Me(t),e(t)) + \(Ke(t),e(t)) + ±\e(t)\mm + f l*(<)l!*> (4-4) 

where the positive constant fi will be defined below. Using (4.3), the time derivative 
of (4.4) is 

V= -(De,e) - (e, BZT(y) 9*$u) - (e, BZT(y) 9u) + - (9,9)jRm - nM*\m 

<-d\\e\\lr+\\e\\wm^BZT(y)9*u\-(B*e,ZT(y)0u)mm + -(tiJ)mm 

= -d||e||fv + \\e\\w mm \BZT(y) 9*u\ - e(t)ZT(y) 0u + l-f~9 - »W^n, 
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where we used the fact that B*e(t) = Ce(t) = e(t) (i.e. assumed a collocated 
system). When the adaptation law is chosen as 

'e(t) = 0(t) = lZ(y)e(t)u(t) (4.5) 

we get 

V < -d\\e\\w + \\e\\wmc2 -M*\2m <-(d- -^c 2) \\e\\w - (A^ - | c 2 ) |«g. 

where we used 

c2=sup(\BZT(y)0*\). 

We choose a such that d — j^c2 > 0 and then choose the parameter n such that 
Xfi — ^c2 > 0. Then we end up with 

V<-K(\\e\\l,+ &&)< 0. 

We consider first the case of t < T, i.e. prior to the failure occurrence. Then we 
have 

V(t) + кf\\è( 
J0 

T)fwdT<V(0). 

Using the fact that e(0) = 0 = e(t) and by choosing 0(0) be such that f(y\ 0(0)) = 0, 
we have that V(t) = 0 for all t < T. After the failure we have that f3(t-T) f(y) ^ 0. 
Thus, integrating the above from T to some t > T we have that 

V(t) + Kj\\ě(T)\\ÍydT<V(T). 

This implies that by monitoring either the state output e(t) or the output of the on-
line approximator f(y(t);0(t)), we can detect the failure; when either of the above 
signals becomes nonzero, we have failure detection. Using previous results, it can be 
shown that the state error (||e||py and |e|) will go to zero asymptotically, see [7] for 
a proof of asymptotic convergence of second order adaptive distributed parameter 
systems. Furthermore, we have that 0 is bounded, and if we have persistence of 
excitation, we can show 0 —• 0*, see [3] for a proof of parameter convergence in the 
context of adaptive estimation. 

The diagnosis of the failure comes after the failure occurrence, meaning that we 
try to identify the term ZT(y)0*. In the event that the actuator failure term f(y) 
cannot be expressed by f(y) = ZT(y)0* as in (4.2), we then use the following 

Me(t) + De(t) + Ke(t) = Bv(t)u(t) + B [/?/(*/; 0*) - /(y;0(t))] u(t)y (4.6) 

where u(t) is the approximation error given by 

i>(t) = P(t-T)\f(y)-f(y,0*)\. (4.7) 
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The "optimal" parameter 0* is now chosen as the value of 0 that minimizes the 
L2-norm distance between f(y) and f(y\8). Using once again Lyapunov redesign 
methods [10], the adaptation law for the adjustment of parameter estimates is now 
given by 

6(t) = V {Z(y) e(t)u(t)} 6(0) = 0, (4.8) 

where Z 6 Mm is Z(y) = "%i ' and V is the projection operator that constrains 

the parameter 0 to some selected compact, convex region of the parameter space, 
[10, 14]. As was mentioned in [14] for the finite dimensional treatment, in the case 
of the compact region being a hypersphere, the adaptive law can then be expressed 
as 

i{t) = Z(y)e(t)u(t) - X
J^Jt)Z(y)e(t)u(t), (4.9) 

where the indicator function x* ls given by 

{ 0 if (|0| < L) or (|0| = L and P Zeu < 0) 

1 if (|£| = L and PZeu > 0) 

and L is an upper bound for |0*|. Using the smoothness assumption on / , it then 
follows from (4.6) that 

Me(t) + De(t) + Ke(t) = -$Bu(t)f(y;0*)- BZT(y)0(t)u(t) 
(4.10) 

-BA(y; 0) u(t) + Bv(t) u(t) 

where A(y; 0) is given by 

A(y;0) = f(y;e*)-f(y;9)-^l. 

If we let 
u(t) = -A(y(t);9(t)) + v(t), 

we have 

M'e(t) + De(t) + Ke(t) = -BZT(y) 0u(t) - $(t) Bu(t)f(y; 0*) + Buj(t) u(t). (4.11) 

When the derivative of V(t) in (4.4) is evaluated along the trajectories of (4.9), (4.11), 
it yields 

