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DESIGN OF AN ADAPTIVE CONTROLLER 
OF LQG T Y P E : SPLINE-BASED APPROACH 

TATIANA V. GUY AND MIROSLAV KARNY 

The paper presents an alternative approach to the design of a hybrid adaptive controller 
of Linear Quadratic Gaussian (LQG) type for linear stochastic controlled system. The 
approach is based on the combination standard building blocks of discrete LQG adaptive 
controller with the non-standard technique of modelling of a controlled system and spline 
approximation of involved signals. The method could be of interest for control of systems 
with complex models, in particular distributed parameter systems. 

1. INTRODUCTION 

Most industrial controlled processes work in continuous time. At the same time, 
adaptive controllers are mainly based upon discrete-time models of a controlled 
process. These models are popular because they are relatively simple, well elaborated 
theoretically and easy to implement on digital computers. 

The success/failure of discrete adaptive control of a continuous dynamic system 
depends heavily on the sampling (control) period used. Discrete controllers can 
be designed using low order model if the sampling rate is low enough. The inter-
sampling behaviour may be rather bad if the process dynamics is fast. Naturally, 
more information on the intersample behaviour can be gained by increasing the 
sampling frequency. The growing sampling frequency makes, at the same time, 
whole design sensitive to mismodelling and numeric errors. 

A well chosen filtering may help. However, its success depends heavily on the 
prior information fed into the filter and its design is far from being easy. 

The search for an alternative technique for the design of an adaptive controller 
reported in the paper is mainly stimulated by the above-mentioned reasons. The 
main aim is to create a high-quality adaptive controller that respects the continuous 
nature of a controlled process and discrete data handling. 

There is a strong additional reason for the work. The system dynamics is often 
described by an infinite-dimensional model with unknown parameters. The model is 
usually represented by a set of partial differential equations. Modelling and control 
design for such systems are rather complex and success has been achieved for special 
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types of equations only. 
The design advocated here is substantially simpler. It is based on a general convo­

lution description of a continuous time controlled process and spline approximation 
of involved signals [2, 6]. Spline models are hybrid models in a sense that they model 
continuous variable of a system at arbitrary time instant. And, at the same time, 
they have the form suitable for digital handling. 

The original idea of spline-based self-tuning controller was described in [5] and 
connected with application in paper industry. The key point was simultaneous spline 
approximation of the signals as well as operator kernels, applied to the convolution 
model of a controlled system. 

Compare to [5], the unnecessary approximation of the operator kernels is omitted 
in the present article, which significantly simplifies the whole algorithm. 

The adopted idea allows us to construct the hybrid adaptive controller of LQG 
type by a simple modification of standard building blocks of discrete-time LQG 
adaptive controllers. 

2. PRELIMINARIES 

The section summarises key assumptions and basic mathematical tools used in the 
paper. 

2.1. Basic assumptions 

The considered design of the hybrid adaptive controller of a continuous system is 
performed under the following assumptions: 

- the system is stable, linear (linearisable) and time-invariant or at most slowly 
time-varying; 

- the relations of the system output and the process noise to the system input 
are searched in terms of convolution operators; 

- the signals are smooth enough, thus they can be approximated by properly 
chosen splines; 

- the only limited past history of the controlled process has a time effect on the 
future process behaviour; 

- the single-input single-output (SISO) controlled system is considered (for sim­
plicity). 

2.2. Spline functions 

Let a grid on the time interval [0, T] be specified by nodes {*,•}, i = 1 , . . . , IV, 

0 = t0 < ti < t2 < • • • < tN = T < oo. (1) 

A function of time Smid(t) is called spline of the degree m and the defect d G [0, m+1] 
with nodes on the grid (1) iff [1] 
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- Smid(i) is a polynomial in t of the degree m on every subinterval [2j,ii+i); 

- Sm d(t) possesses continuous derivatives up to the order m — d on the interval 
[0,T]. 

For the fixed grid (1), splines form a linear space with dim = (N - 1) d + m + 1. 

Thus, any approximating polynomial spline Sm}d(t) can be expressed as a linear 

combination of basis functions {<f>i)i=o 

dim —1 

SmX*)= E Wi4>i(t) = i»'<Ki), (2) 
i=0 

where w' denotes transposition of the weighting vector w = [tvo, wi, . . ., tiMim-i]'-
Similarly, the basis functions are grouped into the vector <j>(t) = [0o> ^l, • • •, 0dim-i]'-

2.3. System m o d e l 

The considered continuous-time controlled system is assumed to be described by 
the linear operator equation relating the system input u(t), the output y(t) and the 
noise e(t) signals 

Ay +Bu +Ce = 0. (3) 

AjBjC are time-invariant, casual operators acting of the output y, the input u and 
the noise e, respectively. 

