
Kybernetika

Christoforos N. Hadjicostis; George C. Verghese
Structured redundancy for fault tolerance in state-space models and Petri nets

Kybernetika, Vol. 35 (1999), No. 1, [39]--55

Persistent URL: http://dml.cz/dmlcz/135266

Terms of use:
© Institute of Information Theory and Automation AS CR, 1999

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz

http://dml.cz/dmlcz/135266
http://project.dml.cz

K Y B E R N E T I K A — V O L U M E 35 (1 9 9 9) , N U M B E R 1, P A G E S 3 9 - 5 5

STRUCTURED REDUNDANCY
FOR FAULT TOLERANCE IN
STATE-SPACE MODELS AND PETRI NETS1

CHRISTOFOROS N. H A D J I C O S T I S AND G E O R G E C . V E R G H E S E

The design and implementation of systems in state form has traditionally focused on
minimal representations which require the least number of state variables. However, "struc
tured redundancy" - redundancy that has been intentionally introduced in some systematic
way - can be extremely important when fault tolerance is desired. The redundancy can be
used to detect and correct errors or to guarantee desirable performance despite hardware or
computational failures. Modular redundancy, the traditional approach to fault tolerance,
is prohibitively expensive because of the overhead in replicating the hardware. This pa
per discusses alternative methods for systematically introducing redundancy in state-space
systems. Our approach consists of mapping the state space of the original system into a
redundant space of higher dimension while preserving the properties of the original system
in some encoded form within this larger space. We illustrate our approach by focusing
primarily on linear time-invariant (LTI) systems in state form. We provide a complete
characterization of the class of appropriate redundant systems and demonstrate through
several examples ways in which our framework can be used for achieving fault tolerance.
We also discuss appropriate error models and outline the extension of our approach to Petri
nets.

1. INTRODUCTION

In this paper we explore a design methodology for fault-tolerant systems in s tate
form. Our approach is based on mapping the s tate of the original system into a
larger, redundant space, while at the same time preserving the properties and in
formation contained in the original system - perhaps in some encoded form . The
redundancy we add into the system can be used to achieve error correction or ro
bust performance despite hardware failures. Even though we focus on linear time-
invariant (LTI) state-space systems and Petri nets, our approach is general and can
be used in a variety of settings.

1Th is work has been supported in part by the Department of the Navy, Office of the Chief of
Naval Research, contract number N00014-93-1-0686 as part of the Advanced Research Projects
Agency's RASSP program, and also by fellowships from the National Semiconductor Corporation
and the Grass Instrument Company.

40 CN . HADJICOSTIS AND G.C. VERGHESE

Traditional system design has aimed at the realization of minimal systems, i.e.,
systems that require minimal resources (these resources could be hardware, com
putation time, power consumption, system dimension, etc.). There has, however,
also been a long-standing interest in redundant systems that are fault-tolerant. The
traditional, but rather inefficient, way of designing fault-tolerant systems is to use
IV-modular hardware redundancy, [35]: by replicating the original system IV times,
we perform the desired function multiple times in parallel. The outputs of all repli
cas are compared, and the final result is chosen based on what the majority of them
has agreed upon. Also, those in the minority are declared faulty.

Research in communications has extensively explored alternative, more efficient
ways of utilizing redundancy for error detection and correction. Examples of such
efficient schemes are the error correcting codes that are used when one transmits
digital data through an imperfect channel, [36]. In more complex systems that
involve not only simple transmission of the data but also some form of processing on
the data (e.g., computational or signal processing systems), the application of such
error correcting ideas is more challenging. Work in this direction includes arithmetic
codes (see, for example, [29]) and algorithm-based fault tolerance (ABFT) techniques
(introduced by Abraham, [18, 21, 26], and subsequently developed by others). These
techniques have been quite successful, but each time they have to be cleverly tailored
to the specific application under consideration.

More broadly applicable and systematic approaches for introducing redundancy
in computational systems were studied recently by Beckmann, [3, 4], and later by
us, [15, 16]. Beckmann's work focused on computations that can be modeled as
abelian group operations, and used group homomorphisms both to introduce redun
dancy and to analyze its properties. Our work extended Beckmann's framework and
analyzed operations that can be modeled as occurring in semigroups or semirings.
Even though this is a very broad setting, we have been able to generalize most of
Beckmann's results and to develop an algebraic framework for analyzing a large class
of fault-tolerant computational systems.

This paper describes a mathematical framework in the spirit of [3, 16] for the de
sign of fault-tolerant LTI state-space systems and Petri nets. Our approach consists
of mapping the original state vector into a higher dimensional space in a way that
preserves the evolution and properties of the original system. This results in an em
bedding of the original system into a larger, redundant system. In the case of LTI
state-space systems we are able to completely characterize all possible redundant
systems and to illustrate that our method essentially amounts to augmenting the
original system with redundant modes that are unreachable but observable under
fault-free conditions. Because these additional modes are not excited initially, they
manifest themselves only when a fault takes place. Our characterization turns out
to be a special case of results on LTI system "inclusion" treated in [19], although
the issue of creating redundancy for fault tolerance does not seem to have been a
motivation for [19]. We describe these results and present examples related to fault
tolerance in Section 2. In Section 3 we apply this approach to Petri nets.

Structured Redundancy for Fault Tolerance in State-Space Models and Petri Nets 4 1

2. REDUNDANT LTI SYSTEMS

Linear time-invariant systems in state form constitute a well studied class of dynamic
systems with a variety of applications, such as filter design, system simulation and
model-based control, [22, 23, 31]. Although our discussion is focused on the discrete-
time case, most of our results and examples can be translated to the continuous-time
case in a straightforward manner.