V(t) = -2(e , De) - 2(e, $ B « / ) + 2(e, Buu) - 2X*0T ---- ZTeu - 2A|$|2, (4.12) 
I T 

where we used the fact that 
$ = - A $ . 
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Using established results in the theory of robust adaptive control [10] and in au­
tomated fault detection [14], we have that the projection term can only make the 
derivative of V(t) more negative, i.e. the additional term in the right hand side 
of (4.9) pre-multiplied by 9T is negative semidefinite. Using the coercivity of the 
operator D, the smoothness of the input u(t) and output y(t), and the smoothness 
assumption on / , we have that 

for some ci, c2, c3 > 0. When ci||e(*)||(^ +c2|<l>0O|2 > c3|u;(tf)|2 we have that V < 0, 
which yields the uniform boundedness of V and 0. Thus by integrating over a finite 
interval [T, T + r] we have that 

V(T+r) + Cl I +T||e(*)|&dt + c2 / +T|*(*)|2d*<lTT) + C3 / ^ Ht)\2dt. 
JT JT JT 

The above yields the uniform boundedness of 8 and V(t) for t > T. It is easily 
observed that V(t) = 0 for t < T. Using the observability condition, we have that 
both /(y, 0(t)) and e(t) are zero prior to the failure time T and become nonzero for 
t >T. Hence, by monitoring either the output error e(t) or the on-line approximator 
output /(y, #(tf)), we can detect the time of failure T. Furthermore, we have that 
the extended L2 norm of the state estimation velocity error (and by observability, 
the output error) over any finite time interval is at most of the same order as the 
extended L2 norm of u(t). 

5. FAILURE ACCOMMODATION 

The standard control law for the nominal plant (2.2) without failure terms can be 
chosen as u(t) = u0(t) with 

u0(t) = -Gi£ ( t ) - G2x(t) + Gzr(t), (5.1) 

where the gains G\, G2 are, for example, chosen as the LQR feedback gains obtained 
by solving an Algebraic Riccati equation for the nominal plant (2.2), and the signal 
r is a reference signal with G3 a reference gain, that is used if the control objective 
is model reference. 

In the presence of a failure, the nominal control law (5.1) needs to be modified 
to account for the additive failure term Bu(t) f(y). This takes the form 

i + /(</; 0) 

The closed loop state estimator (4.1) is now given by 

Mx + [D + BG2] x + [K + BG{] x = BG3r. 

A modification to the control law (5.2) must be made in order to ensure that 

1 + f(y>9) i1 0- Implicitly it was assumed that the fault term f(y) ^ — 1 (hence no 
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loss of controllability in (3.1)) and thus the output of the on-line approximator must 
not cancel out the control signal in (4.1). In practice, the control reconfiguration 
must ensure that |1 + f(y\ 6)\ > c with 0 < c <C 1 in order to avoid large inputs in 
the system. This leads to the reconfigured controller 

r (i + f&e))-1 if \i + f(y;e)\>c 
u(t) = u0{t) I 

( 1/c if |l + / M ) | < c . 

Alternatively, one can switch the adaptation off for 0 when 1 + f(y\ 0) is "near" 0 or 
impose additional constraints on the adaptation rule (4.7) such that 1 + f(y\ 9) ^ 0. 

6. NUMERICAL RESULTS 

It is assumed that the beam satisfies the Euler-Bernoulli displacement hypothesis 
with Kelvin-Voigt damping (damping proportional to strain rate) and air damping 
(damping proportional to velocity). Two piezoceramic patches are bonded to the 
beam at the location £/ < f < £r and are excited out-phase, which results in pure 
bending of the beam [2]. The moment due to patches is localized to the region 
covered by the patches. When the structure is subject to moments generated by the 
patches, it leads to the equation 

_ d 2 x , d2M d2Mp n t . IR 1N 

pMw + -de=—deL> 0<*<l> (fU) 

where x = x(t,£) is the transverse displacement, M is the internal moment given 
by M = i?J(£)§7T + CDI(Q dc*Qt,

 a n d Mp is the external moment due to the 
piezoceramic patches. This piezoceramic moment is given by Mp = — KAXP(0 W (0> 

where u(t) is the voltage applied to the patches, KA is a constant that depends 
on the piezoceramic material properties [2] and Xp(0 -s the characteristic function, 
which is equal to 1 for £/ < £ < £r and zero elsewhere. The above (spatially varying) 
parameters /?(£), EI(£), and cjr>J(£) above are the mass density, stiffness coefficient 
and damping coefficient, respectively. Using the above equations for the moments, 
we arrive at the following partial differential equation (PDE) for the transverse 
displacement of the beam 

px" + [EIx" + cD Ix"]" = [KAXp(0 u]" , (6.2) 

for £ G fi = [0,1], with collocated output 

./o 

where Ks is a sensor constant which is a piezoceramic material and geometry re­
lated quantity, [2]. Associated with the above beam equation are the appropriate 
boundary (cantilevered beam) and initial conditions given by x(t, 0) = x'(t, 0) = 0 = 
*"(*,/) = *'"(«,/), and x(0,O = *o(0i W'O = * i ( 0 -
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When the beam equation (6.1) with collocated output is written as a second order 
evolution equation in the larger space V* = H~2(0,/), it produces equation (1.1) 
with velocity output given by (1.2) see, for example, [2, 4] for details on how to 
write (6.1) in an abstract setting and the corresponding expressions of the operators 
M, D, K B and C in weak form. It is easily seen that the output operator C is a 
constant multiple of the adjoint of the input operator B, given by C = apB* with 
a p - icA-