Let us assume that there is a "practically whitening" operator C*, i.e. the trans­
formed noise signal e(-) = C*Ce(-) becomes white discrete process after sampling 
with the shortest technically feasible period. 

Multiplication of (3) by C* provides an alternative form of the system description 

Ay + Bu + e = 0. (4) 

Here, A = C* A and B = C* B are time-invariant casual linear operators. 
Using the convolution theorem [7], the system model can be rewritten in the form 

/ kA(т)y(t-т)dт+ I kв(т)u(t-т)dт + e(t) + Ot = 0, 
Jo Jo 

(5) 

where Ot = Of + Of is the total offset reflecting the initial conditions (tends to 
zero for a stable system), ^ ( r ) and .fce(T) are casual ( ^ ( r ) = 0 for r < 0) kernels 
of the operators A and B , respectively. 

According to the finite-memory assumption, both the kernels kA and ks vanish 
for t > L% > 0 (• = {A, J3}), where L% denotes the length of the operator kernel in 
terms of signal sampling unit. If the influence of initial conditions is neglected (the 
inspected system is stable), finai form of the considered system model is gained 

/ kA(T)y(t - r) dr + / kB(T)u(t - r) dr + e(t) = 0. (6) 
Jo Jo 

Adaptive controller to be designed has to respect that kernels are unknown functions. 
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2.4. Spline approximation of signals 

The continuous time input/output signals u(t) and y(t) will be interpolated using 
splines. Grid points of the splines are taken as sampling points of the corresponding 
signals (a common sampling rate for all signals is supposed for simplicity). That is, 
a regular sampling with a sampling period ts is supposed: 

u(tu) = u(tu) for tu = its, 

y(ty) = y(ty) for t\ = its+ shift of I/O sampling. (7) 

To simplify the weights determination (2), the interpolation spline basis <f>u and <f>y 

(for the input and the output, respectively) with the finite supports satisfying the 
condition: 

f 1, if i = 3 

mu) = m) = \ n f. . (8) 
^ 0, otherwise 

have been supposed. Then, the weights of approximated signals (2) will coincide 
with the values of signals u and y at the sampling instants. Hence, the approximate 
values u(t — r ) and y(t — T) of the input and the output, respectively, can be expressed 
using the interpolation splines: 

dim —1 

U(t -T)*u(t-T)= J^ UW +?(* ~ T)> 
i=o 

dim —1 

y(t -r)Hy{t-T)= £ y(t)) <j>](t - r). (9) 
; = o 

To be more brief, the present discussion considers the approximation by the inter­
polating splines only. It should be stressed, however, that in the case of smoothing 
splines, the expression for the approximated signals induces filtration of the mea­
sured data. 

3. ADAPTIVE CONTROLLER 

The conversion of the final form of the system model to the regression type and 
design for LQ criterion are performed in this section. 

3.1. Spline-based regression model 

Substitution the approximated values of the input/output signals (9) into the system 
model (6) converts the last one to the form (LA and LB are the length of support 
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of the operator kernels fc^, &#, dim is a dimension of the chosen spline space): 

d i m - l fmm(t,LA) 
" " ~ x /•minir, ьA) 

J2 У(tУj) kA(r)ф)(t-т)dr 
i=o Jo 

d i m - l /.min(ť, Lв) 

+ £ u(tj) kв(т)ф?(t-т)dт 
í - n JO i=o 

+ e(*) = 0. (10) 

In the case of unbounded control horizon, dim tends to the infinity too (because the 
number of nodes is proportional to the assumed horizon). 

Due to the finite memory assumption, the operator kernels kA() and fcjg(-) have 
finite length. At the same time, the basis functions are non-zero for the finite 
number of supports. Thus, the only limited number of basis functions have non­
empty intersection with the operator kernels. That is, the product in the element 
of integration gets the only limited number of the non-zero values that become 
unknown coefficients of the standard regression model. 

