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K Y B E R N E T I K A — V O L U M E 36 ( 2 0 0 0 ) , N U M B E R 2 , P A G E S 1 9 5 - 2 1 0 

ESTIMATES OF STABILITY OF MARKOV CONTROL 
PROCESSES WITH UNBOUNDED COSTS1 

EVGUENI I . GORDIENKO AND FRANCISCO SALEM 

For a discrete-time Markov control process with the transit ion probability p, we compare 
the total discounted costs Vp (x^) and Vp(ftp)} when applying the opt imal control policy 
7T/3 and its approximat ion 71-/3. T h e policy ftp is opt imal for an approximat ing process with 
the transition probabili ty p. 

A cost per stage for considered processes can be unbounded . Under certain ergodic-
ity assumptions we establish the upper bound for the relative stability index [ ^ ( T T ^ ) — 
V/3(7r^)]/VJ3(7T/3). This bound does not depend on a discount factor /? G (0,1) and this is 
given in terms of the to ta l variation distance between p and p. 

1. INTRODUCTION 

The problem of stability (or robustness) of policy optimization in control processes, 
naturally arises when a controller has no complete information on a law governing 
a dynamics of a process. In most cases of interest a controller needs to rely on some 
approximation of a law obtained from theoretical models or/and from statistical 
data. Such an uncertainty is typical in real applications of optimal control theory. 
It appears also in adaptive control models. 

In setting of a problem of stability estimation for general discrete-time Markov 
control processes (MCP's) we will follow the approach proposed in [2, 3]. Let V and V 
be two discrete-time MCP's defined on the same Borel state space X and action space 
A equipped with the same nonnegative one-stage cost (possibly unbounded). The 
only difference between processes V and V is their transition probabilities denoted, 
respectively, by p and p. We interpret p as a known approximation to an unknown 
"true" transition probability p of a "real" process V. 

The original goal of control optimization is to look for a policy for V that provides 
performance as close to the optimal value Vp (x,np) as possible. Here np is the 
optimal policy for V (supposing the existence of it). As a performance criterion we 
use the expected total discounted cost Vp (x,ir) which is a function of an initial 
state x of a process and of a policy 7r applied; /? G (0,1) is a given discount factor. 

1 Research supported by Consejo Nacional de Ciencia y Tecnologia CONACYT under grant 
4002000-5-25159-E. 
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Not having an opportunity to find the policy np without knowing p, one can try the 
policy ftp optimal for the completely known process V as an approximation to irp. 
The answer to the question: 

"In what extent is it a good approximation?" depends on the value of Vp(x, ftp) — 
Vp(x,7Tp) > 0 of the additional cost paid for replacing irp by ftp. Sometimes it is 
more reasonable to be interested in a value of a relative increase of cost: 

Ap(x) := [Vp(x,^)-Vp(x,irp)]/Vp(x,irp), (1.1) 

that we call "relative stability index". 
The rate of vanishing of Ap(x) as p approaches pvdepends heavily on properties 

of a class of processes under consideration, and even more, on type of convergence 
p to p. In general, the relative stability index might not vanish as p —> p. (In the 
example 1 of the last section Ap(x) does not go to zero and sup^E(0 ^ Ap(x) = oo 
in spite of p converges to p in the weak topology.) 

The aim of the present paper is finding upper bounds for Ap (x) which do not 
depend on a discount factor /?. In the papers [2, 3, 17, 18, 20] some results have 
been obtained on the similar problem with the average cost per unit of time as a 
criterion of optimization of control. In particular, in [3] we used Zolotarev's metric 
approach developed in [21] for some uncontrollable stochastic processes. In the case 
of the discounted total cost optimization some known bounds of Vp(ftp) — Vp(7Tp) 
(see [7, 6, 17, 18, 20]) have the following structure: 

Vp{*p) - Vp(irp) < M(\ - /?) xl>(p,p), (1.2) 

where xp is some "measure of difference" between p and p, and M(y) y G (0,1) is 
some given function. 

It is well-known that under broad conditions 0<limsup^_,1 (1— )̂ Vp(irp) <oo (see, 
for instance, [8]). Thus, having in the mind finding bounds for Ap(x) independent 
of/? we need something as (1.2) with M( l - /?) = 0((l - /3)"1) as /? -> 1. 