An LTI system is represented in state form by the following pair of equations:

x[Jb + l] = Ax[k] + Bu[k], (1)

y[k] = Cx[k] + Du[k], (2)

where k is the discrete-time index, x[k] is the n-dimensional state vector, u[k] is the
m-dimensional input vector, and y[k] is the p-dimensional output vector. Eq. (1)
is referred to as the state evolution equation and eq. (2) is the output equation;
Ay B, C, and D are constant matrices of appropriate dimensions. We assume that
the entries of all vectors and matrices are real numbers.

One can obtain equivalent state-space models (with n-dimensional state vector
x'[k]) through similarity transformation, [22, 23]:

x'[k + 1] = (T~lAT)x'[k] + (T~xB)u[k] = A'x'[k] + B'u[k] ,

y[k] = (CT)x'[k] + Du[k] = C'x'[k] + D'u[k] ,

where T is an invertible nxn matrix such that x[k] = Tx'[k]. The initial conditions
for the transformed system can be obtained as x'[0] = T_1x[0]. Systems related in
such a way are known as similar systems.

Given an input-output specification of an LTI system, there exist many possible
ways of realizing the specification, that is, relating it to a particular state-space
representation as in eqs. (1) and (2) above. A realization that uses the minimum
possible number of state variables is called minimal. We are interested in system
atically adding redundancy to such minimal realizations in order to achieve error
detection and correction.

2.1 . Sys temat ic in t roduc t ion of r edundancy

In order to provide error detection and correction to an LTI state-space system S
of dimension n, we implement a redundant state-space system S of dimension n
(n = n + d, d > 0). Given the original input, S evolves so that its state vector
at each time step provides complete information about the corresponding state of
the original system S. The added redundancy can be used for error protection. We
develop this claim in more detail next. For the rest of this paper, we essentially
ignore the output equation (2) and focus on the state evolution equation (1).

Let the desired state evolution equation of the original system S be given by
eq. (1). We wish to implement a redundant system S with state evolution

Z[k+l]=At[k] + Bu[k] (3)

42 C N . HADJICOSTIS AND G.C VERGHESE

ensuring that, at every time step k) the state vector x[k] of S can be recovered from
£[k] through a constant n x 77 decoding matrix L, i.e.,

x[k] = L£[k] for all k .

(Note that, under the assumptions so far, the redundant system S can be regarded
as a cover for S. In the language of finite automata, an automaton S is a cover for
an automaton S if, given the same input, there exists a mapping of the state of S
at any given time to the corresponding state of 5, [13].)

In order to achieve fault-tolerance within this LTI setting, we impose a design
requirement on the states of the redundant system S: there should exist a constant
linear mapping from each state in S to a state in S. This is a natural constraint
for using the redundancy in S in some useful way. This linear mapping can be
represented by an 77 x n encoding matrix $ so that

£[Jb] = *x[k] for all k .

Under the above assumptions, L<J> = In (where In is the n x n identity matrix).
Note that this equation by itself does not uniquely fix L or 3>. Fault detection is
straightforward: since the redundant state vector must be in the column space of <$
under fault-free conditions, all we need to check is that at each time step k, £[k] lies
in the column space of $. Equivalently, we can check that £[k] is in the null space
of an appropriate parity check matrix 0 , so Q£[k] = 0 under fault-free conditions.
We illustrate ways of obtaining the matrix 0 later in this section.

Theorem 1. In the setting described above, a system S (of dimension 77 = n + d)

d > 0) is a redundant version of S if and only if it is similar to a standard redundant
system Sa whose state evolution equation is given by

м*+ч = A A12

0 A22 Ш +
B
0

«[*] (4)

Here, A and B are the matrices in eq. (1), A22 is a d x d matrix that describes
the added modes, and A\2 is an n x d matrix that describes the coupling between
the redundant and non-redundant modes. Associated with this standard redundant
system are the standard decoding, encoding, and parity check matrices:

La = [ln 0] , Ф„ =
0

, , = [0 h]

P r o o f . Let S be a redundant version of S. From L $ = 7n, we know that L
is full-row-rank and $ is full-column-rank. Furthermore, there exists an invertible

77 x 77 matrix T such that LT = [In 0] and T X<J> ІЛ - In
0

If we apply

the transformation £[k] = T£'[k] to system 5 , we obtain a similar system S' with

Structured Redundancy for Fault Tolerance in State-Space Models and Petri Nets 43

decoding mapping V = UT = [In 0] and encoding mapping $ ' = T *$ =

The state evolution of the redundant system S' is given by
0

«!'[* + 1] = (T-UT)Í'[A] + {T-xB)u[k] = A'(,'[k] + B'u[k] .

For all time steps Ar, and under fault-free conditions, £'[k] zz $fx[k]
x[k]

0

(5)

. Com-

bining the state evolution equations of the original and redundant systems (eqs. (1)
and (5) respectively), we see that

Ax[к] + Bu[к]
0

Л'u A')2

A2\ A22

x[к]
0

u[k].