We now summarize the numerical approximation scheme. Assume that the beam 
displacement is approximated by 

n + l 

xn(t,0 = ^2<*i(i)<f>?(0, i = l , 2 , . . . , n + l 
i = i 

where <f>n(£), i = 1 , . . . , n + 1 are modified cubic splines on [0, /]. Then using results 
in [2, 4] the beam equation can be written in a matrix form as 

Mna(t) + Dna(t) + Kna(t) = Bn [1 + (3f(y)] u(t) 

y(t) = Cna(t) 

where the above matrices are given explicitly in [2, 4]. In this simulation study, 
Radial basis function networks are used as the on-line approximator model given by 

f(y,e) = JTei(t)exP ( - - ^ r ^ ) = zT(y)o(t). 

The finite dimensional adaptive observer along with the on-line approximator are 
given by 

MnS(t) + Dna(t) + Kna(t) = Bn [l + f(t, 0)1 u(t) 

9(t) = jZ(t)e(t) uT(t), 0(0) = 0, 

where y is the adaptive gain, [10]. 
For the specific set of simulations, we assumed that the beam length is / = 

0.4573m, with the patches placed at x\ = 0.15m and xr = 0.25m. The beam 
stiffness coefficient is Eh = 0.491 Nm2 and the beam damping coefficient is C£>h ~ 
0.48675 x 10"3sNm2 . In the damping component, we assumed air damping with 
damping parameter 9.75 x 10~3sN/m2 . The corresponding values for the patch 
are EIp = 0.793Nm2, CDIP = 1.255 x 10~3sNm2 with patch linear mass density 
pp = 0.433kg/m and thickness hp = 0.000254m. The beam had a mass density pb = 
0.093 kg/m, thickness hb = 0.0016m, and width b = 0.0203 m. The piezoceramic 
constant KA = 1.746 x 10~2 Nm/V with the one used for sensing Ks = 1 x l O " 1 / ^ . 

The failure term is given by 

p(t - 0.01) f(y) = 10 ( l - e - 5 ' 5 ^ 0 - 0 1 ) ) sin(y) 



Detection and Accommodation of Second Order Distributed Parameter Systems . . . 677 

which models an incipient fault commencing at T = 0.01 seconds. The adaptive gain 
is 7 = 3. The feedback gains Gi, G2 were found by solving the Riccati equation 

UA + ATIl - ILBtfll + Q = 0 

for the nominal system (2.2) written as a first order system with x = Ax + Bu 
and Q given by Q = diag(500A", 104M). Finally, the reference term is G$r(i) = 
10sin(0.1557rt). 

The evolution of the on-line approximator output f(y\ 0) (dashed) is presented in 
Figure 6.1. In the same figure we plot the actual failure term f3(t — 0.01) f(y) (solid). 
It is observed that the on-line approximator (OLA) is able not only to detect but to 
diagnose the failure as well. 

0.25 
Failure term and its on-fine approximator 

0.08 0.1 0.12 
Time (sec) 

Fig. 6.1. Evolution of failure term P(t - 0.01) f(y) (solid) and OLA f(y\B) (dashed). 

When the difference between the output of the healthy plant with full state feed­
back (j/jdeai) and that of the plant output with no-accommodated failure (j/no accom) 
is plotted against time in Figure 6.2a, we notice that it has a value of zero prior to 
t = 0.01 seconds and then attains a nonzero value. The difference between the out­
put of the healthy plant with having state feedback (yideai) and the output of the 
plant with accommodated failure and output feedback (ywith accom) ls presented in 
Figure 6.2b and is observed that it stays close to zero. Thus, the performance of 
the system with accommodated failure is near the performance of the system under 
ideal conditions and full state feedback. As a result we can conclude that both the 
on-line approximator output / and the output error e(t) can be used for failure de­
tection and furthermore the OLA output can be used for failure diagnosis as well. 
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Furthermore, the benefit of accommodating the actuator failure is evident on the 
control performance. 

Difference of y(.deal)-y(no accom) 

0.04 

0.02 

-0.02 

-0.04 

Difference of y(ideal)-y(with accom) 

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 
Time (sec) 

Fig. 6.2. Evolution of (a) yideal - yno accom and (b) y i d e a l - ywith a c c o m . 

7. CONCLUSION 

In this note an on-line approximation scheme was proposed for the detection, diagno­
sis and accommodation of actuator failures in a plant whose dynamics were governed 
by a second order partial differential equation. The plant describes the transverse vi­
bration of a flexible cantilevered beam actuated with a pair of piezoceramic patches 
that are also used as sensors. The failure was modeled as a time varying additive 
perturbation of the actuator signal with a function of the output signal as the fail­
ure gain. The proposed scheme, through both theoretical and numerical results, 
was shown to actually detect, diagnose and accommodate the actuator failure with 
incipient time profiles. 

(Received April 8, 1998.) 
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