In the paper [7] optimality equation and the technique of contractive operators 
were used to establish bounds as in (1.2). Unfortunately, this approach provides 
M(l - /?) = 0((1 - P)~2) as $ -> 1. The papers [17, 18, 20] apply other methods 
than [7], and deal with Markov control processes on denumerable state spaces. The 
results of [17, 18], for example, allow to obtain simple and tight bounds for many 
queueing control systems. The order of the constant M( l — f3) (as (3 —• 1) depends 
in [17, 18, 20] on properties of some quantities involving an optimal discounted 
cost Vp, and, finally, on assumptions about processes considered. Under some mild 
assumptions, again the constant is M( l — /?) = 0((1 — /?)"2) as /? —> 1. To extract 
from the results of [17, 18, 20] the bounds as in (1.2) with M of order of © ( ( l - / ? ) - 1 ) , 
one needs to exploit some sort of ergodicity assumptions. 

In this paper we work out the approach different from those used in [7, 17, 18, 20] 
which allows to get the explicit bounds of the form: 

sup Ap(x)<^(\\p-p\\), (1.3) 
06(0,1) 
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where ij> is the power function of the total variation distance between P(|-^,a) and 
p ( | x , a ) (uniform over states x and actions a) . To achieve the goal as (1.3) we 
are forced to impose rather restrictive ergodicity hypotheses on a class of processes 
dealt with. As it was shown in the paper [4], such hypotheses lead to uniform 
(over stationary policies) geometric ergodicity of a control process. To show this 
we have applied in [4] the results from [11] on geometric ergodicity of uncontrolled 
discrete-time Markov processes. The uniform ergodicity (together with some addi
tional technique) permits to reduce the problem to the study of stability of ergodic 
uncontrolled processes, and so to apply Zolotarev's metric technique [21]. This 
technique proposes using some estimates of the proximity of the distributions of a 
couple of processes on finite time-intervals, and the known rate of convergence these 
distributions to stat ionary ones. 

2. CONTROL MODEL AND ASSUMPTIONS 

We consider a pair of s tandard discrete-time (t = 0 , 1 , 2 , . . . ) Markov control models 
(see, for instance, [1]) V = (X)A1A(x))p)c) and V = (X1AJA(x)ip)c) with Borel 
state space X and action space A. The sets A(x) C A) x E X are sets of feasible 
control actions when a process is in state x. We assume A(x) to be nonempty and 
compact for each x E X) and we suppose the set IK := {(x, a) : x E -K, a E A(x)} of 
admissible state-action pairs to be a Borel subset of the Cartesian product X x A. 
Saying about measurability we will mean in what follows measurability with respect 
to a corresponding Borel cr-algebra B. 

The one-stage cost is a nonnegative measurable function c : IK —> Ft, possibly 
unbounded. The only different components of the above models are the transition 
probabilities p(B\x)o) and p(B\x)a)) (x,a) E Ji r , B E Bx) those are stochastic 
kernels on X given IK. 

We use the s tandard definition [1] of a control policy 7r, and of a stationary 
(deterministic) policy as a given measurable function / : X —» A with graph ( / ) C K 
such that at the state xt the control at = f(xt) is used. We denote by II the class of 
all policies, and by S C II the subclass of all stationary policies, using the notat ion 
f = ( / , / , . . . ) for policies from S. By E* we will denote the expectation in the space 
of trajectories of a process when using the policy 7T with the initial s tate x of a 
process. 

As a performance criterion we use the total expected ^-discounted cost ((3 E (0,1)) 
defined for the process V as: 

oo 

W*,*) :=£/?'£;-(*,,<..), (2.1) 
* = 0 

when using the policy 7r with the initial s tate of the process x0 = x. 
Similarly, to (2.1) the total expected /?-discounted cost Vp(x, ir) is defined for the 

process V. 
Policies 7r#, 7f̂  are called optimal, respectively, for the process V and V if: 

Vp{x,*fi) = V*p(x) := inf VP{X,T); (2.2) 
r 7rEn 



198 E.I. GORDIENKO AND F. SALEM 

Vp(x,*p) = V$(x) := inf Vp(x,ir), (2.3) 
7rEn 

for all x £ X. 
Also we will appeal to the optimal value of long-run expected average cost for V: 

n - l 

J+(x) := inf lim sup n'lEl V c(xuat). (2.4) 
TTGII rwoo J^ 

Let us fix throughout a measurable function ("test function") W : X —• [l,oo) and 
introduce the assumptions which we use to prove our results. 