By setting the input u[k] = 0 for all k} we conclude that A'n = A and A2i = 0.
With the input now allowed to be non-zero, we deduce that B[= B and B2 =
0. The system S' is therefore in the form of the standard system Sa in eq. (4)
with appropriate decoding and encoding matrices. The check matrix can be 0 ' =
[0 P], where P is any invertible d x d matrix; a trivial similarity transformation
will ensure that the parity check matrix takes the form [0 Id], while keeping
the system in the standard form Sa in eq. (4) - except with A\2 = A[2P and
A22 = P~~1Af22P- The decoding, encoding and check matrices are then as claimed
in the statement of the theorem.

The converse, namely that if S is similar to a standard Sa as in (4) then it is a
redundant version of (1), is easy to show. D

The above theorem establishes a complete characterization of all possible fault-
tolerant designs (subject to our restrictions) of a given LTI state-space model. The
additional modes introduced by the redundancy never get excited under fault-free
conditions because they are initialized to 0 and they are unreachable from the input.
Due to the existence of the coupling matrix A\2, the additional modes are not
necessarily unobservable through the decoding matrix. The above theorem (but
stated for the continuous-time case) essentially appears in [19], although the proof
is different and the motivation apparently very different.

2.2. Error model for LTI sys tems

A detailed discussion of error detection and correction requires a specific error model.
In this section we describe the sorts of hardware failures that might take place in
the implementation of our systems, and the way we reflect these faults into our
theoretical framework (i.e., we describe our error model). We study two kinds
of hardware faults: transient (soft) and permanent (hard) faults, [3]. A transient
fault at time step k occurs only at that particular time step, but disappears at the
following ones. Therefore, if the errors are corrected before the initiation of step
k + 1, the system will resume its normal mode of operation. A permanent fault,
on the other hand, causes errors at all remaining time steps. Clearly, a permanent
fault can be treated as a transient fault for all remaining time steps (assuming error

44 C N . HADJICOSTIS AND G.C. VERGHESE

correction at every time step), but in certain cases one can deal with it in more
efficient ways (e.g., reconfiguration).

We assume that we implement our LTI systems using delays (memory elements),
adders and gains (multipliers) that we interconnect in appropriate ways. These real
izations can be represented using delay-adder-gain diagrams, or signal flow graphs.
The same state-space description (matrices .4, B) C, and V for the redundant sys
tem) corresponds to a number of different delay-adder-gain diagrams; consequently,
it can have a number of different hardware realizations, [31]. This makes the connec
tion with hardware failures more complicated because in certain implementations a
single fault in a multiplier or an adder can corrupt more than a single entry in the
matrices A, B) C, and V (and more than one state variable). If we assume that
we implement our systems using delay-adder-gain diagrams in which the longest
delay-free path is of length one, then the multiplier gains are directly reflected as
the entries in the matrices of the state-space description, [31]. We can then model
faults in the multipliers (and in the adders) as corruptions in individual entries of
the matrices A) /?, C, and V. This is the assumption that we make when we analyze
the examples in the next section2.

The importance of the actual hardware implementation can also be seen from the
following example: if our redundant system is directly implemented in the standard
form (4), with the parity check matrix 0<- = [0 Id], then the redundancy is quite
useless; under the assumptions of the previous paragraph, the only faults that are
detected are ones that directly affect the redundant modes of the system at time step
k (because these additional modes are not influenced by the original modes or the
input). This is pointless, because our objective is to use the redundancy to protect
the original system, not to protect the redundancy itself. However, systems that are
similar to the standard one can be designed to provide efficient error protection.

2.3. Examples of fault-tolerant LTI systems

Triple Modular Redundancy: Triple modular redundancy (TMR) maintains
three separate copies of the original system. These copies (modules) use separate
hardware and operate identically under fault-free conditions. By comparing their
state vectors at a given time step, one is able to detect errors. In fact, errors in one
of the state vectors can easily be corrected using a nonlinear, but otherwise simple,
voting scheme: we select the state vector agreed upon by two or more systems. TMR
in the LTI state-space case corresponds to a system of the form

Ф + i] =
arҶt+l] " " A 0 0 " ' B
x2[k+l] = 0 A 0 Ф] + в
x3[k+l] 0 0 A в

u[k) , (6)

where the initial conditions are chosen so that the state vectors a;1 [A;], x2[k] and x3[k]
of the three subsystems evolve in the same way as in the original one (i.e., xl[0] =

2 A future step is to study more general descriptions, such as factored state variable descriptions,
[31]. It is also possible to accommodate for implementations that are based on more general delay-
adder-gain diagrams by looking at the technique in our adaptive decoding example in the next
section, or by employing the computation trees in [10].

Structured Redundancy for Fault Tolerance in State-Space Models and Petri Nets 45

rp

x2[0] = x3[0] = x[0]). The encoding matrix $ is given by [In In In] , whereas
the decoding mapping L can be [In 0 0] , [0 In 0], [0 0 In], or others
(e.g., convex combinations). In this example we assume that L = [In 0 0]. The

" -In In 0 "
. -In 0 In

the upper (respectively, lower) half of the 2n-dimensional vector 0£[&], we know that
a fault took place in subsystem 2 (respectively, 3). When non-zero entries appear in
both the top and bottom half-vectors, then a fault exists in subsystem 1.