Let the vectors $A = [$£, $f , . . . , $ / . . . ] ' , $B = [$?, *f,..., $ f . . . ] ' with the 
following elements: 

/•rnin(ť.Lд) 

ф/(*)= / M r W ť - r ) d r , 
Jo 

ľ 
фf(t)= / 

Jo 

min(ť,Lв) 

kв(т)фЧ(t-т)dт (11) 

are introduced. These vectors are potentially infinite dimensional with the fixed 
finite number of the non-zero members (denoted TUA and m^). Under the notations 
(11), the model (10) can be rewritten in the form: 

mA—l m B - 1 

J2 y(ty

j)*f(t)+ £ t*(.jf)*f(0 + e(0--o. (12) 
j = 0 j=0 

To perform the identification, let us choose the time sequence {tk}^L.Q such that the 
sampled noise {e /t}^-0

 ls a white discrete process and ek = e(tk). 
One can see, that, in the case when the interpolation nodes and the identification 

moments are invariant, the non-zero entries of the vectors $A and $B do not depend 
on the identification moment. By other words, the non-zero parts of vectors $A and 
$ B remain the same, but their positions are shifted with time. 

Respecting the weights definition (see Section 2.4.), the corresponding data vec­
tor is formed: cfo = [ytk,..., ytk-mA , Utfc> • • • iutk-mBY- Introducing the vector of 
unknown coefficients 0 = [ $ A , $ B ] ' converts (12) to the form of standard ARX 
model: 

e'dk + ek = 0, fc = 0 , l , 2 , . . . (13) 
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The model (13) is linear in unknown constant parameters 0 . To identify them, 
the Recursive Least Squares (RLS) algorithm [10] can be applied directly. The 
technique of restricted forgetting [9] is available in the case of a system with varying 
parameters. 

3.2. Contro l synthesis 

To perform the control synthesis we shall optimise the expected value £[•] of the loss 
function 

rp 

J = f J [«.yV(') + 3^2(.)]d<, (14) 

specified by the control horizon T (potentially infinite) and by the output qy and 
input qu penalties. Assuming the approximation error is negligible in (9), the loss 
function in terms of approximated values of the given signals is 

rp 

J « J~ = j ; J [q2
y f(t) + ql u2(t)} d<- (15) 

Substituting the values of the approximated signals from (9), the integral quadratic 
performance index can be written 

J = yQy y' + uQu u\ (16) 

where y and u are the vectors of the output and the input samples; Qy and Qu are 
penalising matrices: 

Qy = 9fJ%y'(t)<ry(t)dt, Qu = ^J%u,(t)4>u(t)dt, (17) 

with <f>u and <f>y stand for pre-defined basis functions, Qy and Qu denote sparse, a 
few diagonal, symmetric matrices (in the case when the interpolating nodes for the 
input and the output signals are equidistant). For example, in the case of the first 
order spline approximation, the matrices are tridiagonal with elements (x = u,y and 
f = <j>u,<f>y, respectively): 

/ f?(t)dt, if. = i 

f*Ui (18) 
/ fi(t)fi+1(t)dt, i f | j - . | = l 

J-7 

QЬ = 

[ 0, otherwise. 

Assuming the complete knowledge of the model parameters 0 , we can build a over-
parametrised regression model that directly relates the sampled values of the output 
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signal to the input. Then, the standard LQ design can be performed. It becomes an 
adaptive controller when the certainty equivalence technique is applied. Minimis­
ing of integral quadratic loss is solved by well justified algorithm [4], developed for 
regression models and discrete time quadratic loss. 

The control synthesis is performed on square root factors of involved matrices in 
order to achieve numerically stable algorithm. 

4. CONCLUSIONS 

The paper considers a spline-based approach to the design of the hybrid adaptive 
controller. The use of splines for the modelling of a controlled process results in a 
very compact description of the controlled system (even for the system with complex 
models), that leads to the simple design of the controller. Besides, the proposed ap­
proach gives freedom to choose non-equidistant spline nodes, which possesses better 
modelling, especially for short sampling periods. In the case of smoothing splines 
(which have more general meaning than the interpolation ones), the approximate 
model include also filtration of measured data. 

With the adopted model (6), the control design is straightforward. It consists of 
the following key stages: 

- The involved signals are approximated by splines with nodes that include sam­
pling time instants. This converts the model into a standard autoregressive-
regressive model (ARX) which is linear in unknown constant parameters. To 
estimate the unknown system parameters, RLS method can be applied. 

- Control design for LQ criterion is performed. Despite of the non-standard 
weighting, the standard technique is applicable. 

- The predictive controller model working on the sampled signals is built by 
using certainty equivalence strategy (using parameter estimates instead of pa­
rameters). Its regressor consists of sampled data, possibly filtered. 
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