Assumption 1. (Continuity and bounding conditions) 

(a) mf(X)a)e]K c(x, a)>K>0; 

sup c(x,a)< [W(x)]1/s, xEX] 
aeA(x) 

where K and s > 1 are given constants; 

(b) for each x G X the map a —» c(x) a) is lower semicontinuous on A(x)\ 

(c) both kernels p and p are strongly continuous on A in the sense: for every 
measurable and bounded function u : X —> M and x £ X the following maps 
are continuous: 

a~+ u(y)p(dy\x,a), a -> / u(y)p(dy\x, a), 
Jx Jx 

a-> / W(y)p(dy\x,a), a -» / KV(2/)p(d?/|.z, a). 
Jx Jx 

Assumption 2. (Recurrence condition) For each stationary policy f G 5 the 
Markov processes with the transition probabilities p(-\x,f(x)) and 15(-|#, / (#)) are 
positive Harris-recurrent. 

Remark that the Markov process zrj, x\} ^ 2 , . . . in the state space X is said to be 
Harris-recurrent if there exists a nontrivial rr-finite measure A on X such that 

-P(#t £ £ f° r some / |x0 = x) = 1 for all x E X) 

whenever \(B) > 0 [13]. 

Assumption 3. (Ergodicity conditions) There exist a probability v on (X, Bx) 
and a number a G [0,1) for which the following holds: 

For each stationary policy f G S there is a nonnegative measurable function ft/ 
on X such that for every x £ X and JB G BX • 

(a) p ( B | z , / ( : c ) ) > M x W f l ) ; 

(b) fx W(y)p(dy\x, f(x)) < aW(x) + h}(x) fx W(y) v(dy) < oo; 

(c) inff6S fx hf(x) v(dx) =: 7 > 0. 
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Assumption 3*. Assumption 3 holds for the transition probability p with the 
same W} v, a, 7 and some hj (f G S). 

Comments on t h e assumpt ions . 

(1) In the last section of the paper we give an example of G/|G7|l|oo queueing 
system with controlled service rates. For this example all above assumptions 
are satisfied. 

(2) In view of Proposition 1 below the above assumptions guarantee the existence 
of optimal stationary policies for both processes V and V. This is useful for 
our purposes, but it is not necessary (see the comments (4) below). Moreover, 
optimal stationary policies exist under less restrictive conditions. What is im
portant for us is that under Assumptions 2 and 3 for each stationary policy 
the corresponding Markov process is Harris-recurrent with a unique invariant 
distribution, and with the geometric rate of convergence to this distribution. 
It is stated in Proposition 2 below. Moreover, the cumbersome constants in 
(26), (27) allow to give explicit bounds for the constants involved in the esti
mation of the rate of convergence. This is important for us to obtain explicitly 
calculated bounds in the stability inequality. The proof of Proposition 2 given 
in [4] relies on corresponding results by Kartashov [11], where the estimates 
in the geometric rate of convergence were given for some uncontrolled Markov 
processes. 

To get the inequality similar to (3.1) in Theorem of the next section one can 
use any known estimates of geometric convergence, for example, the new rather 
tight estimates in [16] for some particular classes of Markov processes. 

(3) The parts (b) and (c) of Assumption 3, can be checked for the process V with 
some 7 > 0, a < 1; then to satisfy Assumption 3* one can take max(a, a) and 
min(7,7). 