The TMR system is easily shown to be similar to

parity check matrix 0 can be When a non-zero entry appears on

£,[* + -] =
A 0 0 B
0 A 0 Ш + 0
0 0 A 0

«[*],

which is of the form described in the theorem of the previous section. The initial
conditions are now £<-[()] = [x[0] 0 0] where x[0] is the initial condition as
sociated with the original system. Note that all modes of the original system are

A 0 1
) and there is no coupling (A\2 = 0). The check replicated twice (A22 =

matrix for the standard system is Q0 = as expected.

freedom in choosing the de-

0 A j

" 0 /„ 0 "
0 0 In

Once the encoding matrix $ is fixed, the additiona
coding matrix L can be used to our advantage. For example, when our checking
procedure detects permanent faults in the first subsystem, we can change our de
coding matrix from L = [In 0 0] to L = [0 In 0] . This will ensure that
the overall output is still correct. In fact, this idea is generalized quite a bit in our
adaptive decoding analysis later in this section.

Linear Coding: Using our framework, we can develop schemes that provide detec
tion and correction of transient faults. The following is a simple motivating example
to illustrate the idea. Let the original system be

x[k + 1] =

2 0 0 0 " 3
0
0

.5
0

0
.1

0
0 x[Jb] +

- 1
7

0 0 0 .6 0

u[k].

To protect this system against single transient errors in the state variables or the ma
trix entries, we decide to use three additional modes; more specifically, the standard
redundant system looks like

«[*]

" .2 0 0 0 0 0 0" 3
0 .5 0 0 0 0 0 - 1
0 0 .1 0 0 0 0 7

&[* + -] = 0 0 0 .6 0 0 0 Ш + 0
0 0 0 0 .2 0 0 0
0 0 0 0 0 .5 0 0
0 0 0 0 0 0 .3 0

46 C N . HADJICOSTIS AND G.C. VERGHESE

For error detection, we need to check whether Gaf a[&] is 0 (where Qa = [0 Is]).
However, as we argued earlier, redundant systems in standard form cannot be used
for detecting or correcting errors in the original modes: given a faulty state vector
f£[fc], the fact that Oa£l[k] ^- 0 will simply mean that an error took place in the
calculation of the redundant modes. What we would really like is to protect against
errors that appear in the original modes. One way to achieve this is to employ
a system similar to the standard redundant system, but with the following parity
check matrix:

0 =
1 1 1 0 1 0 0
1 1 0 1 0 1 0
1 0 1 1 0 0 1

(7)

This choice of© is motivated by the structure of Hamming codes in communications,
see [36]. With a suitable similarity transformation T (so that 0 T = ©<-•), the
corresponding redundant system is

[+!] =

2 0 0 0 0 0 0 " 3
0 .5 0 0 0 0 0 - 1
0 0 .1 0 0 0 0 7
0 0 0 .6 0 0 0 *[*]+ 0
0 - . 3 .1 0 .2 0 0 - 9
3 0 0 - . 1 0 .5 0 - 2
1 0 .2 - . 3 0 0 .3 - 1 0

u[к] . (8)

This system can detect and locate transient faults that cause the value of a single
state variable to be incorrect at a particular time step. To do this, we check for
non-zero entries in the vector 0[k] = ©£[£]. If, for example, 0\[k] ^ 0, 02[k] ^ 0,
and 0s[k] ^ 0, then the value of £i[k] is corrupted; if 0\[k] ^ 0, 02[k] -̂ 0, and
0$[k] = 0, then a fault has corrupted £2^]; and so forth. Once the erroneous variable
is located, we can correct it using any of the parity equations in which it appears.
For example, if £2[k] is corrupted, we can calculate the correct value by setting
£2[k] = — £i[k] — £3[fc] — £s[k] (i.e., using the first parity equation). If the faults are
transient, the operation of the system will resume normally in the following steps.

A simple checksum approach appeared in [18] under the name "state variable
filter". A real coding scheme with the ability to detect and correct single errors
was developed in [10]. Both schemes are special cases of our framework. In [10] (as
well as in [9] where one of the authors of [10] analyzes the continuous-time case),
they do not consider different similarity transformations and they do not permit
the additional modes to be non-zero. Clearly, our framework is more general: for
example, by taking advantage of additional non-zero modes one can devise stable
fault-tolerant schemes for continuous-time systems3 or construct schemes in which
checking can be done non-concurrently (e.g., periodically).

3 In [9], they used "negative feedback" or "lossy integrators" to deal with the stability problem.
Our use of non-zero redundant modes avoids this issue completely.

Structured Redundancy for Fault Tolerance in State-Space Models and Petri Nets 47

Adapt ive Decoding: In the TMR example of eq. (6), a permanent fault in any

subsystem can be detected using the check matrix 0 =- /* n r • ^ ^ e

|_ ~~-*n U J-n

corrupted state variable(s) can be corrected by simple majority voting or by using
any of the relevant parity equations. However, when the fault is permanent, we
would like to be able to avoid the overhead of error correction at each time step.
In the TMR case, this can be done in a straightforward way: for example, once
a fault permanently corrupts the first subsystem (by corrupting entries in its A
or B matrices), we can switch our decoding matrix from L = [In 0 0] to
L = [0 In 0] (or L = [0 0 In] or others) and ignore the parity checks
that involve variables in the first subsystem. This ensures that the output of the
redundant system is still correct. We can continue to perform error detection, but
have lost the ability to do error correction. We now formalize and generalize this
idea.