(4) In view of given below Proposition 1 Assumptions 1,2,3 and 3* ensure the 
existence of optimal stationary policies fp, fp for the processes V and V. These 
policies are used to define the relative stability index in (1.1). On the other 
hand, Assumptions 2, 3 and 3* which, as it will be seen guarantee ergodicity 
of processes, can fail to hold for some (and even for many) stationary policies. 
To see this, one can consider MCP's given by linear recurrent equations (see, 
for example [12]), Examination of the proof of Theorem in the next section 
shows that we can significantly relax Assumptions 2, 3 and 3* postulating the 
existence of optimal policies fp and fp and some subset So C S of stationary 
policies such that fp, fp G So and Assumptions 2, 3 and 3* are satisfied for 
each f G So (but probably not for each f G S). The bound (3.1) holds true 
under such modification of hypotheses, and, moreover, in this situation we do 
not need to use parts (b) and (c) of Assumption 1, and the supposition about 
compactness of sets A(x) (x G X). Also, it is not difficult to modify slightly 
the definition of Ap(x), the inequality (3.1) and its proof in order to make 
it sufficient to suppose only the existence of e-optimal policies fe./3, fe p G So 
( e > 0 ) . 
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Proposition 1. ([4]) Suppose Assumptions 1, 2, 3 and 3* hold and let /? G (0,1) be 
an arbitrary, but fixed discount factor. Then there exist stationary optimal policies 
f/j,f/j G S, correspondingly, for the processes V and V. 

Also, the optimal average cost J*(x) in (2.4) is independent of x G X. 
We will use the notation J* for J*(x). Also, in view of Proposition 1 we can 

rewrite the value functions defined in (2.2), (2.3) as follows V£(x) = Vp(x,fp) and 

Vp* = Vfi(x'fp). 
To write down the next proposition we introduce below certain constants which 

have arisen in the estimate of the rate of convergence in the ergodic Lemma 3.4 in 
[4]. The appearance of these constants is a little bit intricate, but it is important 
that they are calculated precisely in terms of quantities involved in Assumptions 1, 
2, 3 and 3*. Also, all inequalities given below for constants follow from the proof of 
Lemma 3.4 in [4]. 

Fix any positive number 7 such that 7 < 7 < 1 (7 is from Assumption 3, part 
(c)), and using the convention: ( logl) / ( l — 1) := —1, we define: 

u = 2exp{[l - \\v\\w/(l - «)](log7)/(l " 7)} " 1, 

where \\v\\w •— fx W(y)v(dy)f and then we set: 

d = 1 _ ( i _ a 2 ) / [ ( 1 _ a ) + au\\v\\w] < 1; 
(2.6) 

p:=d + q< 1, 

where q is an arbitrary positive number such that q < 1 — d. Now let t* = [d/(l — d)] 
([•] is the integer part), r = max{0,1/ log(l + q/d) — 2}, and 

bl=dT(r + 2)/(d+q)T if r>U, 

bi=dt'(U + 2)/(d+q)t' if T<U. 

Finally, we define: 

B = max{[ l + 61de/a][l + | | H k / ( l - a ) ] , [ m a x { l , ( | | I / | k + a// ']<* 

+ Hw/[(i-<*)/>'•]}• 

Let us fix an arbitrary stationary policy f G 5, and let {XQ , x\ , . . . } , {£Q , x\\...} 
be Markov processes with the transition probabilities, correspondingly, p(-\x,f(x)) 
and p(-\x, f(x)). Assumption 2 ensures the existence and uniqueness of the invariant 
probabilities qj and qj for these processes (see for instance, [14]). The following 
result has been proven in [4] provides the estimates of the rate of convergence of 
distributions of the processes to invariant distributions with respect to the total 
variation metric cr. 

Proposition 2. ([4]) Under Assumptions 2, 3 and 3* 

supa(x[f\x<£)<BW(x)pt
1 (2.8) 

res 
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supa(x[f\x£)<BW(x)pt; (2.9) 
fGS 

t = 1,2,...; where the random elements X[Q , £QO (with values in X) have, respec
tively, the distributions <?/,£/, and the constants B < oo, p < 1 were introduced in 
(2.6),(2.7). 

The total variation distance a, used in (2.8), (2.9) and in the theorem of the next 
section, is defined as follows (see, for instance, [15]): 

a(£X) = tr(^e,/iC) := 2sup{|P(£ G B) - P(C E B)\ : B are Borel}. (2.10) 

Here /if and /ir are the distributions of the random elements £ and C taking values 
in Borel space X. 

If £ and C are random vectors in iR*, having the densities, respectively, g% and #r 
then, 

' ( € , 0 = / l«(y)-ffc(v)|dv- (2.H) 
JJRk 

Also, for random variables £ and C taking values in the same countable set {yi, 2/2 > • • •} 
we have: 

00 

3. STABILITY INEQUALITIES 

Throughout of the rest of the paper we fix an arbitrary a; 6 I as an initial state of 
both processes V and V, i.e. xo = x, in = #• By virtue of the above Proposition 1 
we rewrite the relative stability index in (1.1) as 

A/»(«) = [vP(x,ip) - vp(x,ip))iv;(x). 