Consider again the redundant system S whose state evolution equation is given
by eq. (3). Under fault-free conditions, x[k] — L£[k] and £[k] = $x[k] for all k.
Suppose that we implement this system using a delay-adder-gain interconnection
with delay-free paths of unit length. A permanent fault in a multiplier of the system
manifests itself as a corrupted entry in matrices A or B: the ith state variable £i[k]
(and other £,[•] at later steps) will be corrupted if some of the entries4 A(i, h) and/or
B(i,h) (h -n {1, 2,..., n}, h in {1, 2,..., m}) are corrupted right after time step k—l.
We assume that we can locate the faulty state variable through the use of some
linear error correcting scheme as in the previous example. We do not have control
over the entries in A and B, but we are allowed to adjust the decoding matrix L to
a new matrix La. We would like to know which entry corruptions can be tolerated,
and how to choose La.

The first step is to find out which state variables will be corrupted eventually.
If at time step ko we detect a corruption at the ith state variable, then we know
that at time step ko + 1, state variable ft[&o] will corrupt the state variables that
depend on it (let M t l be the set of indices of these state variables - including i); at
time step ko + 2, the state variables with indices in set M t l will corrupt the state
variables that depend on them; let their indices be in set Mt2 (which includes M t l) ;
and so on. Eventually, the final set of indices for all corrupted state variables is
given by the set M t / (note that M t / = Min = M t l U M t2 U M t3... U Mtfj). The sets
of indices M t / for all i in {1, 2,..., 77} can be pre-calculated in an efficient manner by
computing R(A), the reachability matrix of A) as outlined in [27].

Once we have detected a fault at the ith state variable, our new decoding ma
trix La (if it exists) should not make use of state variables with indices in M t / .
Equivalently, we ask the question: does there exist a decoding matrix La such that
La$a = In? Here, $>a is the same as the original encoding matrix <I> except that
$a(./, 0 is set to zero for all / in {1,2,..., n} and j in M t / . If <£a is full-column-rank,
such an La exists (any La that satisfies La$a = In is suitable). In this case our
redundant system can withstand permanent corruptions of entries in the ith row(s)
of A and/or B.

4 We use A(t, /) to denote the element in the ith row and the /th column of matrix A.

48 CN . HADJICOSTIS AND G.C. VERGHESE

TMR is clearly a special case of the above formulation: corruption of a state
variable of the first subsystem is guaranteed to remain within the first subsystem.
Therefore Mj C {l ,2 , . . . ,n} and (conservatively) $ a = [0 In In] . One possi
ble La is (among others) [0 In 0] .

Less obvious is the following case (based on the earlier linear coding example).
Consider the system with state evolution equation (8). Its decoding matrix is given
by L = [J4 0]• If w4(2, 2) (whose value is .5) becomes corrupted, then the set
of indices of corrupted state variables is Mis = {2,5}. Below, we show the origi
nal encoding matrix $, together with the encoding matrix <£a (resulting after the
corruption of entry ..4(2, 2)) and a suitable La:

Ф =

1 0 1 3 0 1 0 0 0
0 1 1 3 0 0 0 0 0
0 0 1 0 0 0 1 0
0 0 1 3 1 J Фa = 0 0 0 1
1 - 1 - 1 0 0 0 0 0
1 - 1 1 3 -1 - 1 - 1 0 -1
1 0 - 1 - 1 _ __1 ° -1 -1

г
1 c 1 0 0 0 0 0 "

La =
- 1 c

0 c
0 c

0
1
0

- 1 0
0 0
1 0

- 1 0
0 0
0 0

Using the above L a , the redundant system can continue to function properly
(that is, provide the correct state vector x[k] for all future time steps) despite the
corrupted entry ,4(2,2). We can still use the parity check matrix of eq. (7) for fault
detection, except that the checks involving the second and/or fifth state variables
(i.e., the first and second checks in 0f[&]) are invalid.

3. REDUNDANT PETRI NETS

Petri nets are a graphical and mathematical model for a variety of information and
processing systems, including concurrent, asynchronous, distributed, nondeterminis-
tic, and/or stochastic systems. They are particularly relevant to the study of discrete
event systems (DES); theory, examples and applications can be found in [2, 7, 25, 30].
A Petri net is represented by a directed, bipartite graph with two kinds of nodes:
places (denoted by {Pi,P2, -^Pn} and drawn as circles) and transitions (denoted by
{̂ 1,̂ 2, •-,̂ m} and drawn as rectangles). Weighted directed arcs connect transitions
to places and vice-versa (but there are no connections from a place to a place or
from a transition to a transition). The arc weights have to be non-negative integers
(we use 6~. to denote the weight of the arc from place pt- to transition tj and 6^ to
denote the weight of the arc from transition tj to place p\). The graph in Figure 1
is an example of a Petri net with three places and three transitions. By convention,
arcs with zero weight are not drawn.

Structured Redundancy for Fault Tolerance in State—Space Models and Petri Nets 49

Places function as token holders. Tokens are drawn as black dots and can be
regarded as representing resources that are available at different parts of a system.
The number of tokens in a place cannot be negative. At any given time step A:,
the marking (state) of the Petri net is given by the number of tokens at its places;
for the Petri net in the figure, the marking shown (say, at time step 0) is x[0] =

[2

B =
- 2 1 1

1 - 1 0
1 0 - 1

Fig. 1. A pure Petri net with 3 places and 3 transitions.

Transitions model events and cause the rearrangement or generation or disap
pearance of tokens. Transition tj is enabled (i.e., it is allowed to take place) only
if each of its input places pi has at least 6̂ - tokens. When transition tj takes place
(we say that transition tj fires), it removes 6~- tokens from each input place p», and
adds bt tokens to each output place pi. In our example in Figure 1, transitions t\
and £2 are enabled, but transition t$ is not. If transition t\ fires, then it will remove
2 tokens from its input place p\, and add 1 token each to its output places p^ and
Pz\ the next state of the Petri net will be x[l] = [0 2 1] .

More generally, we can define B~ = [6t̂] (respectively, 5 + = [6^]) to be the
n x m matrix with bjj (respectively, bfj) at its iih row, jth column position. If we
let B = 5 + — B~, the state evolution of a Petri net is represented by the following
equation:

a:[ib + l] = x[k] + (B+ -B~)u[k] = x[k] + Bu[k] (9)

(In Figure 1, we show the corresponding B for that Petri net.) The input vector
u[k] in the above description is restricted to have exactly one non-zero entry that
is 1. When Uj[k] = 1, transition tj fires (j in {1,2,..., m}). Of course, a transition
cannot fire unless it is enabled.

A pure Petri net is one in which no place serves as both an input and an output
for the same transition (i.e., only one of bf- and 6^ can be non-zero). The Petri
net in Figure 1 is an example of a pure Petri net. Note that for a pure Petri net a

50 C.N. HADJICOSTIS AND G.C. VERGHESE

transition is enabled as long as the resulting state vector x[.fc + l] (as given by eq. (9))
has non-negative integer entries. For the rest of this paper, we focus on pure Petri
nets with initial conditions that make them Ll-iive, that is, given the initial state
x[0], each transition tj in S can fire at least once under a particular firing sequence,
[25]. The Petri net in Figure 1 with the indicated initial state is Ll-live.

3.1. Systematic introduction of redundancy

One way of achieving fault tolerance in a pure Petri net is by monitoring the given
set of transitions through additional places and tokens. We consider a fault-tolerant
scheme in which a Petri net S (with n places) is embedded into a redundant Petri
net S that has r) places (TJ = n + d, d > 0) and admits the same set of transitions as
S. The state evolution of the redundant Petri net is given by

Z[k+l]=t[k] + Bu[k], (10)

with the state vector £[k] at time step k providing complete information about x[k]y

the state of the original system S at k. Again, we require that there exist a n n x i)
decoding matrix L and an rj xn encoding matrix <I>, such that for all k, x[k] = L£[k]
and £[k] = $x[k]. Since S and S are pure Petri nets, their state vectors (respectively,
x[k] and £[k]) should consist of non-negative integer entries and matrices B and B
need to have integer entries. Additionally, in order for S to be an embedding of S>
we need the set of transitions enabled in S to be a subset of the set of transitions
enabled in S (i.e., we do not want the additional structure in S to inhibit any of
the transitions allowed in S).

Theorem 2. Consider the setting described above. If the pure Petri net S (of
dimension rj = n + d, d > 0) is an embedding of 5, then its state evolution eq. (10)
is similar (in the same sense as for LTI state-space systems) to a standard state
evolution equation of the form

Ыk + l] = Ш +
B
0

u[k) , (11)

where B is the matrix in eq. (9), the state evolution of the original Petri net.

P r o o f . Follows from the LTI case. •

The standard state evolution eq. (11) corresponds to a pure Petri net Sa which is
trivially an embedding of 5, because at any given time step, the transitions enabled
in S and Sa are the same. Associated with Sa are the standard decoding matrix

La = [In 0], the standard encoding matrix $a = "

parity check matrix Qa = [0 Id].

A few comments are in order regarding a converse to the theorem. If we start
from the standard state evolution eq. (11) and the redundant system Sa} we can
work our way back to a non-standard Petri net S by choosing an appropriate rj x 77

, and the standard

Structured Redundancy for Fault Tolerance in State-Space Models and Petri Nets 51

transformation matrix T. Given T, the resulting system S has state vector £[k] —

- T - 1 B
0

= ФB. T£a[k] and state evolution £[k + 1] = £[k] + Bu[k], where B = T

In order for S to be a valid Petri net description, we need B = $ 5 to have integer
entries and £[k] = $x[k] to be a valid state vector for all valid x[k] (a valid pure
Petri net state vector is one that has non-negative integer entries)5. A sufficient
condition is that the first n columns of T _ 1 consist of non-negative integer entries
(this condition is necessary if all non-negative integer vectors x[0] are allowable
as initial conditions). This guarantees that the encoding matrix $ = T _ 1 $ a has
non-negative integer entries (which in turn guarantees that B = $B has integer
entries and that, for any valid state x[k] in 5, the corresponding state £[k] = $x[k]
in S is also valid). Note that other than L$ = Iny no restrictions are placed on
L. Specifically, the entries of L can be negative and/or fractional (as long as the
constraints on $ are satisfied).

3.2. Error model and examples

The errors expected in a Petri net model depend on the underlying system and
the actual hardware implementation. One possibility is that each hardware failure
affects the number of tokens that are transported/combined/processed in a single
place of the Petri net. In terms of the state evolution equation, a single fault causes
the value of a single state variable (in x[k] or £[k]) to be incorrect. Such an error
model is appropriate for Petri net models of finite state machines or linear automata,
[33, 34] (because single-bit errors corrupt a single place of the Petri net). Other error
models are also possible.

If we apply the similarity transformation £[k] = T£a[k], where T is given by

" T and C is a d x n matrix with non-negative integer entries, we obtain

(from Sa) a transformed system S that is a valid Petri net (because the first n
columns of T " 1 have non-negative entries). The encoding, decoding and parity
check matrices are given by

Ф = т-lФa = In

c
L = LaT =[In 0] , = QoT =[-C h]

This construction was first suggested in [33] and emerges as a particular instance of
our theorem. One uses the additional places to monitor the operation of the original
system. They have no effect on the behavior of the original system because the
transitions enabled in the two systems are the same.