By Assumption 1, (a) this quantity is well-defined, i.e. Vp(x) > 0. 
Our main results looks as follows. 

Theorem. Suppose that Assumptions 1, 2, 3 and 3* hold. Then 

Ap(x) < M(py x) S^-1"8 max{l,log, 6}, (3.1) 

where: 
6= sup <r(p(-|x,a),p(-|x,a)); (3.2) 

(x,a)eJK 

M(f3,x) = B(x)/[(l-p)Vj(x)] < B(X)/K; (3.3) 

\im(l-P)VJ(x) = J*, (3.4) 

and, finally, 

B(x) = 2{2W(x) [1 + 2Bp-x] + 2(1 - a ^ l M l i v + 1}. 
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Corollary 1. (The inequality for the value functions) 

\V*p(x) - V;(x)\ < [2(1 - ^ - ^ ( ^ ^ - ^ m a x i l . l o g ^ } . (3.5) 

P r o o f . In view of Proposition 1 V2(x) = supV/3(x,f) and Vg(x) =supV/j(x,f). 
fes fes 

Thus, 
\V*p(x) - v;{x)\ < sup \Vp(x,f) - Vp(x,f)\. (3.6) 

fes 
On the other hand, the proof of Theorem given below is, in fact, finding upper 
bound for the right-hand side of the inequality (3.6). This bound appears in (3.1). 
Therefore, (3.6) is a consequence of (3.1) and (3.3). • 

Corollary 2. Let models V and V be given by recurrent equations: 

xt+x = F(xt,at,£t), (3.7) 

xt+i = F{xuault), 1 = 0 , 1 , . . . (3.8) 

where {&}, {&} are sequences of independent and identically distributed (i.i.d. for 
short) elements in some Borel space (Y, By) with the common distributions /if and, 
respectively, /i^. 

Then under hypotheses of Theorem 

Ap(x) < M(^x)[a(^^^s~^s, (3.9) 

provided that a(fi^fix) < e - 5 ! ^ " 1 ) . 

Remark. When the second inequality in Assumption 1, (a) holds for large 5 the 
power of 6 in (3.1) is closed to the best possible value 1. In the example of the next 
section X = [0,oo) and W(x) — behx, h > 0, and 6 > 0 is arbitrary. Therefore, if 
suPa€A(x) c(x) °) is bounded by some polynomial then, for each e > 0 one can choose 
6 := b(c) is such a way that (3.1) holds with 6l~e. 

P r o o f of T h e o r e m . In view of Proposition 1 of the previous section we get 
(see (2.1)-(2.3)) 

Vp(x,fp)-Vp(x,fp) 

<\Vp{xtfp)-Vp{x,fp\ + 

< 2 s u p | V r
/ 3 ( x , f ) - ^ ( x , f ) | 

fes 

ЫVß(x,f)-ЫVß(x,f) 
f€S ғ v ' fЄS м v ' 

(3.10) 

< 2 sup £ ß % \ E x c ( x t , f(xt)) - Ef
xc(xuf(ït))\ 

2 
< -л ^supsupб t (f), 

1 — p f є s ť>l 
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where 
et(f) := \Ef

xc(xt,f(xt))-E
f
xc(xuf(xt))\. (3.11) 

Thus, to prove (3.1) it suffices to show that for all f and t 

et(f) < (B(x)/2) 5(5-1)!s max{l, log, 6}. (3.12) 

To reduce the last inequality to estimation of quantities similar to those as in 
(3.11), but with bounded cost functions we first ensure that for every policy f E S 

sup Ef
xW(xt) < W(x) + ^P^- =: C, (3.13) 

*>o 1-a 

sup Ef
xW(xt)<C. (3.14) 

t>o 

Indeed, from Assumption 3(a) and 3(b) we have fx W(y)p(dy\xt-i) f(xt-\)) < 
aW(xt_i) + \v\w, a n d by Markov property of {xt} we get for any fixed history 
ht-i (t > 1): 

Ef
x[W(xt)\ht.1]= I W(y)p(dy)\xt-1)f(xt-1))<aW(xt_1) + \v\w, 

Jx 

or 
Ef

xW(xt)<aEf
xW(xt.l) + \v\w. 

Iterating the last inequality we obtain 

Ef
xW(xt) < atW(x) + \\v\\w(l + a+... + at-1) 

< W(x) + \\u\\w/(l-ot) that implies (3.13). 

The proof of (3.14) is the same. 
Now, for arbitrary, but fixed b > 0 we define 

{ c(x)a) if c(x)a) < b 

0 otherwise. 

Applying Assumption 1, (a), the Holder and the Chebyshev inequalities we get for 
every t > 0, f G S (below: 1/s + l/l = 1): 

\Ef
xc(xt)f(xt))-E

f
xcb(xt)f(xt))\ = Ef

x{c(xt)f(xt))')C(xt)f(xt))>b} 

< Ef
x[W^(xt)I{w{Xi)>b.)}] < {Ef

xW(xt)}
1/s{P(W(xt)>b°)}1<1 

< {Ef
xW(xt)}

l's {Ef
xW(xt)}

lltb-sll < Cbl-S. 

Similarly we obtain: 

\Ef
xc(xt,f(xt))-Ecb(it,f(xt))\ < Cb1-', 

f € S , . = 0 , l 
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Therefore (see (3.11)). 

e,(f) < \Ef
xc(xt,f(xt))-E

f
xcb(xt,f(xt))\ 

+\Ef
xcb(xt,f(xt)) - Ef

xcb(xt, f(xt))\ 

+\Ef
xcb(xt,f(xt))-E

f
xc(xt))\ 

<2Cb1-3 + £bit(f), 

(3.15) 

(3.17) 

where e&.t(f) stands for next to the last term in the first inequality in (3.15). 
Fix an arbitrary f G $, and let gf, qr be invariant probabilities for Markov pro

cesses with transition probabilities, correspondingly, p(-\x, f(x)) and p(-\x) f(x)). To 
apply Zolotarev's approach (see [21]) for estimation of sup f E 5 £b,t(f) we need the uni
form over f G S convergence of distributions of xt and xt to invariant probabilities. 
Such convergence is provided by Proposition 2. 

Let n > 1 be some fixed integer. 
Then 

eb t(-0 < ba(xtixt) < bma,xa(xt,xt) if t < n, (3.16) 

and for t> n by (2.8), (2.9) following [21] we get 

eM(f) < b[a(xu x{£) + a(x&\ *£?) + *(*t, *S?)] 

< b[2BW(x)pn + <T(X&\X£)]. 

On the other hand, 

<r(x&\x£j) < a(x£\xn) + a(xn,xn) + a(xnix&\ 

< 2BW(x)pn + maxt<n a(xt,xt). 

Combining (3.16)-(3.18) we see 

cM(f) < b[4BW(x)pn + max*(xuxt)], t = l,2,.... (3.19) 
t<n 

Exploiting the following dual representation 

<rbit>i*<:) = S U P / <p(x)di*e- / Y>(x)dl*< 
<p'-\M\oo<i\Jx Jx 

of the total variation metric defined in (2.10) (see, for instance, [15]), the Markov 
property of xt,xt, the assumption xo = xn, and induction arguments one can easily 
show that for every f G S 

max<r(xt,£t) < n sup a(p(-\x1f(x)))p(-\xyf(x)) < n8. (3.20) 
t<n x£X 

(3.18) 
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From (3.15), (3.19) and (3.20) for any n > 1, 6 > 0 

et(f) < 2C6 1- 5 + b(4BW(x)pn + n6) (3.21) 

with the right-hand side being independent of a policy f. Choose in (3.21) n = 
max{l, [log,^]}, 6 = 6""1!5; here [z] means the greatest integer < z. Then, by 
elementary calculations 

et(f) < 206^-^1s + 6~lls(4BW(x)p-l6 + max{l,log,6)6) 
(3.22) 

< {2C + 4BW(x)p-1 + l}^*-1)!*max{l,log, 6}. 

The last inequality implies (3.12), and hence in view of (3.10) we come to the required 
inequality (3.1). 

The inequality (3.3) is an evident consequence of the definition (2.2) and As
sumption 1, (a). 