The interpretation of the fault-tolerant scheme is straightforward: we add d places
and connect them to the transitions (events) of the original Petri net. The weights of
the additional connections are given by the entries in the matrix CB and enable us
to monitor the flow of tokens by checking at each time step whether [— C Id] £[k]

5Th is also ensures that the set of transitions enabled in S (and Sa) is a subset of the set of
transitions enabled in S. If tj is enabled in 5, then the next state vector x[k + 1] = x[k] + B[:,j)
consists of non-negative (integer) entries. Since £[k + l] = $x[k + 1], the state vector £[k -f l] is
also non-negative, which means that transition tj is enabled in S as well.

52 C N . HADJICOSTIS AND G.C. VERGHESE

is zero. Note that, if C is chosen properly, we might be able to locate the place where
the failure has occurred and the exact number of tokens that has been corrupted.
For example, if d = 1 and C = [1 2 2] , then the pure Petri net of Figure 1
is protected through the use of one additional place as shown on the left side of
Figure 1 (the additional connections are shown with dotted lines). The parity check
is Q£[k] = [—1 —2 —2 1] £[k] and it is able to detect errors in a single state
variable.

i/n^o> i/D̂ -®p-
1 / U 1 ^ 0 P2\ / , /

/ _ . V \ D1(sf n/_L_ "• ® ч-^0(г

2--фp.

Fig. 2. Two different redundant versions of the pure Petri net in Figure 1.

Our scheme encompasses more general embeddings than in [33] by allowing us
to restructure the original Petri net if necessary (thereby permitting fault tolerance
considerations during the design of the overall Petri net). For example, the Petri net
on the right side of Figure 2 is another redundant version of the Petri net of Figure 1.
It uses one additional place (d = 1) and results from a more general transformation
of the standard state evolution eq. (11). The parity check matrix is a checksum
matrix of the form O = [—2 —2 1 3]; the transformation matrix T _ 1 used,
as well as matrix B, and the encoding and decoding matrices are as follows:

T - 1 ^

Ф =

1 2 0
1 0 1
1 1 2
1 1 0

1 2 0
1 0 1
1 1 2
1 1 0

- 1 " " 0 - 1 1
2
0 ì B =

- 1 1 0
1 0 - 1

1 - 1 0 1

5 6 - 3 - 7 "
L = - 3 - 4 2 5

- 1 - 1 1 1

Both fault-tolerant schemes in Figure 2 are able to detect errors in a single state
variable by performing the checksum 0f[fc]. If establishing connections is hard or
if the transfer of tokens is expensive, however, then the approach on the right has
some significant advantages: (i) it requires fewer connections between places and
transitions (only 8 connections as opposed to 10 for the approach on the left), and
(ii) the sum of weights is significantly less (only 8 as opposed to 12 for the scheme
on the left).

Structured Redundancy for Fault Tolerance in State-Space Models and Petri Nets 53

4. CONCLUSION

We have outlined a systematic procedure for introducing structured redundancy into
state-space systems. Our approach maps the state vector of the original system into
a larger, redundant space, while ensuring that the initial conditions and evolution in
the redundant space will preserve the state, evolution and properties of the original
system. We have demonstrated through several examples how the added redundancy
can be used for fault tolerance. Moreover, we have completely characterized all ap
propriate fault-tolerant designs for LTI state-space systems. In particular, we have
illustrated that our method amounts to augmenting the original system with redun
dant modes that cannot be excited by the input and are initialized to zero; through
appropriate design and hardware implementation, we can ensure that failures will
excite these additional modes, thus allowing us to identify them and possibly correct
all errors.

We have also given pointers on how to use a similar approach to study fault
tolerance in Petri net models . Our future work will focus on further extending
our results for Petri nets (e .g., by using different error models, by looking at dis
tributed error detection and correction schemes, by investigating issues related to
Petri net languages and supervisory control as in [12, 14], and by including unob-
servable/uncontrollable transitions as in [24]). We are also studying other classes of
dynamic systems in state form, such as finite state machines and max-plus systems.

(Received April 8, 1998.)

REFERENCES

[1] J. A. Abraham: Fault tolerance techniques for highly parallel signal processing archi
tectures. Proceedings of SPIE 614 (1986), 49-65.

[2] F. Baccelli, G. Cohen, G.J. Olsder and J. P. Quadrat: Synchronization and Linearity.
Wiley, New York 1992.

[3] P. E. Beckmann: Fault-Tolerant Computation Using Algebraic Homomorphisms.
Ph.D. Thesis. EECS Department, Massachusetts Institute of Technology, Cambridge,
MA 1992.

[4] P. E. Beckmann and B. R. Musicus: A group-theoretic framework for fault-tolerant
computation. In: IEEE Internat. Conf. on Acoustics, Speech, and Signal Processing,
1992, pp. 557-560.

[5] P. E. Beckmann and B. R. Musicus: Fast fault-tolerant digital convolution using a
polynomial residue number system. IEEE Trans. Signal Process. 41 (1993), 2300-2313.

[6] J .W. Brewer, J .W. Bunce and F. S. Van Vleck: Linear Systems Over Commutative
Rings. (Lecture Notes in Pure and Applied Mathematics 104.) Marcel Dekker, Inc.,
New York 1986.