Finally, the existence and the value of the limit in (3.4) can be readily established 
by insignificant changes in the proof of the Theorem 4.2 in [8]; (see also the proof of 
theorem 2.6 in [4]). 

To get the inequality (3.9) in Corollary 2 it is enough to observe than the function 
z(

5-1)/*max{l,log /)2r) is increasing for z < e"s^8"1^ and the following inequality 
for the processes (3.7), (3.8): 

a(p(.\x,a),p(.\x)a)) = 2 sup \P(F(x,a^0) G B) - P(F(x} a,£0) G B)\ 
B£BX 

= 2 sup |P(f0 G G^a(B)-P(io G G^a(B))\ < a(Uo)9 where Gx,a(') := F(x,a, •). 
BeBx 

D 

4. EXAMPLES 

Example 1. We start with an example of unstable model of the discounted cost 
optimization. This example illustrates also a point that the convergence of the value 
functions Vp —• Vp (as in Corollary 1) can not be regarded as stability of a problem 
if we are interested in magnitude of Ap. 

Consider the pair of MCP's given by equations: 

xt+i =xtatZt\ (4.1) 

xt+i = e + xtat^t\ * = 0 , 1 , . . . (4.2) 

on the spaces X = [0,oo) A(x) = A := {0,1}, with the same initial states xn = 
XQ = x = 1. In (4.1), (4.2) e is some number from (0,1); {&}• {6} are sequences of 
i.i.d. random variables (r.v's, for short) such that £o h a s the uniform distribution 
on [1/2,1], and 

P(io e(y>y + <*</)) = 2(1 - 0 d y , y e [1/2,1], 



206 E.I. GORDIENKO AND F . SALEM 

P(to = b€) = e with some b€ > 1 which will be chosen later on. 
Let /? G (0,1) be a discount factor and the one-stage cost be defined as follows: 

r 0 if x = 0; 

c (x ,0)= < 2-x if xe (0,1]; 

1 otherwise; 

c(z, 1) = 2 — x, # G [0, oo). 

(4.3) 

(4.4) 

It is clear for every policy ir xt G [0,1], t = 0 , 1 , . . . , hence the stationary policy 
with f*(x) = 0, x G X is optimal for the process (4.1), and Vp(l) = V/?(l,f*) = 1. 
On the other hand, applying any policy n to the process (4.2) we get 

xt Є [ 6 , 0 0 ) , ^ > xtì t = 0 , 1 , . . . , (4.5) 

where {££} is the trajectory corresponding to use of the stationary policy with 
f+(x) = 1, x G X. From (4.3)-(4.5) we have the policy f* to be optimal for the 
process (4.2), and taking be to make /i = fi(b€) := E£o G (1,1//?) we obtain 

(4.6) 
t=0 

=g^(2.il,=ri_(2_^_)+IJ_(^__1). 
The last inequality in (4.6) is due to the fact that 

it = I06 • • -6-1 + 6(6 • • -6-1 + 6 • • .6-1 + • • • + 6-1 + 1), 

and, thus, 

£(2_i;) = 2_ri_+ , .( i4__1). 
It is easily to calculate that the limit of the right-hand side of (4.6) as /i —» 1 is 
(1 + e) (1 - / J ) " 1 > 1, and this is equal to -00 as // -* 1//?. Therefore, by continuity, 
there exists be = 6e(/?) such that 

V;(l) = 1 = V>*(1) (4.7) 

for each 6. At the same time, the relative stability index in this situation is 

Д„(i) = J^ťEl-C(xt,at)-l 
t=0 

00 

Л 

2/i Зli 
(4.8) 

= 5>'Я(2 - 66 • • .6-1) = үf^ - 4-Ą3 > 
ť = l 
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Now, let v be the Fortet-Mourier probability metric (corresponding to the weak 
convergence of random variables, see [15]). From the well-known properties of v and 
(4.1), (4.2) we readily find that in this example 

supi?(p('\x,a)Jp('\x)a)) —• 0 as e —» 0 

independently of a choice of be. 
On the other hand, for a fixed discount factor /? using be to guarantee (4.7) we 

have equality of the value functions and infe€(o,i) A/?(l) > 0. Moreover, from (4.8) 
sup0G(O,i) A/?(l) = co for each e E (0,1). 