[7] C. G. Cassandras: Discrete Event Systems. Aksen Associates, Boston 1993.
[8] C. G. Cassandras, S. Lafortune and G. J. Olsder: Trends in Control: A European

Perspective. Springer-Verlag, London 1995.
[9] A. Chatterjee: Concurrent error detection in linear analog and switched-capacitor

state variable systems using continuous checksums. In: Internat. Test Conference 1991,
pp. 582-591.

[10] A. Chatterjee and M. d'Abreu: The design of fault-tolerant linear digital state variable
systems: theory and techniques. IEEE Trans. Comput. 42 (1993), 794-808.

54 CN . HADJICOSTIS AND G.C. VERGHESE

V. Y. Fedorov and V. O. Chukanov: Analysis of the fault tolerance of complex systems
by extensions of Petri nets. Automat. Remote Control 53 (1992), 2, 271-280.
S. Gaubert and A. Giua: Deterministic weak-and-marked Petri net languages are
regular. IEEE Trans. Automat. Control AC-41 (1996), 12, 1802-1803.
A. Ginzburg: Algebraic Theory of Automata: Academic Press, New York 1968.
A. Giua and F. DiCesare: Decidability and closure properties of weak Petri net lan
guages in supervisory control. IEEE Trans. Automat. Control AC-40 (1995), 5, 906-
910.
C. N. Hadjicostis: Fault-Tolerant Computation in Semigroups and Semirings. M. Engr.
Thesis. EECS Department, Massachusetts Institute of Technology, Cambridge, MA
1995.
C. N. Hadjicostis and G. C. Verghese: Fault-tolerant computation in semigroups and
semirings. In: Internat. Conf. on Digital Signal Processing, Vol. 2, Cyprus, 1995, pp.
779-784.
C. N. Hadjicostis and G. C. Verghese: Fault-tolerant computation in groups and semi
groups, submitted.
K.-H. Huang and J. A. Abraham: Algorithm-based fault tolerance for matrix opera
tions. IEEE Trans. Comput. 33 (1984), 518-528.
M. Ikeda and D. D. Siljak: An inclusion principle for dynamic systems. IEEE Trans.
Automat. Control AC7-.2.9 (1984), 3, 244-249.
J.-Y. Jou and J. A. Abraham: Fault-tolerant matrix arithmetic and signal processing
on highly concurrent parallel structures. Proc. IEEE 14 (1986), 732-741.
J.-Y. Jou and J. A. Abraham: Fault-tolerant FFT networks. IEEE Trans. Comput.
57(1988), 548-561.
T . Kailath: Linear Systems. Prentice-Hall, Englewood Cliffs, NJ 1980.
D. G. Luenberger: Introduction to Dynamic Systems: Theory, Models, &; Applications.
Wiley, New York 1979.
J. O. Moody and P. J. Antsaklis: Supervisory control using computationally efficient
linear techniques: a tutorial introduction. In: 5th IEEE Mediterranean Conf. on Con
trol and Systems, Cyprus 1997.
T. Murata: Petri nets: properties, analysis and applications. Proc. IEEE 77 (1989),
541-580.
V.S .S. Nair and J. A. Abraham: Real-number codes for fault-tolerant matrix opera
tions on processor arrays. IEEE Trans. Comput. 39 (1990), 426-435.
J. P. Norton: Structural zeros in the modal matrix and its inverse. IEEE Trans. Au
tomat. Control AC-25 (1980), 980-981.
A. V. Oppenheim and R. W. Schafer: Discrete-Time Signal Processing. Prentice Hall,
Englewood Cliffs, NJ 1989.
T .R . N. Rao: Error Coding for Arithmetic Processors. Academic Press, New York
1974.
C. Reutenauer: The Mathematics of Petri Nets. Prentice Hall, New York 1990.
R. A. Roberts and C. T . Mullis: Digital Signal Processing. Addison-Wesley, Reading,
MA 1987.
A. Sahraoui, H. Atabakhche, M. Courvoisier and R. Valette: Joining Petri nets and
knowledge-based systems for monitoring purposes. In: IEEE Internat. Conf, Robotics
Automation, Raleigh, NC 1987, pp. 1160-1165.
J. Sifakis: Realization of fault-tolerant systems by coding Petri nets. J. Design Au
tomation and Fault-Tolerant Computing 3 (1979), 2, 93-107.
M. Silva and S. Velilla: Error detection and correction on Petri net models of discrete
events control systems. In: Proceedings of the ISC AS 1985, pp. 921-924.
J. von Neumann: Probabilistic Logics and the Synthesis of Reliable Organisms from
Unreliable Components. Princeton University Press, Princeton, NJ 1956.

Structured Redundancy for Fault Tolerance in State-Space Models and Petri Nets 55

[36] S.B. Wicker: Error Control Systems. Prentice Hall, Englewood Cliffs, NJ 1995.
[37] K. Yamalidou, J. Moody, M. Lemmon and P. Antsaklis: Feedback control of Petri net

based on place invariants. Automatica 32 (1996), 1, 15-28.

Christoforos N. Hаdjicostis, EECS Depаrtment, MIT, Cаmbridge, MA 02139. U.S.A.

e-mаil: chаdjic@аllegro.mit.edu

George C. Verghese, EECS Depаrtment, MIT, Cаmbridge, MA 02139. U.S.A.

e-mаil: verghese@mit.edu

		webmaster@dml.cz
	2015-03-27T09:10:50+0100
	CZ
	DML-CZ attests to the accuracy and integrity of this document