Example 2. The next example presents a stable Markov control model for which 
all Assumptions of Section 2 are satisfied, and what is important all these assump
tions and constants involved are expressed here in rather simple terms of existence 
of exponential moments. We appealed to this example in [5] for other purposes. 

Let X = [0, co), A(x) = A for all x £ X with A being a compact subset of some 
interval (0,0] (with 0 G A). Define 

xt+i = (xt + atrjt - &) + , (4.9) 

x«+i = (xt + atfjt - 6 ) + , t = 0 ,1 , . . . , (4.10) 

x0 = in = x given, where z + = max(0, z)\ {r)t}, {&}, {f]t} and {&} are sequences of 
nonnegative i.i.d. r.v.'s such that {rjt} is independent of {&} and {fjt} is independent 
of {&}. The equations (4.9) and (4.10) represent controlled versions of random walk 
on a half-line, which arises in several applied models, for example, in inventory-
production or water resources models (see [9]). Other important application of the 
process given by (4.9) is a model of control of service rates at in a single server 
queueing system of type G/ |G/ | l |oo. In this case xt is interpreted as the waiting 
time of the tih customer, while & is the interarrival time between the tth and ( t+l ) th 
customers. The r.v.'s r/t (t = 0,1,. . .) describe deviations of real services times from 
designed values at. The variables in the approximating process (4.10) are interpreted 
in the same way. Comments on applications of such control model can be found, for 
instance, in [19]. 

We are going to check the hypotheses of the theorem of the previous section 
supposing the following Assumption El and E2. We write 77, f, 77, f for generic r.v/s 
distributed, respectively, as 770, fo, rjjo, fo, and denote 

< = 0tl-t, c = ov-i 

Assumption E l . 

(a) R.v.'s ri,€,fi,€ have bounded densities continuous on [0,co); 

(b) 
E(<0, £ < < 0 ; (4.11) 



208 E.I. GORDIENKO AND F. SALEM 

and there are positive constants /i', h! such that 

Eexp(h'() < oo, Eexp(til) < oo. (4.12) 

As it was observed in [5] (4.11) and (4.12) yield the existence of h > 0 such 
that 

a := max{£exp(^) ,£exp(hC)} < 1. (4.13) 

Assumption E2. The one-stage cost c is a strictly positive measurable function 
such that, for every x E [0, oo), c(x, •) is lower semicontinuous on A, and 

sup c(x, a) < (b)1/8 exp(xh/s), 
a£A 

where s > 1, and 6 is an arbitrary positive constant. 

Remark. For many particular distributions of 77,f,f7 and £ it is not too hard to 
evaluate h and a in (4.13). (See [5] for the explicit formulas in the case of exponential 
distributions.) 

Under above Assumptions E1,E2 the work to verify Assumptions 1,2,3,3* in 
Section 2 was done in [5] provided we choose: W(x) = bexp(hx), 

hf(x) = P(x + f(x)r}-Z<0), 

hf(x) = P(x + f(x)fj-i<0)) * e [ 0 , o o ) ; 

v = 8o (the Dirac distribution). 

Thus the bounds (3.1), (3.9) and Corollary 1 hold for the processes (4.9) and (4.10). 
Moreover, using (2.11) the total variation distance in (3.9) is easy to calculate in 
terms of densities of 77, £, 77, £. The power (s — \)/s can be chosen as close to 1 as 
desired if sup a e ^ c(x,a) is dominated by some polynomial. Unfortunately, we are 
not able in this example to simplify expressions for the constants involved in B(x) in 
(3.3) (compared with (2.6), (2.7)). The only observation is that \\v\\w = b. For this 
reason it seems better using the same arguments as in the theorem of Section 3 to 
prove for this example the bound as (3.1) replacing in (3.3) B(x) by another constant 
D(x). The point is to replace the inequalities of Proposition 2 by other estimates of 
the rate of convergence found in [16] due to specific properties of a particular class 
of Markov processes on [0,oo) called "stochastically ordered". Surely, the bounds 
on the rate of convergence in [16] are much simpler and more tight compared with 
B in (2.8), (2.9). (See Example 4.1 in [16]). The use of them allows in the example 
considered to get a more tight bound for Ap(x) (comparing with (3.1)). 
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